1
|
Kim C, Li B, Nakamura S, Neely EJ, Rockel JS, Oussenko T, Zhang P, Kapoor M, Nagy A. Engineered mesenchymal stromal cells with interleukin-1beta sticky-trap attenuate osteoarthritis in knee joints. Front Cell Dev Biol 2025; 13:1559155. [PMID: 40264709 PMCID: PMC12011853 DOI: 10.3389/fcell.2025.1559155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Osteoarthritis (OA) is a common chronic inflammatory joint disease, in which innate immunity plays a pivotal role in pathogenesis. Anti-interleukin-1(IL-1) therapies have shown inconsistent results in clinical trials, potentially due to a mismatch in the spatial and temporal dynamics of interleukin-1beta (IL-1β) production and therapeutic interventions. To address this issue, we developed a novel IL-1β "sticky-trap" utilizing cell and gene-based technologies from our lab and evaluated its efficacy in reducing osteoarthritis progression using a murine destabilization of the medial meniscus (DMM) OA model and a compact bone-derived mesenchymal stromal cell (MSC)-based gene expression system. The extracellular domain of interleukin-1 receptor 2 (IL1R2) was employed to design the sticky IL1R2 trap (stkIL1R2). A murine compact bone-derived MSC line was engineered for gene delivery. Although stkIL1R2 was undetectable in the engineered MSC supernatants by enzyme-linked immunosorbent assay (ELISA) and Western blot, it was localized on the cell surface and extracellular matrix (ECM) and demonstrated specific binding to IL-1β using a fluorescent protein-fused binding assay. Doxycycline (Dox)-induced expression of stkIL1R2 significantly inhibited lipocalin-2 (LCN2) expression which is a biomarker of IL-1β activity. For in vivo experiments, 5 × 104 Dox-inducible stkIL1R2f expressing MSCs were injected into the knee joints of DMM mice. Bioluminescence imaging revealed MSC survival in the knee joints for up to 7 weeks post-injection. Histological analyses at 10 weeks post-injection, including Safranin-O and Masson trichrome staining, showed that stkIL1R2 treated joints exhibited significantly less cartilage degradation and synovitis compared to controls, as assessed by Osteoarthritis Research Society International (OARSI) scoring of the femur, tibia, and synovium. Moreover, stkIL1R2 treatment reduced matrix metalloproteinases-13 (MMP-13) positive cells and collagen type II degradation in the affected joints. In conclusion, we developed a MSC line expressing an inducible IL1 sticky-trap, which localized to the cell surface and ECM and specifically bound IL-1β. These engineered MSCs survived in normal and DMM knee joints for up to 7 weeks and significantly delayed OA progression and inflammation in the murine model. This study introduces a promising therapeutic approach to combat OA progression.
Collapse
Affiliation(s)
- Christopher Kim
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Biao Li
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sayaka Nakamura
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Eric J. Neely
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jason S. Rockel
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Tatiana Oussenko
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Puzheng Zhang
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Zhang Q, Zhao YX, Li LF, Fan QQ, Huang BB, Du HZ, Li C, Li W. Metabolism-Related Adipokines and Metabolic Diseases: Their Role in Osteoarthritis. J Inflamm Res 2025; 18:1207-1233. [PMID: 39886385 PMCID: PMC11780177 DOI: 10.2147/jir.s499835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
Osteoarthritis (OA) affects several joints but tends to be more prevalent in those that are weight-bearing, such as the knees, which are the most heavily loaded joints in the body. The incidence and disability rates of OA have continued to increase and seriously jeopardise the quality of life of middle-aged and older adults. However, OA is more than just a wear and tear disease; its aetiology is complex, and its pathogenesis is poorly understood. Metabolic syndrome (MetS) has emerged as a critical driver of OA development. This condition contributes to the formation of a distinct phenotype, termed metabolic syndrome-associated osteoarthritis (MetS-OA),which differs from other metabolically related diseases by its unique pathophysiological mechanisms and clinical presentation. As key mediators of MetS, metabolic adipokines such as leptin, lipocalin, and resistin regulate inflammation and bone metabolism through distinct or synergistic signaling pathways. Their modulation of inflammatory responses and bone remodeling processes plays a critical role in the pathogenesis and progression of OA. Due to their central role in regulating inflammation and bone remodeling, metabolic adipokines not only deepen our understanding of MetS-OA pathogenesis but also represent promising targets for novel therapeutic strategies that could slow disease progression and improve clinical outcomes in affected patients.
