1
|
Hu W, Yang G, Shi X, Wang H, Zhang K, Gao Y. Effects of pedicle subtraction osteotomy on aortic morphology and hemodynamics in ankylosing spondylitis with kyphosis: a finite element analysis study. Sci Rep 2024; 14:25456. [PMID: 39462112 PMCID: PMC11512994 DOI: 10.1038/s41598-024-77417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Osteotomy can correct kyphosis, restore the spinal sequence, and restore the healthy appearance of a patient. However, the aorta is stretched during pedicle subtraction osteotomy (PSO), and some surgeons are concerned about aortic injury. We used finite element analysis to construct an aortic model to simulate hemodynamic changes during osteotomy. 16 patients with ankylosing spondylitis kyphosis who had undergone a two-level osteotomy at the L1 and L3 levels was included in this study. Aortic computed tomography angiography (CTA) was performed, and a 3D image model was constructed. The length, transverse diameter, and curvature of the aorta were used to evaluate morphological changes. Finite element analysis was used to analyze the changes in aortic fluid dynamics. Blood pressure, wall shear stress, and blood flow velocity were compared pre- and postoperatively. The overall length of the aorta before surgery was 424.3 ± 42.9 mm, and the overall length of the aorta after surgery was 436.2 ± 54.8 mm. The aortic curvature decreased from 0.27 ± 0.13 to 0.17 ± 0.09. The mean transverse diameter of the aorta did not change (19.3 ± 6.6 vs. 19.2 ± 7.4 mm, P > 0.05). The blood flow velocity (2.8 ± 1.1 vs. 1.5 ± 0.8 m/s, P < 0.05), blood pressure (6.6 ± 1.7 vs. 4.3 ± 1.2 Kpa, P < 0.05), and wall shear stress (47.6 ± 17.3 vs. 22.3 ± 8.6, P < 0.05) at the T10-L4 level decreased postoperatively. Changes in LL were significantly correlated with changes in ld, dc, blood flow velocity, blood pressure and wall shear stress (ld : r = 0.713, P < 0.001; dc: r = 0.626,P = 0.010; blood flow velocity: r= - 0.541, P = 0.041; blood pressure: r = - 0.601, P = 0.016; wall shear stress: r= - 0.594, P = 0.027). The aorta was stretched, and its curvature decreased. The mean transverse diameter of the aorta did not change. Blood flow velocity, blood pressure, and wall shear stress decreased after surgery. Our study provides hemodynamic support for the possible cardiovascular benefits of osteotomes.
Collapse
Affiliation(s)
- Weiran Hu
- Department of Spinal Cord Surgery, Henan Provincial People's Hospital, Zhengzhou, 45003, Henan, China
- People's Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, China
| | - Guang Yang
- Department of Spinal Cord Surgery, Henan Provincial People's Hospital, Zhengzhou, 45003, Henan, China
- People's Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, China
| | - Xinge Shi
- Department of Spinal Cord Surgery, Henan Provincial People's Hospital, Zhengzhou, 45003, Henan, China
- People's Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, China
| | - Hongqiang Wang
- Department of Spinal Cord Surgery, Henan Provincial People's Hospital, Zhengzhou, 45003, Henan, China
- People's Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, China
| | - Kai Zhang
- Department of Spinal Cord Surgery, Henan Provincial People's Hospital, Zhengzhou, 45003, Henan, China
- People's Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, China
| | - Yanzheng Gao
- Department of Spinal Cord Surgery, Henan Provincial People's Hospital, Zhengzhou, 45003, Henan, China.
- People's Hospital of Zhengzhou University, Zhengzhou, 45003, Henan, China.
| |
Collapse
|
2
|
Eun MY, Song HN, Choi JU, Cho HH, Kim HJ, Chung JW, Song TJ, Jung JM, Bang OY, Kim GM, Park H, Liebeskind DS, Seo WK. Global intracranial arterial tortuosity is associated with intracranial atherosclerotic burden. Sci Rep 2024; 14:11318. [PMID: 38760396 PMCID: PMC11636879 DOI: 10.1038/s41598-024-61527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
The effect of arterial tortuosity on intracranial atherosclerosis (ICAS) is not well understood. This study aimed to evaluate the effect of global intracranial arterial tortuosity on intracranial atherosclerotic burden in patients with ischemic stroke. We included patients with acute ischemic stroke who underwent magnetic resonance angiography (MRA) and classified them into three groups according to the ICAS burden. Global tortuosity index (GTI) was defined as the standardized mean curvature of the entire intracranial arteries, measured by in-house vessel analysis software. Of the 516 patients included, 274 patients had no ICAS, 140 patients had a low ICAS burden, and 102 patients had a high ICAS burden. GTI increased with higher ICAS burden. After adjustment for age, sex, vascular risk factors, and standardized mean arterial area, GTI was independently associated with ICAS burden (adjusted odds ratio [adjusted OR] 1.33; 95% confidence interval [CI] 1.09-1.62). The degree of association increased when the arterial tortuosity was analyzed limited to the basal arteries (adjusted OR 1.48; 95% CI 1.22-1.81). We demonstrated that GTI is associated with ICAS burden in patients with ischemic stroke, suggesting a role for global arterial tortuosity in ICAS.
