1
|
Mathieu PS, Fitzpatrick E, Di Luca M, Cahill PA, Lally C. Native extracellular matrix orientation determines multipotent vascular stem cell proliferation in response to cyclic uniaxial tensile strain and simulated stent indentation. Biochem Biophys Rep 2022; 29:101183. [PMID: 35005255 PMCID: PMC8715293 DOI: 10.1016/j.bbrep.2021.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide, with multipotent vascular stem cells (MVSC) implicated in contributing to diseased vessels. MVSC are mechanosensitive cells which align perpendicular to cyclic uniaxial tensile strain. Within the blood vessel wall, collagen fibers constrain cells so that they are forced to align circumferentially, in the primary direction of tensile strain. In these experiments, MVSC were seeded onto the medial layer of decellularized porcine carotid arteries, then exposed to 10%, 1 Hz cyclic tensile strain for 10 days with the collagen fiber direction either parallel or perpendicular to the direction of strain. Cells aligned with the direction of the collagen fibers regardless of the orientation to strain. Cells aligned with the direction of strain showed an increased number of proliferative Ki67 positive cells, while those strained perpendicular to the direction of cell alignment showed no change in cell proliferation. A bioreactor system was designed to simulate the indentation of a single, wire stent strut. After 10 days of cyclic loading to 10% strain, MVSC showed regions of densely packed, highly proliferative cells. Therefore, MVSC may play a significant role in in-stent restenosis, and this proliferative response could potentially be controlled by controlling MVSC orientation relative to applied strain. ECM constrained MVSC align with collagen fibers when cells are strained parallel to collagen. Straining MVSC aligned parallel to the direction of strain increased cell proliferation. Simulated stent strut indentation showed increased cell density surrounding the indented wire.
Collapse
Affiliation(s)
- P S Mathieu
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - E Fitzpatrick
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - M Di Luca
- School of Biotechnology, Vascular Biology & Therapeutics Group, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - P A Cahill
- School of Biotechnology, Vascular Biology & Therapeutics Group, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Jeong Y, Yao Y, Yim EKF. Current understanding of intimal hyperplasia and effect of compliance in synthetic small diameter vascular grafts. Biomater Sci 2020; 8:4383-4395. [PMID: 32643723 PMCID: PMC7452756 DOI: 10.1039/d0bm00226g] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite much effort, synthetic small diameter vascular grafts still face limited success due to vascular wall thickening known as intimal hyperplasia (IH). Compliance mismatch between graft and native vessels has been proposed to be one of a key mechanical factors of synthetic vascular grafts that could contribute to the formation of IH. While many methods have been developed to determine compliance both in vivo and in vitro, the effects of compliance mismatch still remain uncertain. This review aims to explain the biomechanical factors that are responsible for the formation and development of IH and their relationship with compliance mismatch. Furthermore, this review will address the current methods used to measure compliance both in vitro and in vivo. Lastly, current limitations in understanding the connection between the compliance of vascular grafts and the role it plays in the development and progression of IH will be discussed.
Collapse
Affiliation(s)
- YeJin Jeong
- Department of Chemical engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | | | | |
Collapse
|
3
|
Zun PS, Narracott AJ, Chiastra C, Gunn J, Hoekstra AG. Location-Specific Comparison Between a 3D In-Stent Restenosis Model and Micro-CT and Histology Data from Porcine In Vivo Experiments. Cardiovasc Eng Technol 2019; 10:568-582. [PMID: 31531821 PMCID: PMC6863796 DOI: 10.1007/s13239-019-00431-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/07/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Coronary artery restenosis is an important side effect of percutaneous coronary intervention. Computational models can be used to better understand this process. We report on an approach for validation of an in silico 3D model of in-stent restenosis in porcine coronary arteries and illustrate this approach by comparing the modelling results to in vivo data for 14 and 28 days post-stenting. METHODS This multiscale model includes single-scale models for stent deployment, blood flow and tissue growth in the stented vessel, including smooth muscle cell (SMC) proliferation and extracellular matrix (ECM) production. The validation procedure uses data from porcine in vivo experiments, by simulating stent deployment using stent geometry obtained from micro computed tomography (micro-CT) of the stented vessel and directly comparing the simulation results of neointimal growth to histological sections taken at the same locations. RESULTS Metrics for comparison are per-strut neointimal thickness and per-section neointimal area. The neointimal area predicted by the model demonstrates a good agreement with the detailed experimental data. For 14 days post-stenting the relative neointimal area, averaged over all vessel sections considered, was 20 ± 3% in vivo and 22 ± 4% in silico. For 28 days, the area was 42 ± 3% in vivo and 41 ± 3% in silico. CONCLUSIONS The approach presented here provides a very detailed, location-specific, validation methodology for in silico restenosis models. The model was able to closely match both histology datasets with a single set of parameters. Good agreement was obtained for both the overall amount of neointima produced and the local distribution. It should be noted that including vessel curvature and ECM production in the model was paramount to obtain a good agreement with the experimental data.