Collapse
Affiliation(s)
- Qian Zhang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Yi Xuan Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Long Fei Li
- Cerebrovascular Disease Ward, The First People’s Hospital of Ping Ding Shan, Pingdingshan, Henan, People’s Republic of China
| | - Qian Qian Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Bin Bin Huang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Hong Zhen Du
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, People’s Republic of China
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Horváth E, Sólyom Á, Székely J, Nagy EE, Popoviciu H. Inflammatory and Metabolic Signaling Interfaces of the Hypertrophic and Senescent Chondrocyte Phenotypes Associated with Osteoarthritis. Int J Mol Sci 2023; 24:16468. [PMID: 38003658 PMCID: PMC10671750 DOI: 10.3390/ijms242216468] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoarthritis (OA) is a complex disease of whole joints with progressive cartilage matrix degradation and chondrocyte transformation. The inflammatory features of OA are reflected in increased synovial levels of IL-1β, IL-6 and VEGF, higher levels of TLR-4 binding plasma proteins and increased expression of IL-15, IL-18, IL-10 and Cox2, in cartilage. Chondrocytes in OA undergo hypertrophic and senescent transition; in these states, the expression of Sox-9, Acan and Col2a1 is suppressed, whereas the expression of RunX2, HIF-2α and MMP-13 is significantly increased. NF-kB, which triggers many pro-inflammatory cytokines, works with BMP, Wnt and HIF-2α to link hypertrophy and inflammation. Altered carbohydrate metabolism and the upregulation of GLUT-1 contribute to the formation of end-glycation products that trigger inflammation via the RAGE pathway. In addition, a glycolytic shift, increased rates of oxidative phosphorylation and mitochondrial dysfunction generate reactive oxygen species with deleterious effects. An important surveyor mechanism, the YAP/TAZ signaling system, controls chondrocyte differentiation, inhibits ageing by protecting the nuclear envelope and suppressing NF-kB, MMP-13 and aggrecanases. The inflammatory microenvironment and synthesis of key matrix components are also controlled by SIRT1 and mTORc. Senescent chondrocytes represent the functional end stage of hypertrophic differentiation and characteristically upregulate p16 and p21, but also a variety of inflammatory cytokines, chemokines and metalloproteinases, developing the senescence-associated secretory phenotype. Senolysis with dendrobin, miR29b-5p and other agents has been shown to be efficient under experimental conditions, and appears to be a promising tool for the treatment of OA, as it restores COL2A1 and aggrecan synthesis, suppressing NF-kB and destructive metalloproteinases.
Collapse
Affiliation(s)
- Emőke Horváth
- Department of Pathology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania;
- Pathology Service, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania
| | - Árpád Sólyom
- Department of Orthopedics-Traumatology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu Street, 540142 Targu Mures, Romania;
- Clinic of Orthopaedics and Traumatology, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
| | - János Székely
- Clinic of Orthopaedics and Traumatology, County Emergency Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu Street, 540136 Targu Mures, Romania;
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540142 Targu Mures, Romania
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 6 Bernády György Square, 540394 Targu Mures, Romania
| | - Horațiu Popoviciu
- Department of Rheumatology, Physical and Medical Rehabilitation, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania;
| |
Collapse
|
4
|
Shao B, Xu Y, Jia M, Li CX, Gong ZC. Association of HMGB1 levels in synovial fluid with the severity of temporomandibular joint osteoarthritis. BMC Musculoskelet Disord 2023; 24:183. [PMID: 36906519 PMCID: PMC10007792 DOI: 10.1186/s12891-023-06208-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND HMGB1 usually serves as a damage-associated molecular pattern (DAMP) molecule (also known as alarmin) that regulates the inflammatory and immune responses via different receptors or direct uptake. Numerous studies have reported the association between HMGB1 and inflammatory diseases; however, its role in temporomandibular joint (TMJ) osteoarthritis (OA) has not been elucidated. In this retrospective study, we aimed to investigate HMGB1 levels in the synovial fluid (SF) in patients with TMJOA and TMID, their correlation with TMJOA and TMID severity, and the therapeutic effect of sodium hyaluronate (hyaluronic acid, HA) on TMJOA. METHODS SF samples were analyzed for 30 patients with TMJ internal derangement (TMJID) and TMJOA, along with visual analog scale (VAS) scores, radiographic stages, and mandibular functional limitations. The SF levels of HMGB1, IL-1β, IL-18, PGE2, RAGE, TLR4, and iNOS were determined via an enzyme-linked immunosorbent assay. To evaluate the therapeutic effects of HA, pre-treatment and post-treatment clinical symptoms were also compared in patients of the TMJOA group who had received an intra-articular injection of HA. RESULTS VAS and Jaw Functional Limitation Scale (JFLS) scores were significantly higher in the TMJOA group than in the TMNID group, as were SF levels of HMGB1, TLR4, IL-1β, IL-18, PGE2, and iNOS. The synovial HMGB1 level was positively correlated with the VAS score (r = 0.5512, p = 0.0016) and mandibular functional limitations (r = 0.4684, p = 0.0054). The cut-off value for the HMGB1 level as a diagnostic biomarker was 986.8 pg/ml. The SF level of HMGB1 yielded an area under the curve value (AUC) of 0.8344 for predicting TMJOA. HA alleviated TMJ disorders by significantly reducing the VAS score and improving the maximum extent of mouth opening in both the TMJID and TMJOA groups (p < 0.05). Moreover, patients in both the TMJID and TMJOA groups exhibited significant improvement in the JFLS score following HA treatment. CONCLUSIONS Our results indicate that HMGB1 is a potential marker for predicting the severity of TMJOA. Intra-articular HA injection exerts a positive therapeutic effect on TMJOA; however, further investigations are warranted to validate its therapeutic effect in the late phase of visco-supplementation treatment.
