1
|
Dey MK, Merson J, Picu RC. Evaluation of the parallel coupling constitutive model for biomaterials using a fully coupled network-matrix model. J Mech Behav Biomed Mater 2024; 155:106583. [PMID: 38762970 DOI: 10.1016/j.jmbbm.2024.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
In this article we discuss the effective properties of composites containing a crosslinked athermal fiber network embedded in a continuum elastic matrix, which are representative for a broad range of biological materials. The goal is to evaluate the accuracy of the widely used biomechanics parallel coupling model in which the tissue response is defined as the additive superposition of the network and matrix contributions, and the interaction of the two components is neglected. To this end, explicit, fully coupled models are used to evaluate the linear and non-linear response of the composite. It is observed that in the small strain, linear regime the parallel model leads to errors when the ratio of the individual stiffnesses of the two components is in the range 0.1-10, and the error increases as the matrix approaches the incompressible limit. The data presented can be used to correct the parallel model to improve the accuracy of the overall stiffness prediction. In the non-linear large deformation regime linear superposition does not apply. The data shows that the matrix reduces the stiffening rate of the network, and the response is softer than that predicted by the parallel model. The correction proposed for the linear regime mitigates to a large extent the error in the non-linear regime as well, provided the matrix Poisson ratio is not close to 0.5. The special case in which the matrix is rendered auxetic is also evaluated and it is seen that the auxeticity of the matrix may compensate the stiffening introduced by the network, leading to a composite with linear elastic response over a broad range of strains.
Collapse
Affiliation(s)
- M K Dey
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
2
|
Microstructure and mechanics of the bovine trachea: Layer specific investigations through SHG imaging and biaxial testing. J Mech Behav Biomed Mater 2022; 134:105371. [PMID: 35868065 DOI: 10.1016/j.jmbbm.2022.105371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022]
Abstract
The trachea is a complex tissue made up of hyaline cartilage, fibrous tissue, and muscle fibers. Currently, the knowledge of microscopic structural organization of these components and their role in determining the tissue's mechanical response is very limited. The purpose of this study is to provide data on the microstructure of the tracheal components and its influence on tissue's mechanical response. Five bovine tracheae were used in this study. Adventitia, cartilage, mucosa/submucosa, and trachealis muscle layers were methodically cut out from the whole tissue. Second-harmonic generation(SHG) via multi-photon microscopy (MPM) enabled imaging of collagen fibers and muscle fibers. Simultaneously, a planar biaxial test rig was used to record the mechanical behavior of each layer. In total 60 samples were tested and analyzed. Fiber architecture in the adventitia and mucosa/submucosa layer showed high degree of anisotropy with the mean fiber angle varying from sample to sample. The trachealis muscle displayed neat layers of fibers organized in the longitudinal direction. The cartilage also displayed a structure of thick mesh-work of collagen type II organized predominantly towards the circumferential direction. Further, mechanical testing demonstrated the anisotropic nature of the tissue components. The cartilage was identified as the stiffest component for strain level < 20% and hence the primary load bearing component. The other three layers displayed a non-linear mechanical response which could be explained by the structure and organization of their fibers. This study is useful in enhancing the utilization of structurally motivated material models for predicting tracheal overall mechanical response.
Collapse
|
3
|
Dalbosco M, Carniel TA, Fancello EA, Holzapfel GA. Multiscale simulations suggest a protective role of neo-adventitia in abdominal aortic aneurysms. Acta Biomater 2022; 146:248-258. [PMID: 35526737 DOI: 10.1016/j.actbio.2022.04.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/01/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are a dangerous cardiovascular disease, the pathogenesis of which is not yet fully understood. In the present work a recent mechanopathological theory, which correlates AAA progression with microstructural and mechanical alterations in the tissue, is investigated using multiscale models. The goal is to combine these changes, within the framework of mechanobiology, with possible mechanical cues that are sensed by vascular cells along the AAA pathogenesis. Particular attention is paid to the formation of a 'neo-adventitia' on the abluminal side of the aortic wall, which is characterized by a highly random (isotropic) distribution of collagen fibers. Macro- and micro-scale results suggest that the formation of an AAA, as expected, perturbs the micromechanical state of the aortic tissue and triggers a growth and remodeling (G&R) reaction by mechanosensing cells such as fibroblasts. This G&R then leads to the formation of a thick neo-adventitia that appears to bring the micromechanical state of the tissue closer to the original homeostatic level. In this context, this new layer could act like a protective sheath, similar to the tunica adventitia in healthy aortas. This potential 'attempt at healing' by vascular cells would have important implications on the stability of the AAA wall and thus on the risk of rupture. STATEMENT OF SIGNIFICANCE: Current clinical criteria for risk assessment in AAAs are still empirical, as the causes and mechanisms of the disease are not yet fully understood. The strength of the arterial tissue is closely related to its microstructure, which in turn is remodeled by mechanosensing cells in the course of the disease. In this study, multiscale simulations show a possible connection between mechanical cues at the microscopic level and collagen G&R in AAA tissue. It should be emphasized that these micromechanical cues cannot be visualized in vivo. Therefore, the results presented here will help to advance our current understanding of the disease and motivate future experimental studies, with important implications for AAA risk assessment.