Collapse
Affiliation(s)
- Mi-Yeon Eun
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Neurology, Graduate School, Korea University, Seoul, South Korea
| | - Ha-Na Song
- Department of Neurology and Stroke Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Jong-Un Choi
- Department of Neurology and Stroke Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hwan-Ho Cho
- Department of Electronics Engineering, Incheon National University, Incheon, South Korea
| | - Hyung Jun Kim
- Department of Neurology and Stroke Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Jong-Won Chung
- Department of Neurology and Stroke Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Jin-Man Jung
- Department of Neurology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Oh-Young Bang
- Department of Neurology and Stroke Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Gyeong-Moon Kim
- Department of Neurology and Stroke Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea
| | - Hyunjin Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea
| | - David S Liebeskind
- Department of Neurology, University of California in Los Angeles, Los Angeles, CA, USA
| | - Woo-Keun Seo
- Department of Neurology and Stroke Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
- Department of Digital Health, SAIHST, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Shahbad R, Pipinos M, Jadidi M, Desyatova A, Gamache J, MacTaggart J, Kamenskiy A. Structural and Mechanical Properties of Human Superficial Femoral and Popliteal Arteries. Ann Biomed Eng 2024; 52:794-815. [PMID: 38321357 PMCID: PMC11455778 DOI: 10.1007/s10439-023-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024]
Abstract
The femoropopliteal artery (FPA) is the main artery in the lower limb. It supplies blood to the leg muscles and undergoes complex deformations during limb flexion. Atherosclerotic disease of the FPA (peripheral arterial disease, PAD) is a major public health burden, and despite advances in surgical and interventional therapies, the clinical outcomes of PAD repairs continue to be suboptimal, particularly in challenging calcified lesions and biomechanically active locations. A better understanding of human FPA mechanical and structural characteristics in relation to age, risk factors, and the severity of vascular disease can help develop more effective and longer-lasting treatments through computational modeling and device optimization. This review aims to summarize recent research on the main biomechanical and structural properties of human superficial femoral and popliteal arteries that comprise the FPA and describe their anatomy, composition, and mechanical behavior under different conditions.
Collapse
Affiliation(s)
- Ramin Shahbad
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Margarita Pipinos
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Majid Jadidi
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Anastasia Desyatova
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA
| | - Jennifer Gamache
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska at Omaha, Biomechanics Research Building, Omaha, NE, 68182, USA.
| |
Collapse
|
4
|
Kliś KM, Wójtowicz D, Kwinta BM, Stachura K, Popiela TJ, Frączek MJ, Łasocha B, Gąsowski J, Milczarek O, Krzyżewski RM. Association of Arterial Tortuosity with Hemodynamic Parameters-A Computational Fluid Dynamics Study. World Neurosurg 2023; 180:e69-e76. [PMID: 37544598 DOI: 10.1016/j.wneu.2023.07.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Tortuosity of intracranial arteries has been proven to be associated with the risk of intracranial aneurysm development. We decided to analyze which aspects of tortuosity are correlated with hemodynamics parameters promoting intracranial aneurysm development. METHODS We constructed 73 idealized models of tortuous artery (length: 25 mm, diameter: 2.5 mm) with single bifurcation. For each model, on the course of segment before bifurcation, we placed 1-3 angles with measures 15, 30, 45, 60, or 75 degrees and arc lengths 2, 5, 7, 10, or 15 mm. We performed computational fluid dynamics analysis. Blood was modeled as Newtonian fluid. We have set velocity wave of 2 cardiac cycles. After performing simulation we calculated following hemodynamic parameters at the bifurcation: time average wall shear stress (TAWSS), time average wall shear stress gradient (TAWSSG), oscillatory shear index (OSI), and relative residence time (RRT). RESULTS We found a significant positive correlation with number of angles and TAWSS (R = 0.329; P < 0.01), TAWSSG (R = 0.317; P < 0.01), and negative with RRT (R = -0.335; P < 0.0.01). Similar results were obtained in terms of arcs lengths. On the other hand, mean angle measure was negatively correlated to TAWSS (R = -0.333; P < 0.01), TAWSSG (R = -0.473 P < 0.01), OSI (R = -0.463; P < 0.01), and positively to RRT (R = 0.332; P < 0.01). On the basis of the obtained results, we developed new tortuosity descriptor, which considered angle measures normalized to its arc length and distance from bifurcation. For such descriptor we found strong negative correlation with TAWSS (R = -0.701; P < 0.01), TAWSSG (R = 0.778; P < 0.01), OSI (R = -0.776; P < 0.01), and positive with RRT (R = 0.747; P < 0.01). CONCLUSIONS Hemodynamic parameters promoting aneurysm development are correlated with larger number of smaller angles located on larger arcs.
Collapse
Affiliation(s)
- Kornelia M Kliś
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland.
| | - Dominika Wójtowicz
- Anaesthesiology and Intensive Care Clinical Department, University Hospital of Krakow, Kraków, Poland
| | - Borys M Kwinta
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Stachura
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz J Popiela
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej J Frączek
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Bartłomiej Łasocha
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Jerzy Gąsowski
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland
| | - Olga Milczarek
- Department of Children's Neurosurgery, Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Kraków, Poland
| | - Roger M Krzyżewski
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Katoh K. Effects of Mechanical Stress on Endothelial Cells In Situ and In Vitro. Int J Mol Sci 2023; 24:16518. [PMID: 38003708 PMCID: PMC10671803 DOI: 10.3390/ijms242216518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Endothelial cells lining blood vessels are essential for maintaining vascular homeostasis and mediate several pathological and physiological processes. Mechanical stresses generated by blood flow and other biomechanical factors significantly affect endothelial cell activity. Here, we review how mechanical stresses, both in situ and in vitro, affect endothelial cells. We review the basic principles underlying the cellular response to mechanical stresses. We also consider the implications of these findings for understanding the mechanisms of mechanotransducer and mechano-signal transduction systems by cytoskeletal components.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
6
|
Li X, Simakov S, Liu Y, Liu T, Wang Y, Liang F. The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study. Bioengineering (Basel) 2023; 10:709. [PMID: 37370640 DOI: 10.3390/bioengineering10060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Aortic valve disease (AVD) often coexists with coronary artery disease (CAD), but whether and how the two diseases are correlated remains poorly understood. In this study, a zero-three dimensional (0-3D) multi-scale modeling method was developed to integrate coronary artery hemodynamics, aortic valve dynamics, coronary flow autoregulation mechanism, and systemic hemodynamics into a unique model system, thereby yielding a mathematical tool for quantifying the influences of aortic valve stenosis (AS) and aortic valve regurgitation (AR) on hemodynamics in large coronary arteries. The model was applied to simulate blood flows in six patient-specific left anterior descending coronary arteries (LADs) under various aortic valve conditions (i.e., control (free of AVD), AS, and AR). Obtained results showed that the space-averaged oscillatory shear index (SA-OSI) was significantly higher under the AS condition but lower under the AR condition in comparison with the control condition. Relatively, the overall magnitude of wall shear stress was less affected by AVD. Further data analysis revealed that AS induced the increase in OSI in LADs mainly through its role in augmenting the low-frequency components of coronary flow waveform. These findings imply that AS might increase the risk or progression of CAD by deteriorating the hemodynamic environment in coronary arteries.