Collapse
Affiliation(s)
- Bo Shao
- Surgical Department of Oral and Maxillofacial Oncology, the First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.,School/Hospital of Stomatology Xinjiang Medical University, Urumqi, 830054, China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China
| | - Yingjie Xu
- Surgical Department of Oral and Maxillofacial Oncology, the First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.,School/Hospital of Stomatology Xinjiang Medical University, Urumqi, 830054, China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China
| | - Mengying Jia
- Surgical Department of Oral and Maxillofacial Oncology, the First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.,School/Hospital of Stomatology Xinjiang Medical University, Urumqi, 830054, China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China
| | - Chen-Xi Li
- Surgical Department of Oral and Maxillofacial Oncology, the First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.,School/Hospital of Stomatology Xinjiang Medical University, Urumqi, 830054, China.,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China
| | - Zhong-Cheng Gong
- Surgical Department of Oral and Maxillofacial Oncology, the First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China. .,School/Hospital of Stomatology Xinjiang Medical University, Urumqi, 830054, China. .,Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| |
Collapse
|
5
|
Soluble and EV-Associated Diagnostic and Prognostic Biomarkers in Knee Osteoarthritis Pathology and Detection. Life (Basel) 2023; 13:life13020342. [PMID: 36836699 PMCID: PMC9961153 DOI: 10.3390/life13020342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the connective tissue of the human musculoskeletal system. Despite its widespread prevalence, there are many limitations in its diagnosis and treatment. OA diagnosis currently relies on the presence of clinical symptoms, sometimes accompanied by changes in joint X-rays or MRIs. Biomarkers help not only to diagnose early disease progression but also to understand the process of OA in many ways. In this article, we briefly summarize information on articular joints and joint tissues, the pathogenesis of OA and review the literature about biomarkers in the field of OA, specifically inflammatory cytokines/chemokines, proteins, miRNA, and metabolic biomarkers found in the blood, synovial fluid and in extracellular vesicles.
Collapse
|
6
|
Boffa A, Merli G, Andriolo L, Lattermann C, Salzmann GM, Filardo G. Synovial Fluid Biomarkers in Knee Osteoarthritis: A Systematic Review and Quantitative Evaluation Using BIPEDs Criteria. Cartilage 2021; 13:82S-103S. [PMID: 32713185 PMCID: PMC8808867 DOI: 10.1177/1947603520942941] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of this systematic review was to analyze the evidence about the efficacy of the several synovial fluid (SF) biomarkers proposed for knee osteoarthritis (OA), categorizing them by both molecular characteristics and clinical use according to the BIPEDs criteria, to provide a comprehensive and structured overview of the current literature. DESIGN A systematic review was performed in May 2020 on PubMed, Cochrane Library, and Embase databases about SF biomarkers in patients with knee OA. The search was limited to articles in the last 20 years on human studies, involving patients with knee OA, reporting SF biomarkers. The evidence for each selected SF biomarker was quantified according to the 6 categories of BIPEDs classification. RESULTS A total of 159 articles were included in the qualitative data synthesis and 201 different SF biomarkers were identified. Among these, several were investigated multiple times in different articles, for a total of 373 analyses. The studies included 13,557 patients with knee OA. The most promising SF biomarkers were C4S, IL-6, IL-8, Leptin, MMP-1/3, TIMP-1, TNF-α, and VEGF. The "burden of disease" and "diagnostic" categories were the most represented with 132 and 106 different biomarkers, respectively. CONCLUSIONS The systematic review identified numerous SF biomarkers. However, despite the high number of studies on the plethora of identified molecules, the evidence about the efficacy of each biomarker is supported by limited and often conflicting findings. Further research efforts are needed to improve the understanding of SF biomarkers for a better management of patients with knee OA.
Collapse
Affiliation(s)
- Angelo Boffa
- Clinica Ortopedica e Traumatologica 2,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Merli
- Applied and Translational Research (ATR)
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Christian Lattermann
- Department of Orthopaedic Surgery,
Center for Cartilage Repair and Sports Medicine, Brigham and Women’s Hospital,
Harvard Medical School, Chestnut Hill, MA, USA
| | - Gian M. Salzmann
- Department of Orthopaedic Surgery, Hip
and Knee Department, Schulthess Clinic, Zürich, Switzerland
| | - Giuseppe Filardo
- Applied and Translational Research (ATR)
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
7
|
Molnar V, Matišić V, Kodvanj I, Bjelica R, Jeleč Ž, Hudetz D, Rod E, Čukelj F, Vrdoljak T, Vidović D, Starešinić M, Sabalić S, Dobričić B, Petrović T, Antičević D, Borić I, Košir R, Zmrzljak UP, Primorac D. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int J Mol Sci 2021; 22:9208. [PMID: 34502117 PMCID: PMC8431625 DOI: 10.3390/ijms22179208] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis is a common cause of disability worldwide. Although commonly referred to as a disease of the joint cartilage, osteoarthritis affects all joint tissues equally. The pathogenesis of this degenerative process is not completely understood; however, a low-grade inflammation leading to an imbalance between anabolic and katabolic processes is a well-established factor. The complex network of cytokines regulating these processes and cell communication has a central role in the development and progression of osteoarthritis. Concentrations of both proinflammatory and anti-inflammatory cytokines were found to be altered depending on the osteoarthritis stage and activity. In this review, we analyzed individual cytokines involved in the immune processes with an emphasis on their function in osteoarthritis.
Collapse
Affiliation(s)
- Vilim Molnar
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Ivan Kodvanj
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Roko Bjelica
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Željko Jeleč
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Nursing, University North, 48000 Varaždin, Croatia
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Orthopaedic Surgery, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Fabijan Čukelj
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
- Department of Health Studies, University of Split, 21000 Split, Croatia
- Department of Traumatology, Medical University Merkur Hospital, 10000 Zagreb, Croatia
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Orthopaedic Surgery, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Dinko Vidović
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
| | | | - Srećko Sabalić
- University Hospital “Sisters of Mercy”, Clinic for Traumatology, Draškovićeva 19, 10000 Zagreb, Croatia;
| | - Borut Dobričić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Orthopaedics and Traumatology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Tadija Petrović
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Darko Antičević
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Igor Borić
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Department of Traumatology, Medical University Merkur Hospital, 10000 Zagreb, Croatia
- Medical School, University of Split, 21000 Split, Croatia;
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
| | - Rok Košir
- Molecular Biology Laboratory, BIA Separations CRO, Labena Ltd., 1000 Ljubljana, Slovenia; (R.K.); (U.P.Z.)
| | - Uršula Prosenc Zmrzljak
- Molecular Biology Laboratory, BIA Separations CRO, Labena Ltd., 1000 Ljubljana, Slovenia; (R.K.); (U.P.Z.)