Collapse
|
4
|
Morin C, Hellmich C, Nejim Z, Avril S. Fiber Rearrangement and Matrix Compression in Soft Tissues: Multiscale Hypoelasticity and Application to Tendon. Front Bioeng Biotechnol 2021; 9:725047. [PMID: 34712652 PMCID: PMC8546211 DOI: 10.3389/fbioe.2021.725047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
It is widely accepted that the nonlinear macroscopic mechanical behavior of soft tissue is governed by fiber straightening and re-orientation. Here, we provide a quantitative assessment of this phenomenon, by means of a continuum micromechanics approach. Given the negligibly small bending stiffness of crimped fibers, the latter are represented through a number of hypoelastic straight fiber phases with different orientations, being embedded into a hypoelastic matrix phase. The corresponding representative volume element (RVE) hosting these phases is subjected to “macroscopic” strain rates, which are downscaled to fiber and matrix strain rates on the one hand, and to fiber spins on the other hand. This gives quantitative access to the fiber decrimping (or straightening) phenomenon under non-affine conditions, i.e. in the case where the fiber orientations cannot be simply linked to the macroscopic strain state. In the case of tendinous tissue, such an RVE relates to the fascicle material with 50 μm characteristic length, made up of crimped collagen bundles and a gel-type matrix in-between. The fascicles themselves act as parallel fibers in a similar matrix at the scale of a tissue-related RVE with 500 μm characteristic length. As evidenced by a sensitivity analysis and confirmed by various mechanical tests, it is the initial crimping angle which drives both the degree of straightening and the shape of the macroscopic stress-strain curve, while the final linear portion of this curve depends almost exclusively on the collagen bundle elasticity. Our model also reveals the mechanical cooperation of the tissue’s key microstructural components: while the fibers carry tensile forces, the matrices undergo hydrostatic pressure.
Collapse
Affiliation(s)
- Claire Morin
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Christian Hellmich
- Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Vienna, Austria
| | - Zeineb Nejim
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France.,Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Vienna, Austria
| |
Collapse
|
5
|
Wolf AT. Auxetische Materialien. CHEM UNSERER ZEIT 2021. [DOI: 10.1002/ciuz.202000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Ross CJ, Mullins BT, Hillshafer CE, Mir A, Burkhart HM, Lee CH. Evaluation of affine fiber kinematics in porcine tricuspid valve leaflets using polarized spatial frequency domain imaging and planar biaxial testing. J Biomech 2021; 123:110475. [PMID: 34004393 PMCID: PMC11938547 DOI: 10.1016/j.jbiomech.2021.110475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Collagen fibers are the primary load-bearing microstructural constituent of bodily soft tissues, and, when subjected to external loading, the collagen fibers reorient, uncrimp, and elongate. Specific to the atrioventricular heart valve leaflets, the collagen fiber kinematics form the basis of many constitutive models; however, some researchers claim that modeling the affine fiber kinematics (AFK) are sufficient for accurately predicting the macroscopic tissue deformations, while others state that modeling the non-affine kinematics (i.e., fiber uncrimping together with elastic elongation) is required. Experimental verification of the AFK theory has been previously performed for the mitral valve leaflets in the left-side heart; however, this same evaluation has yet to be performed for the morphologically distinct tricuspid valve (TV) leaflets in the right-side heart. In this work, we, for the first time, evaluated the AFK theory for the TV leaflets using an integrated biaxial testing-polarized spatial frequency domain imaging device to experimentally quantify the load-dependent collagen fiber reorientations for comparison to the AFK theory predictions. We found that the AFK theory generally underpredicted the fiber reorientations by 3.1°, on average, under the applied equibiaxial loading with greater disparity when the tissue was subjected to the applied non-equibiaxial loading. Furthermore, increased AFK errors were observed with increasing collagen fiber reorientations (Pearson coefficient r = -0.36, equibiaxial loading), suggesting the AFK theory is better suited for relatively smaller reorientations. Our findings suggest the AFK theory may require modification for more accurate predictions of the collagen fiber kinematics in the TV leaflets, which will be useful in refining modeling efforts for more accurate TV simulations.