Collapse
Affiliation(s)
- Xuanyu Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sergey Simakov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Youjun Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Taiwei Liu
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Wei J, Hu H, He X, Bao H. GSI CTA evaluation of the vertebrobasilar artery in normal adults at high altitude. Front Cardiovasc Med 2023; 10:1094401. [PMID: 37293285 PMCID: PMC10244571 DOI: 10.3389/fcvm.2023.1094401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/20/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVE Vascular geometry is influenced by several factors during its growth and development. Here, we compared the differences in vertebrobasilar geometry among residents of a plateau region at different altitudes and investigated the relationship between vascular geometry and altitude. METHODS Data of some adults in the plateau region who experienced vertigo and headache as the main symptoms but had no evident abnormalities found during imaging examination were collected. They were divided into three groups based on an altitude gradient: group A (1,800-2,500 masl), group B (2,500-3,500 masl), and group C (over 3,500 masl). They underwent head-neck energy-spectrum computed tomography angiography with a gemstone spectral imaging scanning protocol. The following indices were observed: (1) vertebrobasilar geometric configurations (walking, tuning fork, lambda, and no confluence), (2) vertebral artery (VA) hypoplasia, (3) the bending number of bilateral VA intracranial segment, (4) length and tortuosity of the basilar artery (BA), and (5) anteroposterior (AP)-mid-BA angle, BA-VA angle, lateral-mid-BA angle, and VA-VA angle. RESULTS Of the 222 subjects, 84 of them were included in group A, 76 in group B, and 62 in group C. The number of participants in walking, tuning fork, lambda, and no confluence geometries was 93, 71, 50, and 8, respectively. As altitude increased, the tortuosity of the BA also increased (1.05 ± 0.06 vs. 1.06 ± 0.08 vs. 1.10 ± 0.13, P = 0.005), as did the lateral-mid-BA angle (23.18° ± 9.53° vs. 26.05° ± 10.10° vs. 31.07° ± 15.12°, P = 0.007) and the BA-VA angle (32.98° ± 17.85° vs. 34.51° ± 17.96° vs. 41.51° ± 19.22°, P = 0.024). There was a relatively weak positive correlation between the altitude and the tortuosity of the BA (rs = 0.190, P = 0.005), the lateral-mid-BA angle (rs = 0.201, P = 0.003), and the BA-VA angle (rs = 0.183, P = 0.006) which showed a significant difference. Compared with groups A and B, there were more multibending groups and fewer oligo-bending groups in group C (P < 0.001). There was no difference found in the vertebral artery hypoplasia, actual length of the BA, VA-VA angle, and AP-mid-BA angle among the three groups. CONCLUSION As the altitude increased, the tortuosity of the BA and the sagittal angle of the vertebrobasilar arterial system also increased. The increase in altitude can lead to changes in vertebrobasilar geometry.
Collapse
Affiliation(s)
| | | | | | - Haihua Bao
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
8
|
Wei W, Lao H, Tan Y, Liang S, Ye Z, Qin C, Tang Y. Vascular tortuosity is related to reduced thalamic volume after middle cerebral artery occlusion. Heliyon 2023; 9:e15581. [PMID: 37159683 PMCID: PMC10163615 DOI: 10.1016/j.heliyon.2023.e15581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
The mechanisms underlying secondary brain injury in remote areas remains unclear. This study aimed to investigate the relationship between vascular tortuosity and thalamic volume. METHODS In this study, we retrospectively analyzed sixty-five patients with unilateral middle cerebral artery occlusion (MCAO) who underwent magnetic resonance angiography. We compared the vascular tortuosity in patients with MCAO and controls, and analyzed the relationship between vascular tortuosity and thalamic volume. RESULTS Compared with controls, the MCAO group exhibited a significantly smaller thalamus volume on the affected side (5874 ± 183 mm3 vs. 5635 ± 383 mm3, p < 0.0001). The vascular tortuosity of the posterior cerebral artery (PCA) was higher in the MCAO group than in the controls (82.8 ± 17.3 vs. 76.7 ± 17.3, p = 0.040). Logistic regression analysis revealed that PCA tortuosity was an independent risk factor for reduced thalamic volume after MCAO (p = 0.034). In the subgroup analysis, only the 4-7-day group was not statistically different in thalamic volume between the MCAO and control groups. In the MCAO group, patients older than 60 years and female patients had a more tortuous PCA. CONCLUSION Reduced thalamic volume after MCAO was associated with a tortuous PCA. After MCAO, PCA tortuosity increased more significantly in patients aged >60 years and in female patients.