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 49210 Zabok, Croatia; (V.M.); (V.M.); (R.B.); (Ž.J.); (D.H.); (E.R.); (F.Č.); (T.V.); (D.V.); (B.D.); (T.P.); (D.A.); (I.B.)
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia;
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96450 Coburg, Germany
- Eberly College of Science, State College, The Pennsylvania State University, University Park, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
| |
Collapse
|
8
|
Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-Inflammatory Therapeutic Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a Focus on Sustained Delivery Approaches. Int J Mol Sci 2021; 22:8005. [PMID: 34360771 PMCID: PMC8347094 DOI: 10.3390/ijms22158005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays a central role in the pathogenesis of knee PTOA after knee trauma. While a comprehensive therapy capable of preventing or delaying post-traumatic osteoarthritis (PTOA) progression after knee joint injury does not yet clinically exist, current literature suggests that certain aspects of early post-traumatic pathology of the knee joint may be prevented or delayed by anti-inflammatory therapeutic interventions. We discuss multifaceted therapeutic approaches that may be capable of effectively reducing the continuous cycle of inflammation and concomitant processes that lead to cartilage degradation as well as those that can simultaneously promote intrinsic repair processes. Within this context, we focus on early disease prevention, the optimal timeframe of treatment and possible long-lasting sustained delivery local modes of treatments that could prevent knee joint-associated PTOA symptoms. Specifically, we identify anti-inflammatory candidates that are not only anti-inflammatory but also anti-degenerative, anti-apoptotic and pro-regenerative.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs—University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (J.M.H.); (R.A.); (B.R.)
| |
Collapse
|
9
|
Chen YL, Yan DY, Wu CY, Xuan JW, Jin CQ, Hu XL, Bao GD, Bian YJ, Hu ZC, Shen ZH, Ni WF. Maslinic acid prevents IL-1β-induced inflammatory response in osteoarthritis via PI3K/AKT/NF-κB pathways. J Cell Physiol 2021; 236:1939-1949. [PMID: 32730652 DOI: 10.1002/jcp.29977] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by destruction of articular cartilage. The inflammatory response is the most important factor affecting the disease process. As interleukin-1β (IL-1β) stimulates several key mediators in the inflammatory response, it plays a major role in the pathogenesis of OA. Maslinic acid (MA) is a natural compound distributed in olive fruit. Previous studies have found that maslinic acid has an inhibitory effect on inflammation, but its specific role in the progression of OA disease has not been studied so far. In this study, we aim to assess the protective effect of MA on OA progression by in vitro and in vivo experiments. Our results indicate that, in IL-1β-induced inflammatory response, MA is effective in attenuating some major inflammatory mediators such as nitric oxide (NO) and prostaglandin E2, and inhibits the expression of IL-6, inducible nitric oxide synthase, cyclooxygenase-2, and tumor necrosis factor-α (TNF-α) in a concentration-dependent manner. Also, MA downregulated the expression levels of thrombospondin motif 5 (ADAMTS5) and matrix metalloproteinase 13 in chondrocytes, resulting in reduced degradation of its extracellular matrix. Mechanistically, MA exhibits an anti-inflammatory effect by inactivating the PI3K/AKT/NF-κB pathway. In vivo, the protective effect of MA on OA development can be detected in a surgically induced mouse OA model. In summary, these findings suggest that MA can be used as a safe and effective potential OA therapeutic strategy.
Collapse
Affiliation(s)
- Yan-Lin Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - De-Yi Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Chen-Yu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jiang-Wei Xuan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Chen-Qiang Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xin-Li Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Guo-Dong Bao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yu-Jie Bian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhi-Chao Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhong-Hai Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Wen-Fei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An Evidence-Based Systematic Review of Human Knee Post-Traumatic Osteoarthritis (PTOA): Timeline of Clinical Presentation and Disease Markers, Comparison of Knee Joint PTOA Models and Early Disease Implications. Int J Mol Sci 2021; 22:1996. [PMID: 33671471 PMCID: PMC7922905 DOI: 10.3390/ijms22041996] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the causality of the post-traumatic osteoarthritis (PTOA) disease process of the knee joint is important for diagnosing early disease and developing new and effective preventions or treatments. The aim of this review was to provide detailed clinical data on inflammatory and other biomarkers obtained from patients after acute knee trauma in order to (i) present a timeline of events that occur in the acute, subacute, and chronic post-traumatic phases and in PTOA, and (ii) to identify key factors present in the synovial fluid, serum/plasma and urine, leading to PTOA of the knee in 23-50% of individuals who had acute knee trauma. In this context, we additionally discuss methods of simulating knee trauma and inflammation in in vivo, ex vivo articular cartilage explant and in vitro chondrocyte models, and answer whether these models are representative of the clinical inflammatory stages following knee trauma. Moreover, we compare the pro-inflammatory cytokine concentrations used in such models and demonstrate that, compared to concentrations in the synovial fluid after knee trauma, they are exceedingly high. We then used the Bradford Hill Framework to present evidence that TNF-α and IL-6 cytokines are causal factors, while IL-1β and IL-17 are credible factors in inducing knee PTOA disease progresssion. Lastly, we discuss beneficial infrastructure for future studies to dissect the role of local vs. systemic inflammation in PTOA progression with an emphasis on early disease.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (R.A.); (J.M.H.); (B.R.)