Collapse
Affiliation(s)
- P S Zun
- Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
- Biomechanics Laboratory, Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands.
- National Center for Cognitive Technologies, ITMO University, Saint Petersburg, Russia.
| | - A J Narracott
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - C Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - J Gunn
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - A G Hoekstra
- Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Mathieu PS, Fitzpatrick E, Di Luca M, Cahill PA, Lally C. Resident multipotent vascular stem cells exhibit amplitude dependent strain avoidance similar to that of vascular smooth muscle cells. Biochem Biophys Res Commun 2019; 521:762-768. [PMID: 31706573 DOI: 10.1016/j.bbrc.2019.10.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
Atherosclerosis is one of the leading causes of mortality worldwide, and presents as a narrowing or occlusion of the arterial lumen. Interventions to re-open the arterial lumen can result in re-occlusion through intimal hyperplasia. Historically only de-differentiated vascular smooth muscle cells were thought to contribute to intimal hyperplasia. However recent significant evidence suggests that resident medial multipotent vascular stem cells (MVSC) may also play a role. We therefore investigated the strain response of MVSC since these resident cells are also subjected to strain within their native environment. Accordingly, we applied uniaxial 1 Hz cyclic uniaxial tensile strain at three amplitudes around a mean strain of 5%, (4-6%, 2-8% and 0-10%) to either rat MVSC or rat VSMC before their strain response was evaluated. While both cell types strain avoid, the strain avoidant response was greater for MVSC after 24 h, while VSMC strain avoid to a greater degree after 72 h. Additionally, both cell types increase strain avoidance as strain amplitude is increased. Moreover, MVSC and VSMC both demonstrate a strain-induced decrease in cell number, an effect more pronounced for MVSC. These experiments demonstrate for the first time the mechano-sensitivity of MVSC that may influence intimal thickening, and emphasizes the importance of strain amplitude in controlling the response of vascular cells in tissue engineering applications.
Collapse
Affiliation(s)
- Pattie S Mathieu
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Emma Fitzpatrick
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Mariana Di Luca
- School of Biotechnology, Vascular Biology & Therapeutics Group, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul A Cahill
- School of Biotechnology, Vascular Biology & Therapeutics Group, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Gaul R, Nolan D, Ristori T, Bouten C, Loerakker S, Lally C. Strain mediated enzymatic degradation of arterial tissue: Insights into the role of the non-collagenous tissue matrix and collagen crimp. Acta Biomater 2018; 77:301-310. [PMID: 30126592 DOI: 10.1016/j.actbio.2018.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
Collagen fibre remodelling is a strain dependent process which is stimulated by the degradation of existing collagen. To date, literature has focussed on strain dependent degradation of pure collagen or structurally simple collagenous tissues, often overlooking degradation within more complex, heterogenous soft tissues. The aim of this study is to identify, for the first time, the strain dependent degradation behaviour and mechanical factors influencing collagen degradation in arterial tissue using a combined experimental and numerical approach. To achieve this, structural analysis was carried out using small angle light scattering to determine the fibre level response due to strain induced degradation. Next, strain dependent degradation rates were determined from stress relaxation experiments in the presence of crude and purified collagenase to determine the tissue level degradation response. Finally, a 1D theoretical model was developed, incorporating matrix stiffness and a gradient of collagen fibre crimp to decouple the mechanism behind strain dependent arterial degradation. SALS structural analysis identified a strain mediated degradation response in arterial tissue at the fibre level not dissimilar to that found in literature for pure collagen. Interestingly, two distinctly different strain mediated degradation responses were identified experimentally at the tissue level, not seen in other collagenous tissues. Our model was able to accurately predict these experimental findings, but only once the load bearing matrix, its degradation response and the gradient of collagen fibre crimp across the arterial wall were incorporated. These findings highlight the critical role that the various tissue constituents play in the degradation response of arterial tissue. STATEMENT OF SIGNIFICANCE Collagen fibre architecture is the dominant load bearing component of arterial tissue. Remodelling of this architecture is a strain dependent process stimulated by the degradation of existing collagen. Despite this, degradation of arterial tissue and in particular, arterial collagen, is not fully understood or studied. In the current study, we identified for the first time, the strain dependent degradation response of arterial tissue, which has not been observed in other collagenous tissues in literature. We hypothesised that this unique degradation response was due to the complex structure observed in arterial tissue. Based on this hypothesis, we developed a novel numerical model capable of explaining this unique degradation response which may provide critical insights into disease development and aid in the design of interventional medical devices.