Collapse
Affiliation(s)
- Colton J Ross
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, USA
| | - Brennan T Mullins
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, USA
| | - Clare E Hillshafer
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, USA
| | - Arshid Mir
- Department of Pediatrics, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, USA
| | - Harold M Burkhart
- Department of Surgery, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, USA
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, USA; Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, USA.
| |
Collapse
|
7
|
Woessner AE, Jones JD, Witt NJ, Sander EA, Quinn KP. Three-Dimensional Quantification of Collagen Microstructure During Tensile Mechanical Loading of Skin. Front Bioeng Biotechnol 2021; 9:642866. [PMID: 33748088 PMCID: PMC7966723 DOI: 10.3389/fbioe.2021.642866] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 11/22/2022] Open
Abstract
Skin is a heterogeneous tissue that can undergo substantial structural and functional changes with age, disease, or following injury. Understanding how these changes impact the mechanical properties of skin requires three-dimensional (3D) quantification of the tissue microstructure and its kinematics. The goal of this study was to quantify these structure-function relationships via second harmonic generation (SHG) microscopy of mouse skin under tensile mechanical loading. Tissue deformation at the macro- and micro-scale was quantified, and a substantial decrease in tissue volume and a large Poisson’s ratio was detected with stretch, indicating the skin differs substantially from the hyperelastic material models historically used to explain its behavior. Additionally, the relative amount of measured strain did not significantly change between length scales, suggesting that the collagen fiber network is uniformly distributing applied strains. Analysis of undeformed collagen fiber organization and volume fraction revealed a length scale dependency for both metrics. 3D analysis of SHG volumes also showed that collagen fiber alignment increased in the direction of stretch, but fiber volume fraction did not change. Interestingly, 3D fiber kinematics was found to have a non-affine relationship with tissue deformation, and an affine transformation of the micro-scale fiber network overestimates the amount of fiber realignment. This result, along with the other outcomes, highlights the importance of accurate, scale-matched 3D experimental measurements when developing multi-scale models of skin mechanical function.
Collapse
Affiliation(s)
- Alan E Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Jake D Jones
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Nathan J Witt
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Edward A Sander
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
8
|
Microstructural deformation observed by Mueller polarimetry during traction assay on myocardium samples. Sci Rep 2020; 10:20531. [PMID: 33239670 PMCID: PMC7688642 DOI: 10.1038/s41598-020-76820-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
Despite recent advances, the myocardial microstructure remains imperfectly understood. In particular, bundles of cardiomyocytes have been observed but their three-dimensional organisation remains debated and the associated mechanical consequences unknown. One of the major challenges remains to perform multiscale observations of the mechanical response of the heart wall. For this purpose, in this study, a full-field Mueller polarimetric imager (MPI) was combined, for the first time, with an in-situ traction device. The full-field MPI enables to obtain a macroscopic image of the explored tissue, while providing detailed information about its structure on a microscopic scale. Specifically it exploits the polarization of the light to determine various biophysical quantities related to the tissue scattering or anisotropy properties. Combined with a mechanical traction device, the full-field MPI allows to measure the evolution of such biophysical quantities during tissue stretch. We observe separation lines on the tissue, which are associated with a fast variation of the fiber orientation, and have the size of cardiomyocyte bundles. Thus, we hypothesize that these lines are the perimysium, the collagen layer surrounding these bundles. During the mechanical traction, we observe two mechanisms simultaneously. On one hand, the azimuth shows an affine behavior, meaning the orientation changes according to the tissue deformation, and showing coherence in the tissue. On the other hand, the separation lines appear to be resistant in shear and compression but weak against traction, with a forming of gaps in the tissue.