| |
Collapse
|
11
|
Neferine Inhibits Expression of Inflammatory Mediators and Matrix Degrading Enzymes in IL-1β-Treated Rat Chondrocytes via Suppressing MAPK and NF-κB Signaling Pathways. Inflammation 2020; 43:1209-1221. [DOI: 10.1007/s10753-019-01143-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Ren LS, Zhang L, Zhu D, Li T, Wang Q, Yuan XY, Hao LR. KMUP-1 regulates the vascular calcification in chronic renal failure by mediating NO/cGMP/PKG signaling pathway. Life Sci 2020; 253:117683. [PMID: 32315727 DOI: 10.1016/j.lfs.2020.117683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To explore the potential mechanism of KMUP-1 in the vascular calcification of chronic renal failure (CRF) through mediating NO/cGMP/PKG pathway, and provide novel insights into the CRF treatment. METHODS CRF rats were treated by KMUP-1 with/without L-NNA (a NOS inhibitor) and then performed by ELISA, alizarin red staining, Von Kossa staining, Masson's trichrome, Sirius red staining and CD3 immunohistochemical staining. Simultaneously, vascular smooth muscle cells (VSMCs) were collected from rats to confirm the effect of KMUP-1 on vascular calcification in vitro via NO/cGMP/PKG pathway. Besides, protein and mRNA expressions were determined via Western blotting and qRT-PCR, respectively. RESULTS CRF rats were elevated in 24-h urine protein, blood urea nitrogen (BUN), serum creatinine, Cys-C levels and inflammatory cytokines. Besides, CRF rats also showed increased calcium content and ALP level with up-regulated mRNA of osteogenic differentiation-related markers. Furthermore, the up-regulated expressions of eNOS and PKG, as well as down-regulated levels of NOx and cGMP were also found in CRF rats. However, renal failure and vascular calcification of CRF were improved significantly by KMUP-1 treatment via activation of NO/cGMP/PKG pathway. Moreover, KMUP-1 treatment attenuated calcified VSMCs, accompanied by the decreases in the calcified nodules, level of calcium and activity of ALP. In addition, either L-NNA treatment for CRF rats or the calcified VSMCs could antagonize the improving effect of KMUP-1. CONCLUSION KMUP-1 can improve the renal function and vascular calcification in CRF rats at least in part by activating NO/cGMP/PKG pathway.
Collapse
Affiliation(s)
- Lian-Sheng Ren
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Dan Zhu
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tong Li
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Qi Wang
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xue-Ying Yuan
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Li-Rong Hao
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
13
|
Leblebicioglu B, Alssum L, Eubank TD, Yildiz VO, Tatakis DN. Wound Fluid Cytokine Profile Following Bone Regeneration Procedures. J ORAL IMPLANTOL 2020; 46:107-113. [PMID: 31909694 DOI: 10.1563/aaid-joi-d-19-00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clinical parameters available to evaluate early healing phases of bone regeneration procedures are limited. This study explores wound fluid (WF) content for molecular markers to differentiate wound healing responses in the early postoperative period after bone graft placement. Fifteen patients (50 ± 5 years old; 8 men) scheduled to receive tooth extraction and bone graft placement at maxillary nonmolar single-tooth sites were recruited. Primary wound closure was not intended at time of surgery. Gingival crevicular fluid from adjacent teeth or WF from surgical wound edges were collected (30 seconds) at baseline, at 3, 6, and 9 days, and at 1 and 4 months. Multiplex protein assay was used to determine concentration of various wound healing mediators. Immediately after surgery, 87% of surgical sites exhibited open wound. At day 9, mean wound exposure was 4.8 ± 0.4 mm. At 1 month, all wounds were clinically closed. The WF tripled in volume at day 3 and day 6 (P ≤ .05), compared with baseline gingival crevicular fluid, and gradually decreased as wounds closed. The WF concentrations of interleukin (IL)-6, placental growth factor, plasminogen activator inhibitor 1, insulin-like growth factor binding protein 1, and soluble cluster determinant 40 ligand were increased during early healing days, generally with peak concentration at day 6 (P ≤ .004). Conversely, WF concentrations of IL-18 and epidermal growth factor were decreased after surgery, generally not reaching baseline values until wound closure (P ≤ .008). In general, WF cytokine expression kinetics were concordant with wound closure dynamics (P ≤ .04). These results suggest that WF molecular markers such as IL-6, and to a lesser extent placental growth factor and IL-18, might help differentiate wound healing responses after bone regeneration procedures.