Collapse
Affiliation(s)
- Wenxin Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huan Lao
- School of Artificial Intelligence, Guangxi Minzu University, Nanning, Guangxi 530000, China
| | - Yafu Tan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shushu Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ziming Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Corresponding author.
| | - Yanyan Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Corresponding author.
| |
Collapse
|
9
|
Li D, Wang J, Zhao J, Wang T, Zeng X, Zheng T, Yuan D. Identification of high-risk patients for development of type B aortic dissection based on novel morphological parameters. Front Physiol 2023; 14:1065805. [PMID: 36818449 PMCID: PMC9932022 DOI: 10.3389/fphys.2023.1065805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Background: Predicting the development of sporadic type B aortic dissection (TBAD) always remains a difficult issue. This study aimed to identify high-risk patients for development of TBAD based on morphological parameters. Methods: This propensity-score-matched case-control study collected and reconstructed the computed tomography angiography of acute TBAD patients and hospital-based control participants without aortic dissection from January 2013 to December 2016. Multivariate regression analysis was used to calculate the adjusted odds ratio (aOR) and 95% confidence interval (CI). Discriminant and reclassification abilities were compared between our model and a previously established model. Results: Our study included 76 acute TBAD patients and 79 control patients (48 cases and 48 controls after propensity-score matching). The degree of question mark (aOR 1.07, 95% CI 1.04-1.11), brachiocephalic trunk diameter (aOR 1.49, 95% CI 1.20-1.85), brachiocephalic trunk angle (aOR 0.97, 95% CI 0.94-0.99), aortic root diameter (aOR 1.31, 95% CI 1.15-1.48), and aortic width (aOR 1.12, 95% CI 1.07-1.17) were associated with a significantly increased risk of TBAD formation. Similar findings were observed in the propensity-score matching and sensitivity analysis only including hyperacute TBAD patients. A novel prediction model was established based on the aforementioned parameters. The new model showed significantly improved discriminant ability compared with the previously established model (c-index 0.78 [95% CI 0.71-0.85] vs. 0.67 [95% CI 0.58-0.75], p = .03), driven by increased reclassification ability in identifying TBAD patients (NRI for events 0.16, 95% CI 0.02-0.30, p = .02). Conclusion: Morphological predictors, including the degree of question mark, aortic width, aortic root diameter, brachiocephalic trunk angle, and brachiocephalic trunk diameter, may be used to identify patients at high risk of TBAD.
Collapse
Affiliation(s)
- Da Li
- Department of Applied Mechanics, Sichuan University, Chengdu, China,Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, China
| | - Jiarong Wang
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jichun Zhao
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tiehao Wang
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangguo Zeng
- Department of Applied Mechanics, Sichuan University, Chengdu, China
| | - Tinghui Zheng
- Department of Applied Mechanics, Sichuan University, Chengdu, China,Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, China,Med-X center for informatics, Sichuan University, Chengdu, China,*Correspondence: Tinghui Zheng, ; Ding Yuan,
| | - Ding Yuan
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China,Med-X center for informatics, Sichuan University, Chengdu, China,*Correspondence: Tinghui Zheng, ; Ding Yuan,
| |
Collapse
|
10
|
Li Y, Chen F, Yang B, Xie S, Wang C, Guo R, Zhang X, Liu Z. Effect of Mid-Basilar Artery Angle and Plaque Characteristics on Pontine Infarction in Patients with Basilar Artery Plaque. J Atheroscler Thromb 2023; 30:182-191. [PMID: 35418542 PMCID: PMC9925201 DOI: 10.5551/jat.63520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS The basilar artery (BA) geometry and plaque characteristics may play an important role in the development of atherosclerosis. This study was performed to explore the relationship between the mid-BA angle and plaque characteristics and its effect on pontine infarction using high-resolution magnetic resonance imaging and three-dimensional time-of-flight magnetic resonance angiography. METHODS In total, 77 patients with BA plaques were included in this study. According to the presence of acute pontine infarction on diffusion-weighted imaging, the patients were divided into a pontine infarction group and pontine non-infarction group. The mid-BA angle, plaque burden, stenosis ratio, positive remodeling, and intraplaque hemorrhage were evaluated to investigate their effects on stroke. RESULTS The pontine infarction group had a greater plaque burden, stenosis ratio, positive remodeling, and mid-BA angle than the pontine non-infarction group. The correlation between the plaque burden and mid-BA angle was the highest (r=0.441, P<0.001). Multivariate logistic regression analysis showed that the plaque burden (odds ratio, 1.164; 95% confidence interval, 1.093-1.241; P<0.001) was an independent risk factor for pontine infarction. CONCLUSION The mid-BA angle may increase the incidence of pontine infarction by increasing the plaque burden.
Collapse
Affiliation(s)
- Yangchen Li
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Fengxin Chen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bo Yang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Ce Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Runcai Guo
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xuebing Zhang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Zunjing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
11
|
Predicting the risk of postsplenectomy thrombosis in patients with portal hypertension using computational hemodynamics models: A proof-of-concept study. Clin Biomech (Bristol, Avon) 2022; 98:105717. [PMID: 35834965 DOI: 10.1016/j.clinbiomech.2022.105717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The high incidence of thrombosis in the portal venous system following splenectomy (a frequently adopted surgery for treating portal hypertension in patients with splenomegaly and hypersplenism) is a critical clinical issue. The aim of this study was to address whether quantification of postsplenectomy hemodynamics has potential value for assessing the risk of postsplenectomy thrombosis. METHODS Computational models were constructed for three portal hypertensive patients treated with splenectomy based on their preoperative clinical data to quantify hemodynamics in the portal venous system before and after splenectomy, respectively. Each patient was followed up for three or five months after surgery and examined with CT to screen potential thrombosis. FINDINGS The area ratio of wall regions exposed to low wall shear stress was small before splenectomy in all patients, which increased markedly after splenectomy and exhibited enlarged inter-patient differences. The largest area ratio of low wall shear stress and most severe flow stagnation after splenectomy were predicted for the patient suffering from postsplenectomy thrombosis, with the wall regions exposed to low wall shear stress corresponding well with the CT-detected distribution of thrombus. Further analyses revealed that postoperative hemodynamic characteristics were considerably influenced by the anatomorphological features of the portal venous system. INTERPRETATION Postoperative hemodynamic conditions in the portal venous system are highly patient-specific and have a potential link to postsplenectomy thrombosis, which indicates that patient-specific hemodynamic studies may serve as a complement to routine clinical assessments for refining risk stratification and postoperative patient management.