Collapse
|
6
|
Parandakh A, Tafazzoli-Shadpour M, Khani MM. Stepwise morphological changes and cytoskeletal reorganization of human mesenchymal stem cells treated by short-time cyclic uniaxial stretch. In Vitro Cell Dev Biol Anim 2017; 53:547-553. [PMID: 28205142 DOI: 10.1007/s11626-017-0131-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
This study aimed to investigate stepwise remodeling of human mesenchymal stem cells (hMSCs) in response to cyclic stretch through rearrangement and alignment of cells and cytoskeleton regulation toward smooth muscle cell (SMC) fate in different time spans. Image analysis techniques were utilized to calculate morphological parameters. Cytoskeletal reorganization was observed by investigating F-actin filaments using immunofluorescence staining, and expression level of contractile SMC markers was followed by a quantitative polymerase chain reaction method. Applying cyclic uniaxial stretch on cultured hMSCs, utilizing a costume-made device, led to alteration in fractal dimension (FD) and cytoskeleton structure toward continuous alignment and elongation of cells by elevation of strain duration. Actin filaments became more aligned perpendicular to the axis of mechanical stretch by increasing uniaxial loading duration. At first, FD met a significant decrease in 4 h loading duration then increased significantly by further loading up to 16 h, followed by another decrease up to 1 d of uniaxial stretching. HMSCs subjected to 24 h cyclic uniaxial stretching significantly expressed early and intermediate contractile SM markers. It was hypothesized that the increase in FD after 4 h while cells continuously became more aligned and elongated was due to initiation of change in phenotype that influenced arrangement of cells. At this point, change in cell phenotype started leading to change in morphology while mechanical loading still caused cell alignment and rearrangement. Results can be helpful when optimized engineered cells are needed based on mechanical condition for functional engineered tissue and cell therapy.
Collapse
Affiliation(s)
- Azim Parandakh
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mohammad-Mehdi Khani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yao Y, Mak AF. Strengthening of C2C12 mouse myoblasts against compression damage by mild cyclic compressive stimulation. J Biomech 2016; 49:3956-3961. [PMID: 27884430 DOI: 10.1016/j.jbiomech.2016.11.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022]
Abstract
Deep tissue injury (DTI) is a severe kind of pressure ulcers formed by sustained deformation of muscle tissues over bony prominences. As a major clinical issue, DTI affects people with physical disabilities, and is obviously related to the load-bearing capacity of muscle cells in various in-vivo conditions. It is important to provide a preventive approach to help muscle cells from being damaged by compressive stress. In this study, we hypothesized that cyclic compressive stimulation could strengthen muscle cells against compressive damage and enhance the cell plasma membrane resealing capability. Monolayer of myoblasts was cultured in the cell culture dish covered by a cylinder 0.5% agarose gel. The platen indenter was applied with 20% strain on the agarose gel in the Mach-1 micromechanical system. The vibration was 1Hz sinusoidal function with amplitude 0.2% strain based on 20% gel strain. Cyclic compressive stimulation for 2h could enhance the compressive stress damage threshold of muscle cells, the muscle cell plasma membrane resealing ratio and viability of muscle cell under static loading as preventive approach. This approach might help to reduce the risk of DTI in clinic.
Collapse
Affiliation(s)
- Yifei Yao
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Arthur Ft Mak
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Galvin E, Cummins C, Yoshihara S, Mac Donald BJ, Lally C. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents. Med Biol Eng Comput 2016; 55:1261-1275. [DOI: 10.1007/s11517-016-1584-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
9
|
Gao W, Ferguson G, Connell P, Walshe T, O'Brien C, Redmond EM, Cahill PA. Glucose attenuates hypoxia-induced changes in endothelial cell growth by inhibiting HIF-1α expression. Diab Vasc Dis Res 2014; 11:270-280. [PMID: 24853909 DOI: 10.1177/1479164114533356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hyperglycaemia and hypoxia play essential pathophysiological roles in diabetes. We determined whether hyperglycaemia influences endothelial cell growth under hypoxic conditions in vitro. Using a Ruskinn Invivo2 400 Hypoxia Workstation, bovine aortic endothelial cells (BAEC) were exposed to high glucose concentrations (25 mM glucose) under normoxic or hypoxic conditions before cell growth (balance of proliferation and apoptosis) was assessed by fluorescence-activated cell sorting (FACS) analysis, proliferating cell nuclear antigen (pCNA), Bcl-xL and caspase-3 protein expression and activity. Hypoxia increased hypoxia response element (HRE) transactivation and induced hypoxia-inducible factor-1α (HIF-1α) expression when compared to normoxic controls concomitant with a significant decrease in cell growth. High glucose (25 mM) concentrations attenuated HRE transactivation and HIF-1α protein expression while concurrently reducing hypoxia-induced changes in BAEC growth. Knockdown of HIF-1α expression significantly decreased hypoxia-induced changes in growth and attenuated the modulatory effects of glucose. These results provide evidence that hypoxia-induced control of BAEC growth can be altered by the presence of glucose via inhibition of HIF-1α expression and activation.