Collapse
Affiliation(s)
- Binnaz Leblebicioglu
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Lamees Alssum
- Department of Periodontics & Community Dentistry, College of Dentistry, King Saud University, Saudi Arabia; previously with The Ohio State University, Columbus, Ohio
| | - Timothy D Eubank
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Mogantown, WV
| | - Vedat O Yildiz
- Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Tang S, Zhou W, Zhong X, Xu J, Huang H, Zheng X, Zhang J, Yang S, Shang P, Tang Q, Liu H. Arctigenin prevents the progression of osteoarthritis by targeting PI3K/Akt/NF-κB axis: In vitro and in vivo studies. J Cell Mol Med 2020; 24:4183-4193. [PMID: 32090454 PMCID: PMC7171400 DOI: 10.1111/jcmm.15079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/03/2020] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA), which is principally featured by progressive joint metabolic imbalance and subsequent degeneration of articular cartilage, is a common chronic joint disease. Arctigenin (ATG), a dietary phyto-oestrogen, has been described to have potent anti-inflammatory effects. Nevertheless, its protective effects on OA have not been clearly established. The target of our following study is to evaluate the protective effects of ATG on IL-1β-induced human OA chondrocytes and mouse OA model. Our results revealed that the ATG pre-treatment effectively decreases the level of pro-inflammatory mediators, such as prostaglandin E2 (PGE2), nitrous oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and tumour necrosis factor alpha (TNF-α) in IL-1β-induced human chondrocytes. In addition, ATG protects against the degradation of extracellular matrix (ECM) under the stimulation of IL-1β and the possible mechanism might be connected with the inactivation of phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor-kappa B (NF-κB) axis. Furthermore, a powerful binding capacity between ATG and PI3K was also uncovered in our molecular docking research. Meanwhile, ATG may act as a protector on the mouse OA model. Collectively, all these findings suggest that ATG could be utilized as a promising therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Shangkun Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Weijun Zhou
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xinyang Zhong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jianchen Xu
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Huasong Huang
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xinnan Zheng
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jingkang Zhang
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Shuyue Yang
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Ping Shang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Tang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haixiao Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Lu L, Xie Y, Gan K, Huang XW. Comparison of intra-articular injection of parecoxib vs oral administration of celecoxib for the clinical efficacy in the treatment of early knee osteoarthritis. World J Clin Cases 2019; 7:3971-3979. [PMID: 31832399 PMCID: PMC6906556 DOI: 10.12998/wjcc.v7.i23.3971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Non-steroid anti-inflammatory drugs (NSAIDs) have played a crucial role in the treatment of osteoarthritis, especially in the early stages. However, the cardiovascular risk and adverse gastrointestinal reactions of oral NSAIDs in elderly people cannot be underestimated. Intra-articular injection of NSAIDs may be a new attempt for early knee osteoarthritis treatment. Parecoxib may be a suitable drug for intra-articular injection.
AIM To observe the clinical efficacy of the intra-articular injection of parecoxib for early knee osteoarthritis.
METHODS Early knee osteoarthritis patients (n = 110) were retrospectively analyzed. These patients were divided into three groups: Basic treatment + oral glucosamine (group A, n = 37), oral celecoxib + basic treatment + oral glucosamine (group B, n = 37), and intra-articular injection of parecoxib + basic treatment + oral glucosamine (group C, n = 36). Intra-articular injection of parecoxib was performed once every 2 wk at a dose of 40 mg each time, for three times total. The three groups were compared in terms of visual analogue scale (VAS) scores, Hospital for Special Surgery (HSS) scores and patient satisfaction before and after treatment. The levels of inflammatory cytokines in the synovial fluid were detected in the three groups before and after treatment.
RESULTS All patients were followed up for an average of 15.5 ± 2.7 mo. The clinical efficacy was estimated by VAS and HSS scores at 12 mo after treatment. Inflammatory cytokine levels in the synovial fluid were evaluated at 3 mo after treatment. VAS and HSS scores were significantly improved in each group compared with before (P < 0.001). There were significant differences among the three groups in VAS and HSS scores (P < 0.001). The clinical efficacy of group C was superior to that of groups A and B (P < 0.001), while group B outperformed group A in this respect (P < 0.001). The patient satisfaction was the highest in group C (P < 0.001). After treatment, the levels of tumor necrosis factor α (TNF-α) and interleukin (IL)-6 in the synovial fluid decreased in each group compared with before (P < 0.001), while the levels of IL-10 increased (P < 0.001). The three groups differed significantly in the levels of TNF-a, IL-6 and IL-10 in the synovial fluid after treatment (P < 0.001).
CONCLUSION For patients with early knee osteoarthritis, intra-articular injection of parecoxib could effectively improve clinical symptoms. This method may be a reliable alternative for early knee osteoarthritis.
Collapse
Affiliation(s)
- Lu Lu
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, Jiangsu Province, China
| | - Yu Xie
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, Jiangsu Province, China
| | - Ke Gan
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing 210029, Jiangsu Province, China
| | - Xiao-Wen Huang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
16
|
Fan L, Li M, Cao FY, Zeng ZW, Li XB, Ma C, Ru JT, Wu XJ. Astragalus polysaccharide ameliorates lipopolysaccharide-induced cell injury in ATDC5 cells via miR-92a/KLF4 mediation. Biomed Pharmacother 2019; 118:109180. [DOI: 10.1016/j.biopha.2019.109180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
|
17
|
Pattappa G, Schewior R, Hofmeister I, Seja J, Zellner J, Johnstone B, Docheva D, Angele P. Physioxia Has a Beneficial Effect on Cartilage Matrix Production in Interleukin-1 Beta-Inhibited Mesenchymal Stem Cell Chondrogenesis. Cells 2019; 8:cells8080936. [PMID: 31434236 PMCID: PMC6721827 DOI: 10.3390/cells8080936] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative condition that involves the production of inflammatory cytokines (e.g., interleukin-1β (IL-1β), tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)) that stimulate degradative enzymes, matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS) resulting in articular cartilage breakdown. The presence of interleukin-1β (IL-1β) is one reason for poor clinical outcomes in current cell-based tissue engineering strategies for treating focal early osteoarthritic defects. Mesenchymal stem cells (MSCs) are a potential cell source for articular cartilage regeneration, although IL-1β has been shown to inhibit in vitro chondrogenesis. In vivo, articular chondrocytes reside under a low oxygen environment between 2–5% oxygen (physioxia) and have been shown to enhance in vitro MSC chondrogenic matrix content with reduced hypertrophic marker expression under these conditions. The present investigation sought to understand the effect of physioxia on IL-1β inhibited MSC chondrogenesis. MSCs expanded under physioxic (2% oxygen) and hyperoxic (20%) conditions, then chondrogenically differentiated as pellets in the presence of TGF-β1 and either 0.1 or 0.5 ng/mL IL-1β. Results showed that there were donor variations in response to physioxic culture based on intrinsic GAG content under hyperoxia. In physioxia responsive donors, MSC chondrogenesis significantly increased GAG and collagen II content, whilst hypertrophic markers were reduced compared with hyperoxia. In the presence of IL-1β, these donors showed a significant increase in cartilage matrix gene expression and GAG content relative to hyperoxic conditions. In contrast, a set of MSC donors were unresponsive to physioxia and showed no significant increase in matrix production independent of IL-1β presence. Thus, physioxia has a beneficial effect on MSC cartilage matrix production in responsive donors with or without IL-1β application. The mechanisms controlling the MSC chondrogenic response in both physioxia responsive and unresponsive donors are to be elucidated in future investigations.