Collapse
|
12
|
Song X, Qiu H, Wang S, Cao Y, Zhao J. Hemodynamic and Geometric Risk Factors for In-Stent Restenosis in Patients with Intracranial Atherosclerotic Stenosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6951302. [PMID: 35936215 PMCID: PMC9348934 DOI: 10.1155/2022/6951302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Methods Severe ICAS patients managed with percutaneous transluminal angioplasty and stenting (PTAS) were included in the retrospective cohort study and were divided into two groups according to whether ISR occurred at follow-up (ISR group and no-ISR group). Computational fluid dynamics models were built based on digital subtraction angiography before and after PTAS to simulate blood flow and quantify hemodynamic parameters. The associations between vessel geometry, hemodynamics, and ISR in ICAS patients were investigated. Results Among 39 patients, ISR occurred in seven patients (17.95%) after a mean follow-up period of 6.69 ± 3.24 months. Stenting decreased vessel angulation (51.11° [40.07°-67.27°] vs. 15.97° [0.00°-36.16°], P = 0.000) and vessel tortuosity (0.09 [0.06-0.13] vs. 0.01 [0.00-0.03], P = 0.000). Meanwhile, the translational pressure ratio (PR) dramatically increased (0.07 [0.00-0.31] vs. 0.62 [0.41-0.82], P = 0.000) with the wall shear stress ratio decreased (13.93 [8.37-40.30] vs. 2.90 [1.69-4.48], P = 0.000). In the multivariate analysis, smaller Δ tortuosity (P = 0.038) was independently associated with the occurrence of ISR, and smaller post-PTAS translesional PR was also a predictive factor of marginal significance (P = 0.059). Conclusion PTAS decreased vessel angulation, vessel tortuosity, and translesional wall shear stress ratio while it increased translesional pressure ratio (PR) dramatically in ICAS patients. Smaller Δ tortuosity was found to be a risk factor for ISR, and smaller post-PTAS translesional PR was also a predictive factor of marginal significance, indicating that both geometric and hemodynamic parameters played important roles in the occurrence of ISR after PTAS.
Collapse
Affiliation(s)
- Xiaowen Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hancheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
13
|
Hou J, Li X, Li Z, Yin L, Chen X, Liang F. An In Vivo Data-Based Computational Study on Sitting-Induced Hemodynamic Changes in the External Iliac Artery. J Biomech Eng 2022; 144:1119224. [PMID: 34467394 DOI: 10.1115/1.4052292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 01/09/2023]
Abstract
Although sedentary behavior (characterized by prolonged sitting without otherwise being active in daily life) is widely regarded as a risk factor for peripheral artery disease (PAD), underlying biomechanical mechanisms remain insufficiently understood. In this study, geometrical models of ten external iliac arteries were reconstructed based on angiographic data acquired from five healthy young subjects resting in supine and sitting (mimicked by side lying with bent legs) positions, respectively, which were further combined with measured blood flow velocity waveforms in the common iliac arteries (with each body posture being maintained for 30 min) to build computational models for simulating intra-arterial hemodynamics. Morphological analyses showed that the external iliac arteries suffered from evident bending deformation upon the switch of body posture from supine to sitting. Measured blood flow velocity waveforms in the sitting position exhibited a marked decrease in mean flow velocity while increase in retrograde flow ratio compared with those in the supine position. Hemodynamic computations further revealed that sitting significantly altered blood flow patterns in the external iliac arteries, leading to a marked enlargement of atheroprone wall regions exposed to low and oscillatory wall shear stress (WSS), and enhanced multidirectional disturbance of WSS that may further impair endothelial function. In summary, our study demonstrates that prolonged sitting induces atheropromoting hemodynamic changes in the external iliac artery due to the combined effects of vascular bending deformation and changes in flow velocity waveform, which may provide important insights for understanding the involvement of biomechanical factors in sedentary behavior-related PAD.
Collapse
Affiliation(s)
- Jixin Hou
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Hydrodynamics (Ministry of Education), School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuanyu Li
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaojun Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lekang Yin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Chen
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fuyou Liang
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Colombo M, Corti A, McGinty S, Migliavacca F, Chiastra C. Fluid dynamics and mass transport in lower limb vessels: Effects on restenosis. MODELING OF MASS TRANSPORT PROCESSES IN BIOLOGICAL MEDIA 2022:215-258. [DOI: 10.1016/b978-0-323-85740-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
15
|
Characteristics of atherosclerosis in femoropopliteal artery and its clinical relevance. Atherosclerosis 2021; 335:31-40. [PMID: 34547588 DOI: 10.1016/j.atherosclerosis.2021.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a systemic disease with different faces. Despite identical or similar pathogenetic mechanisms, atherosclerotic lesions and their clinical manifestations vary in different parts of the vascular system. Peripheral arterial disease (PAD) represents one of the most frequent clinical manifestations of atherosclerosis with predominant location in the superficial femoral artery (SFA). Morphological characteristics of atherosclerotic plaques in peripheral arteries differ from lesions in the coronary and carotid arteries. Plaques in SFA have more fibrotic components, less lipids and inflammatory cells, which makes them more stable and less prone to rupture. Factors that determine the different structure of plaques in SFA compared to coronary arteries include hemodynamic forces, vasa vasorum and calcification. Low shear stress in SFA in the adductor canal is one of the factors which determines frequent atherosclerotic lesions in this region. Lower lipid content and fewer inflammatory cells explain higher stability of SFA plaques. The specific structure of SFA plaques may require preventive and therapeutic measures, which to some extent differ from prevention of coronary atherosclerosis and may include inhibition of fibrotic proliferation in SFA plaques and calcification. Revascularization of PAD differs from procedures used in coronary arteries and requires specific technical expertise and devices.