Collapse
Affiliation(s)
- Wei Gao
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Gail Ferguson
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Paul Connell
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland Mater Misericordiae Hospital, Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Tony Walshe
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Colm O'Brien
- Mater Misericordiae Hospital, Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester, Rochester, NY, USA
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
10
|
From Histology and Imaging Data to Models for In-Stent Restenosis. Int J Artif Organs 2014; 37:786-800. [DOI: 10.5301/ijao.5000336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2014] [Indexed: 11/20/2022]
Abstract
The implantation of stents has been used to treat coronary artery stenosis for several decades. Although stenting is successful in restoring the vessel lumen and is a minimally invasive approach, the long-term outcomes are often compromised by in-stent restenosis (ISR). Animal models have provided insights into the pathophysiology of ISR and are widely used to evaluate candidate drug inhibitors of ISR. Such biological models allow the response of the vessel to stent implantation to be studied without the variation of lesion characteristics encountered in patient studies. This paper describes the development of complementary in silico models employed to improve the understanding of the biological response to stenting using a porcine model of restenosis. This includes experimental quantification using microCT imaging and histology and the use of this data to establish numerical models of restenosis. Comparison of in silico results with histology is used to examine the relationship between spatial localization of fluid and solid mechanics stimuli immediately post-stenting. Multi-scale simulation methods are employed to study the evolution of neointimal growth over time and the variation in the extent of neointimal hyperplasia within the stented region. Interpretation of model results through direct comparison with the biological response contributes to more detailed understanding of the pathophysiology of ISR, and suggests the focus for follow-up studies. In conclusion we outline the challenges which remain to both complete our understanding of the mechanisms responsible for restenosis and translate these models to applications in stent design and treatment planning at both population-based and patient-specific levels.
Collapse
|
11
|
Diamantouros SE, Hurtado-Aguilar LG, Schmitz-Rode T, Mela P, Jockenhoevel S. Pulsatile perfusion bioreactor system for durability testing and compliance estimation of tissue engineered vascular grafts. Ann Biomed Eng 2013; 41:1979-89. [PMID: 23681651 DOI: 10.1007/s10439-013-0823-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
The aim of the study was to design, construct, and test a bioreactor for the conditioning of tissue-engineered vascular grafts under physiological pressure, flow, and environmental conditions and up to supra-physiological pulse frequencies (5 Hz) as the first step towards durability testing. The system also allows the calculation of the compliance of vascular grafts as an indicator of tissue development. The system relies on the combination of a pulse-free pump and a linear magnetic actuator applying pressure pulses with controllable profile and frequency. The compliance estimation is based on the accurate measurement of the vessel's diameter by means of an optical micrometre. Software-based interface enables the control of a magnetic actuator and data acquisition to monitor the conditions of the system. Porcine carotid arteries were tested in the bioreactor for up to 4 weeks at different pulse frequencies. The tissue was analysed by means of histology and immunohistochemistry. Physiological pressures (~80 and 120 mmHg for diastolic and systolic phase, respectively) were generated in the system at frequencies between 1 and 5 Hz. The environmental conditions within the bioreactor were monitored and online determination of the compliance of the arteries was achieved under sterile conditions. Conditioning of the grafts resulted in the abundant production of ECM proteins. In conclusion, we developed a bioreactor for the conditioning of tissue engineered vascular grafts under controlled pressure conditions. The system is suitable to perform durability tests at supra-physiological pulse rates and physiological pressure levels under continuous monitoring of environmental variables (pH, pO2, pCO2, and temperature) and compliance.
Collapse
Affiliation(s)
- Stefanos E Diamantouros
- Department of Tissue Engineering & Textile Implants, AME-Helmholtz Institute for Biomedical Engineering, Aachen University, Pauwelsstrasse 20, 52074, Aachen, Germany
| | | | | | | | | |
Collapse
|
12
|
Multiscale Modeling in Vascular Disease and Tissue Engineering. MULTISCALE COMPUTER MODELING IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 2013. [DOI: 10.1007/8415_2012_159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|