Collapse
Affiliation(s)
- Girish Pattappa
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany.
| | - Ruth Schewior
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
| | - Isabelle Hofmeister
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
| | - Jennifer Seja
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
| | - Johannes Zellner
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, OP31, Portland, OR 97239, USA
| | - Denitsa Docheva
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93053 Regensburg, Germany
- Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053 Regensburg, Germany
| |
Collapse
|
18
|
Kleine SA, Sanderson SL, George C, Roth I, Gogal RM, Thaliath MA, Budsberg SC. Correlation of serum and synovial leptin concentrations with body condition scores in healthy and osteoarthritic dogs. Vet Surg 2019; 48:780-785. [PMID: 31155740 DOI: 10.1111/vsu.13244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/01/2019] [Accepted: 05/06/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the relationship between serum and synovial fluid (SF) leptin concentrations and body condition score (BCS) in healthy and osteoarthritic dogs. STUDY DESIGN Controlled, prospective, clinical study. ANIMALS Nineteen healthy dogs and 29 dogs with osteoarthritis (OA) secondary to cranial cruciate ligament injury. METHODS Synovial fluid was obtained from the femorotibial joint under sedation (healthy dogs) or during surgery (OA dogs). Serum and SF leptin and interleukin (IL)-1β concentrations were measured via enzyme-linked immunosorbent assay. Dogs were classified as optimal weight (BCS 4-5/9) or overweight (BCS >5/9). Radiographs were scored for OA severity by a radiologist. Owners completed the Liverpool Osteoarthritis in Dogs (LOAD) questionnaire. RESULTS Mean (± SD) SF leptin (4.09 ± 4 ng/mL) was lower than serum leptin (6.88 ± 5.52 ng/mL, P < .0001). Synovial fluid leptin was higher in overweight (5.28 ± 4.21) than in optimal body weight dogs (1.54 ± 1.72 ng/mL, P < .0001). Serum (P < .001) and SF leptin (P = .004) concentrations were associated with BCS. Concentration of SF leptin did not differ between healthy (2.4 ± 2.04 ng/mL) and OA (4.9 ± 4.3 ng/mL, P = .25) dogs. Synovial fluid leptin and LOAD scores were weakly associated (P = .03). No association was detected between SF leptin and radiographic score or IL-1β (P = .73). CONCLUSION Serum and SF leptin correlated with BCS in this population. Synovial fluid leptin was weakly associated with LOAD scores but not with radiographic severity of OA or IL-1β. CLINICAL SIGNIFICANCE Serum and SF leptin concentrations do not predict radiographic severity of canine OA but contribute to joint pain and dysfunction.
Collapse
Affiliation(s)
- Stephanie A Kleine
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia
| | - Sherry L Sanderson
- Department of Comparative Physiology and Pharmacology, University of Georgia, Athens, Georgia
| | - Clinton George
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia
| | - Ira Roth
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia
| | - Robert M Gogal
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia
| | - Mary Ann Thaliath
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia
| | - Steven C Budsberg
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, Georgia.,Department of Comparative Physiology and Pharmacology, University of Georgia, Athens, Georgia.,Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia
| |
Collapse
|
19
|
Speichert S, Molotkov N, El Bagdadi K, Meurer A, Zaucke F, Jenei-Lanzl Z. Role of Norepinephrine in IL-1β-Induced Chondrocyte Dedifferentiation under Physioxia. Int J Mol Sci 2019; 20:ijms20051212. [PMID: 30861996 PMCID: PMC6429278 DOI: 10.3390/ijms20051212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
As part of the pathogenesis of osteoarthritis (OA), chondrocytes lose their phenotype and become hypertrophic, or dedifferentiate, mainly driven by interleukin-1β (IL-1β). The contribution of other factors to the dedifferentiation process is not completely understood. Recent studies suggested a dose-dependent role for the sympathetic neurotransmitter norepinephrine (NE) in OA chondrocyte metabolism. Therefore, the aim of this study was to analyze the contribution of NE (10-8 M, 10-6 M) to human articular OA chondrocyte dedifferentiation in the absence or presence of IL-1β (0.5 ng/mL). Here, we demonstrate that OA chondrocytes express α2A-, α2C- and β2-adrenoceptors (AR) and show the characteristic shift towards a fibroblast-like shape at day 7 in physioxic monolayer culture. NE alone did not affect morphology but, in combination with IL-1β, markedly accelerated this shift. Moderate glycosaminoglycan (GAG) staining was observed in untreated and NE-treated cells, while IL-1β strongly decreased GAG deposition. IL-1β alone or in combination with NE decreased SOX9, type II collagen, COMP, and aggrecan, and induced MMP13 and ADAMTS4 gene expression, indicating an accelerated dedifferentiation. NE alone did not influence gene expression and did not modulate IL-1β-mediated effects. In conclusion, these results indicate that low-grade inflammation exerts a dominant effect on chondrocyte dedifferentiation and should be targeted early in OA therapy.