Collapse
|
9
|
Tueni N, Vizet J, Genet M, Pierangelo A, Allain JM. Investigation of microstructure evolution and mechanical properties in cardiac tissue. Comput Methods Biomech Biomed Engin 2020. [DOI: 10.1080/10255842.2020.1816296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- N. Tueni
- LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Paris, France
- Inria, Paris, France
| | - J. Vizet
- LPICM, École Polytechnique, CNRS, Institut Polytechnique de Paris, Paris, France
| | - M. Genet
- LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Paris, France
- Inria, Paris, France
| | - A. Pierangelo
- LPICM, École Polytechnique, CNRS, Institut Polytechnique de Paris, Paris, France
| | - J. M. Allain
- LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Paris, France
- Inria, Paris, France
| |
Collapse
|
10
|
Cavinato C, Badel P, Krasny W, Avril S, Morin C. Experimental Characterization of Adventitial Collagen Fiber Kinematics Using Second-Harmonic Generation Imaging Microscopy: Similarities and Differences Across Arteries, Species and Testing Conditions. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Ben Amar M, Nassoy P, LeGoff L. Physics of growing biological tissues: the complex cross-talk between cell activity, growth and resistance. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180070. [PMID: 30879412 PMCID: PMC6452036 DOI: 10.1098/rsta.2018.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2019] [Indexed: 05/04/2023]
Abstract
For many organisms, shapes emerge from growth, which generates stresses, which in turn can feedback on growth. In this review, theoretical methods to analyse various aspects of morphogenesis are discussed with the aim to determine the most adapted method for tissue mechanics. We discuss the need to work at scales intermediate between cells and tissues and emphasize the use of finite elasticity for this. We detail the application of these ideas to four systems: active cells embedded in tissues, brain cortical convolutions, the cortex of Caenorhabditis elegans during elongation and finally the proliferation of epithelia on extracellular matrix. Numerical models well adapted to inhomogeneities are also presented. This article is part of the theme issue 'Rivlin's legacy in continuum mechanics and applied mathematics'.
Collapse
Affiliation(s)
- Martine Ben Amar
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, 24 rue Lhomond, 75005 Paris, France
- Faculté de médecine, Institut Universitaire de Cancérologie, Sorbonne Université, 91 Bd de l'Hôpital, 75013 Paris, France
| | - Pierre Nassoy
- Laboratoire Photonique Numérique et Nanosciences, CNRS UMR 5298, Université de Bordeaux and Institut d'Optique F-33400 Talence, France
| | - Loic LeGoff
- CNRS, Centrale Marseille, Institut Fresnel, Aix Marseille Univ, Marseille, France
| |
Collapse
|
12
|
Affagard JS, Lynch B, Bancelin S, Ducourthial G, Bonod-Bidaud C, Ruggiero F, Schanne-Klein MC, Allain JM. Contribution of the collagen fibers to the skin mechanics. Comput Methods Biomech Biomed Engin 2019. [DOI: 10.1080/10255842.2020.1714928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J. S. Affagard
- LMS, Ecole Polytechnique, CNRS, Palaiseau, France
- Inria, Université Paris-Saclay, Palaiseau, France
| | - B. Lynch
- LMS, Ecole Polytechnique, CNRS, Palaiseau, France
| | - S. Bancelin
- LOB, Ecole Polytechnique, CNRS, Palaiseau, France
| | | | | | - F. Ruggiero
- IGFL, ENS-Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | - J.-M. Allain
- LMS, Ecole Polytechnique, CNRS, Palaiseau, France
- Inria, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
13
|
Wahlsten A, Pensalfini M, Stracuzzi A, Restivo G, Hopf R, Mazza E. On the compressibility and poroelasticity of human and murine skin. Biomech Model Mechanobiol 2019; 18:1079-1093. [PMID: 30806838 DOI: 10.1007/s10237-019-01129-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
Abstract
A total of 37 human and 33 murine skin samples were subjected to uniaxial monotonic, cyclic, and relaxation experiments. Detailed analysis of the three-dimensional kinematic response showed that skin volume is significantly reduced as a consequence of a tensile elongation. This behavior is most pronounced in monotonic but persists in cyclic tests. The dehydration associated with volume loss depends on the osmolarity of the environment, so that tension relaxation changes as a consequence of modifying the ionic strength of the environmental bath. Similar to ex vivo observations, complementary in vivo stretching experiments on human volar forearms showed strong in-plane lateral contraction. A biphasic homogenized model is proposed which allows representing all relevant features of the observed mechanical response.
Collapse
Affiliation(s)
- Adam Wahlsten
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland.
| | - Marco Pensalfini
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Alberto Stracuzzi
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Raoul Hopf
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland.,Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland. .,Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
14
|
Abstract
An important issue in tissue biomechanics is to decipher the relationship between the mechanical behavior at macroscopic scale and the organization of the collagen fiber network at microscopic scale. Here, we present a protocol to combine traction assays with multiphoton microscopy in ex vivo murine skin. This multiscale approach provides simultaneously the stress/stretch response of a skin biopsy and the collagen reorganization in the dermis by use of second harmonic generation (SHG) signals and appropriate image processing.