Collapse
|
16
|
Zhou R, Zhai H, Yin Z, Cui J, Hu N. Virtual Reality-Assisted Percutaneous Transluminal Angioplasty for Interventional Treatment of Lower-Extremity Arteriosclerosis Obliterans. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9975583. [PMID: 34354810 PMCID: PMC8331279 DOI: 10.1155/2021/9975583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
This study was to evaluate the biomechanical characteristics of the vascular wall during virtual reality- (VR-) assisted percutaneous transluminal angioplasty (PTA) and its effect on the treatment of lower-extremity arteriosclerosis obliterans (LEAO). In this study, a three-dimensional (3D) model and a finite-element model of arteries were constructed first, and various fluid mechanics were analyzed. Then, the virtual expansion simulation (VES) of individualized PTA was performed based on the ABAQUS/Explicit module to analyze the interaction between the balloon and the blood vessel at different times and the changes in the vascular shape and structural stress distribution. Finally, an LEAO animal model was constructed. Based on conventional PTA (PTA group) and VR-assisted PTA (VR-PTA) treatment, the morphological changes of vascular lumen of the two animal models were evaluated. The results showed that the normal, stenotic blood vessels and blood models were successfully constructed; the pressure of the stenotic blood vessel at the stenosis decreased obviously and the shear stress of blood vessel wall increased compared with that of the normal blood vessels, and there may be a blood reflux area in the poststenosis stage. The simulation results of the VES showed that the maximum principal stress value at 3 mm of the marginal vessel was much lower than that at 5 mm (about 10% lower), so the maximum principal stress change within 2 mm of the balloon-expanded vessel was the most obvious. The treatment results of the animal model showed that the VR-PTA group showed an obvious increase in the diameter of the vascular lumen, a decrease in the intima and media area, and a decrease in the thickness of the vessel wall in contrast to the PTA group (P < 0.05), which had an important effect on the reconstruction and expansion of the vascular lumen. The VR-PTA treatment on LEAO was realized in this study, which provided critical reference for the follow-up application of VR technology in the evaluation of surgical plan and research on biomechanical mechanisms of restenosis after PTA.
Collapse
Affiliation(s)
- Ruhang Zhou
- Department of Vascular Surgery, Bozhou Hospital Affiliated to Anhui University of Science and Technology, QiaoCheng District, Bozhou, Anhui, China
| | - Hongyan Zhai
- Department of Ophthalmology, Bozhou Hospital Affiliated to Anhui University of Science and Technology, QiaoCheng District, Bozhou, Anhui, China
| | - Zhiming Yin
- Department of Vascular Surgery, Bozhou Hospital Affiliated to Anhui University of Science and Technology, QiaoCheng District, Bozhou, Anhui, China
| | - Jian Cui
- Department of Vascular Surgery, Bozhou Hospital Affiliated to Anhui University of Science and Technology, QiaoCheng District, Bozhou, Anhui, China
| | - Nan Hu
- Department of Vascular Surgery, The Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing City 210000, China
| |
Collapse
|
17
|
Deng S, Zheng J, Wu Y, Yang D, Chen H, Sun B, Xue Y, Zhao X. Geometrical characteristics associated with atherosclerotic disease in the basilar artery: a magnetic resonance vessel wall imaging study. Quant Imaging Med Surg 2021; 11:2711-2720. [PMID: 34079735 DOI: 10.21037/qims-20-1291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Vascular geometry may play an important role in the development of atherosclerosis. This study aimed to investigate the relationships between the geometrical characteristics of basilar artery (BA) and the presence, burden, and distribution of BA plaques using magnetic resonance vessel wall imaging. Methods Patients with cerebrovascular symptoms in the posterior circulation were recruited and underwent magnetic resonance imaging. The BA's geometrical characteristics, including actual length, straightened length, tortuosity, lateral basilar artery-vertebral artery (VA) angle, lateral mid-BA angle, and BA convexity, were measured. The presence of plaques, stenosis, and plaque burden, including mean and maximal wall thickness, were evaluated. The BA's cross-sectional vessel wall was divided into 4 quadrants: dorsal, ventral, right, and left quadrant. The distribution of BA plaques was analyzed. Results Of 344 recruited patients (mean age: 68.1±11.1 years; 200 males), 100 (29.1%) had BA plaques. Patients with BA plaques had higher tortuosity of the BA (13.6±9.0 vs. 9.7±7.7, P<0.001) compared to those without BA plaques. Multivariate regression analysis showed that tortuosity of the BA was associated with the presence of BA plaques (OR, 1.641; 95% CI, 1.232 to 2.186; P=0.001) and mean wall thickness (β, 0.045; 95% CI, 0.008 to 0.081; P=0.017). The plaque distribution in the left wall and right wall of BA was more frequent in patients with right (P=0.006) and left (P<0.001) convex BA, respectively. Conclusions The BA's geometrical characteristics, particularly tortuosity and convexity, are independently associated with the presence, burden, and distribution of plaques in the BA.