Collapse
Affiliation(s)
- Saskia Speichert
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Natalie Molotkov
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Karima El Bagdadi
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
20
|
Fernández-Torres J, Martínez-Nava GA, Zamudio-Cuevas Y, Martínez-Flores K, Espinosa-Morales R. Epistasis between ADIPOQ rs1501299 and PON1 rs662 polymorphisms is potentially associated with the development of knee osteoarthritis. Mol Biol Rep 2019; 46:2049-2058. [PMID: 30734899 DOI: 10.1007/s11033-019-04654-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
Abstract
Overweight produces oxidative stress (OS) on the articular cartilage, with the subsequent risk of developing knee osteoarthritis (OA). Associations between genetic polymorphisms related to OS and OA have been reported, but it is currently unknown whether there exist interactions among them that affect OA development. To identify and evaluate interactions between multiple SNPs related to OS in Mexican knee OA patients. Ninety-two knee OA patients were included in the study, which were compared to 147 healthy controls. Nine variants of six genes (PEPD, AGER, IL6, ADIPOQ, PON1, and CA6) related to OS were genotyped in both study groups through the OpenArray system. Epistasis was analyzed with the multifactor dimensionality reduction (MDR) method. The MDR analysis revealed a significant interaction (p = 0.0107) between polymorphisms rs1501299 (ADIPOQ) and rs662 (PON1), with an entropy value of 9.84%; in addition, high and low risk genotypes were identified between these two polymorphisms. The effect of the interaction between rs1501299 (ADIPOQ) and rs662 (PON1) polymorphisms seems to play an important role in OA pathogenesis; so the epistasis analysis may provide an excellent tool for identifying individuals at high risk for developing OA.
Collapse
Affiliation(s)
- Javier Fernández-Torres
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico.
| | - Gabriela Angélica Martínez-Nava
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Yessica Zamudio-Cuevas
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Karina Martínez-Flores
- Synovial Fluid Laboratory, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Rolando Espinosa-Morales
- Rheumatology Department, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| |
Collapse
|
21
|
Park C, Jeong JW, Lee DS, Yim MJ, Lee JM, Han MH, Kim S, Kim HS, Kim GY, Park EK, Jeon YJ, Cha HJ, Choi YH. Sargassum serratifolium Extract Attenuates Interleukin-1β-Induced Oxidative Stress and Inflammatory Response in Chondrocytes by Suppressing the Activation of NF-κB, p38 MAPK, and PI3K/Akt. Int J Mol Sci 2018; 19:E2308. [PMID: 30087236 PMCID: PMC6121501 DOI: 10.3390/ijms19082308] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is characterized by irreversible articular cartilage destruction by inflammatory reaction. Among inflammatory stimuli, interleukin-1β (IL-1β) is known to play a crucial role in OA pathogenesis by stimulating several mediators that contribute to cartilage degradation. Recently, the marine brown alga Sargassum serratifolium has been reported to exhibit antioxidant and anti-inflammatory effects in microglial and human umbilical vein endothelial cell models using lipopolysaccharide and tumor necrosis factor-α, but its beneficial effects on OA have not been investigated. This study aimed to evaluate the anti-osteoarthritic effects of ethanol extract of S. serratifolium (EESS) in SW1353 human chondrocytes and, in parallel, primary rat articular chondrocytes. Our results showed that EESS effectively blocked the generation of reactive oxygen species in IL-1β-treated SW1353 and rat primary chondrocytes, indicating that EESS has a potent antioxidant activity. EESS also attenuated IL-1β-induced production of nitric oxide (NO) and prostaglandin E₂, major inflammatory mediators in these cells, which was associated with the inhibition of inducible NO synthase and cyclooxygenase-2 expression. Moreover, EESS downregulated the level of gene expression of matrix metalloproteinase (MMP)-1, -3 and -13 in SW1353 chondrocytes treated with IL-1β, resulting in their extracellular secretion reduction. In addition, the IL-1β-induced activation of nuclear factor-kappa B (NF-κB) was restored by EESS. Furthermore, EESS reduced the activation of p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways upon IL-1β stimulation. These results indicate that EESS has the potential to exhibit antioxidant and anti-inflammatory effects through inactivation of the NF-κB, p38 MAPK, and PI3K/Akt signaling pathways. Collectively, these findings demonstrate that EESS may have the potential for chondroprotection, and extracts of S. serratifolium could potentially be used in the prevention and treatment of OA.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea.
| | - Jin-Woo Jeong
- Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea.
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Jeong Min Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu 41940, Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Korea.
| | - Yung Hyun Choi
- Anti-Aging Research Center and Blue-Bio Industry RIC, Dong-eui University, Busan 47227, Korea.
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea.
| |
Collapse
|
22
|
Intra Articular Ozone Reduces Serum Uric Acid and Improves Pain, Function and Quality of Life in Knee Osteoarthritis Patients: A Before-and-After Study. ACTA ACUST UNITED AC 2018. [DOI: 10.5812/mejrh.68599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|