Collapse
|
15
|
Picu RC, Deogekar S, Islam MR. Poisson's Contraction and Fiber Kinematics in Tissue: Insight From Collagen Network Simulations. J Biomech Eng 2018; 140:2663690. [PMID: 29131889 PMCID: PMC5816257 DOI: 10.1115/1.4038428] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/01/2017] [Indexed: 12/31/2022]
Abstract
Connective tissue mechanics is highly nonlinear, exhibits a strong Poisson's effect, and is associated with significant collagen fiber re-arrangement. Although the general features of the stress-strain behavior have been discussed extensively, the Poisson's effect received less attention. In general, the relationship between the microscopic fiber network mechanics and the macroscopic experimental observations remains poorly defined. The objective of the present work is to provide additional insight into this relationship. To this end, results from models of random collagen networks are compared with experimental data on reconstructed collagen gels, mouse skin dermis, and the human amnion. Attention is devoted to the mechanism leading to the large Poisson's effect observed in experiments. The results indicate that the incremental Poisson's contraction is directly related to preferential collagen orientation. The experimentally observed downturn of the incremental Poisson's ratio at larger strains is associated with the confining effect of fibers transverse to the loading direction and contributing little to load bearing. The rate of collagen orientation increases at small strains, reaches a maximum, and decreases at larger strains. The peak in this curve is associated with the transition of the network deformation from bending dominated, at small strains, to axially dominated, at larger strains. The effect of fiber tortuosity on network mechanics is also discussed, and a comparison of biaxial and uniaxial loading responses is performed.
Collapse
Affiliation(s)
- R. C. Picu
- Department of Mechanical, Aerospace
and Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| | - S. Deogekar
- Department of Mechanical, Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| | - M. R. Islam
- Department of Mechanical, Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| |
Collapse
|
16
|
Anssari-Benam A, Bucchi A. Modeling
the Deformation of the Elastin Network in the Aortic
Valve. J Biomech Eng 2017; 140:2654665. [DOI: 10.1115/1.4037916] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Indexed: 12/20/2022]
Abstract
Abstract
This paper is concerned with proposing a suitable structurally motivated strain energy function, denoted by Weelastin network, for modeling the deformation of the elastin network within the aortic valve (AV) tissue. The AV elastin network is the main noncollagenous load-bearing component of the valve matrix, and therefore, in the context of continuum-based modeling of the AV, the Weelastin network strain energy function would essentially serve to model the contribution of the “isotropic matrix.” To date, such a function has mainly been considered as either a generic neo-Hookean term or a general exponential function. In this paper, we take advantage of the established structural analogy between the network of elastin chains and the freely jointed molecular chain networks to customize a structurally motivated Weelastin network function on this basis. The ensuing stress–strain (force-stretch) relationships are thus derived and fitted to the experimental data points reported by (Vesely, 1998, “The Role of Elastin in Aortic Valve Mechanics,” J. Biomech., 31, pp. 115–123) for intact AV elastin network specimens under uniaxial tension. The fitting results are then compared with those of the neo-Hookean and the general exponential models, as the frequently used models in the literature, as well as the “Arruda–Boyce” model as the gold standard of the network chain models. It is shown that our proposed Weelastin network function, together with the general exponential and the Arruda–Boyce models provide excellent fits to the data, with R2 values in excess of 0.98, while the neo-Hookean function is entirely inadequate for modeling the AV elastin network. However, the general exponential function may not be amenable to rigorous interpretation, as there is no structural meaning attached to the model. It is also shown that the parameters estimated by the Arruda–Boyce model are not mathematically and structurally valid, despite providing very good fits. We thus conclude that our proposed strain energy function Weelastin network is the preferred choice for modeling the behavior of the AV elastin network and thereby the isotropic matrix. This function may therefore be superimposed onto that of the anisotropic collagen fibers family in order to develop a structurally motivated continuum-based model for the AV.
Collapse
Affiliation(s)
| | - Andrea Bucchi
- The BIONEER Centre,Cardiovascular Engineering ResearchLaboratory (CERL),School of Engineering,University of Portsmouth,Anglesea Road,Portsmouth PO1 3DJ, UK
| |
Collapse
|