Collapse
Affiliation(s)
- Shasha Deng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinmei Zheng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxin Wu
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dandan Yang
- Department of Biomedical Engineering, School of Medicine, Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Huajun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bin Sun
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Colombo M, He Y, Corti A, Gallo D, Ninno F, Casarin S, Rozowsky JM, Migliavacca F, Berceli S, Chiastra C. In-Stent Restenosis Progression in Human Superficial Femoral Arteries: Dynamics of Lumen Remodeling and Impact of Local Hemodynamics. Ann Biomed Eng 2021; 49:2349-2364. [PMID: 33928465 PMCID: PMC8455500 DOI: 10.1007/s10439-021-02776-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
In-stent restenosis (ISR) represents a major drawback of stented superficial femoral arteries (SFAs). Motivated by the high incidence and limited knowledge of ISR onset and development in human SFAs, this study aims to (i) analyze the lumen remodeling trajectory over 1-year follow-up period in human stented SFAs and (ii) investigate the impact of altered hemodynamics on ISR initiation and progression. Ten SFA lesions were reconstructed at four follow-ups from computed tomography to quantify the lumen area change occurring within 1-year post-intervention. Patient-specific computational fluid dynamics simulations were performed at each follow-up to relate wall shear stress (WSS) based descriptors with lumen remodeling. The largest lumen remodeling was found in the first post-operative month, with slight regional-specific differences (larger inward remodeling in the fringe segments, p < 0.05). Focal re-narrowing frequently occurred after 6 months. Slight differences in the lumen area change emerged between long and short stents, and between segments upstream and downstream from stent overlapping portions, at specific time intervals. Abnormal patterns of multidirectional WSS were associated with lumen remodeling within 1-year post-intervention. This longitudinal study gave important insights into the dynamics of ISR and the impact of hemodynamics on ISR progression in human SFAs.
Collapse
Affiliation(s)
- Monika Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yong He
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Diego Gallo
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Federica Ninno
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
- Department of Medical Physics and Biomedical Engineering, University College of London, London, UK
| | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | - Jared M Rozowsky
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Scott Berceli
- Department of Surgery, University of Florida, Gainesville, FL, USA
- Malcom Randall VAMC, Gainesville, FL, USA
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
19
|
Wang T, Zhou Z, Liang F. Influences of Anatomorphological Features of the Portal Venous System on Postsplenectomy Hemodynamic Characteristics in Patients With Portal Hypertension: A Computational Model-Based Study. Front Physiol 2021; 12:661030. [PMID: 33912074 PMCID: PMC8072460 DOI: 10.3389/fphys.2021.661030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Splenectomy, as an effective surgery for relieving complications caused by portal hypertension, is often accompanied by a significantly increased incidence of postoperative thrombosis in the portal venous system (PVS). While the underlying mechanisms remain insufficiently understood, the marked changes in hemodynamic conditions in the PVS following splenectomy have been suggested to be a potential contributing factor. The aim of this study was to investigate the influences of the anatomorphological features of the PVS on hemodynamic characteristics before and after splenectomy, with emphasis on identifying the specific anatomorphological features that make postoperative hemodynamic conditions more clot-promoting. For this purpose, idealized computational hemodynamics models of the PVS were constructed based on general anatomical structures and population-averaged geometrical parameters of the PVS. In the models, we incorporated various anatomorphological variations to represent inter-patient variability. The analyses of hemodynamic data were focused on the spatial distribution of wall shear stress (WSS) and the area ratio of wall regions exposed to low WSS (ALS). Obtained results showed that preoperative hemodynamic conditions were comparable among different models in terms of space-averaged WSS and ALS (all were small) irrespective of the considerable differences in spatial distribution of WSS, whereas, the inter-model differences in ALS were significantly augmented after splenectomy, with the value of ALS reaching up to over 30% in some models, while being smaller than 15% in some other models. Postoperative ALS was mainly determined by the anatomical structure of the PVS, followed by some morphogeometrical parameters, such as the diameter and curvature of the splenic vein, and the distance between the inferior mesenteric vein and splenoportal junction. Relatively, the angles between tributary veins and trunk veins only had mild influences on ALS. In addition, a marked increase in blood viscosity was predicted after splenectomy, especially in regions with low WSS, which may play an additive role to low WSS in initiating thrombosis. These findings suggest that the anatomical structure and some morphogeometrical features of the PVS are important determinants of hemodynamic conditions following splenectomy, which may provide useful clues to assessing the risk of postsplenectomy thrombosis based on medical imaging data.
Collapse
Affiliation(s)
- Tianqi Wang
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zunqiang Zhou
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fuyou Liang
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
20
|
Baseline local hemodynamics as predictor of lumen remodeling at 1-year follow-up in stented superficial femoral arteries. Sci Rep 2021; 11:1613. [PMID: 33452294 PMCID: PMC7810829 DOI: 10.1038/s41598-020-80681-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/24/2020] [Indexed: 11/08/2022] Open
Abstract
In-stent restenosis (ISR) is the major drawback of superficial femoral artery (SFA) stenting. Abnormal hemodynamics after stent implantation seems to promote the development of ISR. Accordingly, this study aims to investigate the impact of local hemodynamics on lumen remodeling in human stented SFA lesions. Ten SFA models were reconstructed at 1-week and 1-year follow-up from computed tomography images. Patient-specific computational fluid dynamics simulations were performed to relate the local hemodynamics at 1-week, expressed in terms of time-averaged wall shear stress (TAWSS), oscillatory shear index and relative residence time, with the lumen remodeling at 1-year, quantified as the change of lumen area between 1-week and 1-year. The TAWSS was negatively associated with the lumen area change (ρ = - 0.75, p = 0.013). The surface area exposed to low TAWSS was positively correlated with the lumen area change (ρ = 0.69, p = 0.026). No significant correlations were present between the other hemodynamic descriptors and lumen area change. The low TAWSS was the best predictive marker of lumen remodeling (positive predictive value of 44.8%). Moreover, stent length and overlapping were predictor of ISR at follow-up. Despite the limited number of analyzed lesions, the overall findings suggest an association between abnormal patterns of WSS after stenting and lumen remodeling.
Collapse
|
21
|
Colombo M, Luraghi G, Cestariolo L, Ravasi M, Airoldi A, Chiastra C, Pennati G. Impact of lower limb movement on the hemodynamics of femoropopliteal arteries: A computational study. Med Eng Phys 2020; 81:105-117. [DOI: 10.1016/j.medengphy.2020.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023]
|
22
|
Abstract
Vascular tortuosity may impede blood flow, occlude the lumen, and ultimately lead to ischemia or even infarction. Mechanical loads like blood pressure, axial force, and also torsion are key factors participating in this complex mechanobiological process. The available studies on arterial torsion instability followed computational or experimental approaches, yet single available theoretical study had modeled the artery as isotropic linear elastic. This paper aim is to validate a theoretical model of arterial torsion instability against experimental data. The artery is modeled as a single-layered, nonlinear, hyperelastic, anisotropic solid, with parameters calibrated from experiment. Linear bifurcation analysis is then performed to predict experimentally measured stability margins. Uncertainties in geometrical parameters and in measured mechanical response were considered. Also, the type of rate (incremental) boundary conditions (RBCs) impact on the results was examined (e.g., dead load, fluid pressure). The predicted critical torque and twist angle followed the experimentally measured trends. The closest prediction errors in the critical torque and twist rate were 22% and 67%, respectively. Using the different RBCs incurred differences of up to 50% difference within the model predictions. The present results suggest that the model may require further improvements. However, it offers an approach that can be used to predict allowable twist levels in surgical procedures (like anastomosis and grafting) and in the design of stents for arteries subjected to high torsion levels (like the femoropopliteal arteries). It may also be instructive in understanding biomechanical processes like arterial tortuosity, kinking, and coiling.
Collapse
Affiliation(s)
- Nir Emuna
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Durban
- Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
23
|
The Hemodynamic Effect of Enhanced External Counterpulsation Treatment on Atherosclerotic Plaque in the Carotid Artery: A Framework of Patient-Specific Computational Fluid Dynamics Analysis. Cardiol Res Pract 2020; 2020:5903790. [PMID: 32411447 PMCID: PMC7210552 DOI: 10.1155/2020/5903790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/18/2019] [Accepted: 01/21/2020] [Indexed: 01/28/2023] Open
Abstract
Long-term enhanced external counterpulsation (EECP) therapy has been recommended for antiatherogenesis in recent clinical observations and trials. However, the precise mechanism underlying the benefits has not been fully clarified. To quantify the effect of EECP intervention on arterial hemodynamic environment, a framework of numerical assessment was introduced using a parallel computing algorithm. A 3D endothelial surface of the carotid artery with mild atherosclerotic plaque was constructed from images of magnetic resonance angiography (MRA). Physiologic boundary conditions were derived from images of the ultrasound flow velocity spectrum measured at the common carotid artery and before and during EECP intervention. Hemodynamic factors relating to wall shear stress (WSS) and its spatial and temporal fluctuations were calculated and analyzed, which included AWSS, OSI, and AWSSG. Measuring and computational results showed that diastole blood pressure, perfusion, and WSS level in carotid bifurcation were significantly increased during EECP intervention. Mean AWSS level throughout the model increased by 16.9%, while OSI level did not show a significant change during EECP. We thus suggested that long-term EECP treatment might inhibit the initiation and development of atherosclerotic plaque via improving the hemodynamic environment in the carotid artery. Meanwhile, EECP performance induced a 19.6% increase in AWSSG level, and whether it would influence the endothelial functions may need a further study. Moreover, the numerical method proposed in this study was expected to be useful for the instant assessment of clinical application of EECP .
Collapse
|
24
|
Zhou X, Yin L, Xu L, Liang F. Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: An in vivo measurement-based computational study. J Biomech 2020; 101:109617. [PMID: 31959390 DOI: 10.1016/j.jbiomech.2020.109617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 11/24/2022]
Abstract
Although arterial blood flow is physiologically non-periodic under resting conditions, periodic flow assumption has been widely adopted in most hemodynamic studies. So far, it remains unclear how the non-periodicity of blood flow would influence local hemodynamic parameters, especially wall shear stress (WSS) that associates closely with endothelial function and vascular disease. In this study, numerical simulations of blood flows in sixteen normal carotid artery bifurcations were performed under measured non-periodic and averaged periodic flow conditions, respectively, with the obtained results being compared in terms of five typical WSS metrics (i.e., mean WSS (MWSS), time-averaged WSS (TAWSS), oscillatory shear index (OSI), transverse WSS (transWSS), and average temporal gradient of WSS (WSSTG)) in the atheroprone low-WSS regions. It was found that simplifying the physiologically non-periodic flow condition into a periodic one did not significantly alter the major features of WSS distribution, but resulted in underestimations of some WSS metrics. Specifically, the degree of underestimation was largest (27.2% ± 8.3%) for WSSTG, smallest (0.5% ± 0.4%) for MWSS, while moderate (5.1% ± 3.2% ~ 9.2% ± 4.1%) for other WSS metrics. Statistical analyses revealed that the cycle-to-cycle variability of flow velocity waveform (var-V) and the planarity of internal carotid artery correlated strongly with the periodic flow assumption-induced underestimations of WSS metrics. These findings suggest that taking the non-periodic characteristic of blood flow into consideration could be important for studying hemodynamics in arteries with a large var-V or specific morphological characteristics, especially when WSSTG is the main hemodynamic parameter of concern.
Collapse
Affiliation(s)
- Xindong Zhou
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lekang Yin
- Department of Radiology, Shanghai Chest Hospital, Shanghai 200030, China
| | - Lijian Xu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fuyou Liang
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Hydrodynamics (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|