1
|
Burggren W, Dzialowski E, Tzschentke B. The avian embryo as a time-honoured animal model in developmental, biomedical and agricultural research. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230438. [PMID: 40010394 PMCID: PMC11864840 DOI: 10.1098/rstb.2023.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 02/28/2025] Open
Abstract
Avian embryos have been at the core of embryological, morphological, physiological and biochemical/molecular research, especially involving research in three primary areas: developmental, biomedical and agricultural research. As developmental models, the avian embryo-especially that of the chicken-has been the single most used embryo model, perhaps in part from the combination of large size, ease of access and prior knowledge base. Developmental research with avian embryos has included organ system studies of the heart, vasculature, lungs, kidneys, nervous system, etc., as well as integrated physiological processes including gas-exchange, acid-base and ion/water regulation. In terms of translational research, avian embryos have modelled vascular development, based on the easily accessible chorioallantoic membrane under the eggshell. This same respiratory organ has enabled toxicological studies of how pollutants affect vertebrate development. Investigation of the transition to pulmonary breathing and the associated emergence of respiratory control has also relied heavily upon the avian embryo. In addition to developmental and biomedical investigations, the avian embryo has been studied intensively due to the huge importance of domesticated birds as a food source. Consequently, the effects of environment (including temperature, humidity, noise levels and photoperiod) during incubation on subsequent post-hatch phenotype are being actively investigated.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX76203-5017, USA
| | - Edward Dzialowski
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX76203-5017, USA
| | - Barbara Tzschentke
- Institute for Agricultural and Urban Ecological Projects (IASP) at Humboldt-Universität zu Berlin, Berlin10115, Germany
| |
Collapse
|
2
|
Phillips M, Nimmo M, Rugonyi S. Developmental and Evolutionary Heart Adaptations Through Structure-Function Relationships. J Cardiovasc Dev Dis 2025; 12:83. [PMID: 40137081 PMCID: PMC11942974 DOI: 10.3390/jcdd12030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
While the heart works as an efficient pump, it also has a high level of adaptivity by changing its structure to maintain function during healthy and diseased states. In this Review, we present examples of structure-function relationships across species and throughout embryonic development in mammals and birds. We also summarize current research on avian models aiming at understanding how biophysical and biological mechanisms closely interact during heart formation. We conclude by underscoring similarities between cardiac adaptations and structural changes over developmental and evolutionary time scales and how understanding the mechanisms behind these adaptations can help prevent or alleviate the effects of cardiac malformations and contribute to cardiac regeneration efforts.
Collapse
Affiliation(s)
| | | | - Sandra Rugonyi
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97239, USA; (M.P.); (M.N.)
| |
Collapse
|
3
|
Ahmad Azahari AFA, Wan Ab Naim WN, Md Sari NA, Lim E, Mohamed Mokhtarudin MJ. Advancement in computational simulation and validation of congenital heart disease: a review. Comput Methods Biomech Biomed Engin 2024:1-14. [PMID: 39001803 DOI: 10.1080/10255842.2024.2377338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The improvement in congenital heart disease (CHD) treatment and management has increased the life expectancy in infants. However, the long-term efficacy is difficult to assess and thus, computational modelling has been applied for evaluating this. Here, we provide an overview of the applications of computational modelling in CHD based on three categories; CHD involving large blood vessels only, heart chambers only, and CHD that occurs at multiple heart structures. We highlight the advancement of computational simulation of CHD that uses multiscale and multiphysics modelling to ensure a complete representation of the heart and circulation. We provide a brief future direction of computational modelling of CHD such as to include growth and remodelling, detailed conduction system, and occurrence of myocardial infarction. We also proposed validation technique using advanced three-dimensional (3D) printing and particle image velocimetry (PIV) technologies to improve the model accuracy.
Collapse
Affiliation(s)
| | - Wan Naimah Wan Ab Naim
- Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
| | - Nor Ashikin Md Sari
- Division of Cardiology, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Jamil Mohamed Mokhtarudin
- Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
- Centre for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang, Lebuhraya Tun Razak, Kuantan, Pahang, Malaysia
| |
Collapse
|
4
|
Berg K, Gorham J, Lundt F, Seidman J, Brueckner M. Endocardial primary cilia and blood flow are required for regulation of EndoMT during endocardial cushion development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594405. [PMID: 38798559 PMCID: PMC11118576 DOI: 10.1101/2024.05.15.594405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Blood flow is critical for heart valve formation, and cellular mechanosensors are essential to translate flow into transcriptional regulation of development. Here, we identify a role for primary cilia in vivo in the spatial regulation of cushion formation, the first stage of valve development, by regionally controlling endothelial to mesenchymal transition (EndoMT) via modulation of Kruppel-like Factor 4 (Klf4) . We find that high shear stress intracardiac regions decrease endocardial ciliation over cushion development, correlating with KLF4 downregulation and EndoMT progression. Mouse embryos constitutively lacking cilia exhibit a blood-flow dependent accumulation of KLF4 in these regions, independent of upstream left-right abnormalities, resulting in impaired cushion cellularization. snRNA-seq revealed that cilia KO endocardium fails to progress to late-EndoMT, retains endothelial markers and has reduced EndoMT/mesenchymal genes that KLF4 antagonizes. Together, these data identify a mechanosensory role for endocardial primary cilia in cushion development through regional regulation of KLF4.
Collapse
|
5
|
Gregorovicova M, Lashkarinia SS, Yap CH, Tomek V, Sedmera D. Hemodynamics During Development and Postnatal Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:201-226. [PMID: 38884713 DOI: 10.1007/978-3-031-44087-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A well-developed heart is essential for embryonic survival. There are constant interactions between cardiac tissue motion and blood flow, which determine the heart shape itself. Hemodynamic forces are a powerful stimulus for cardiac growth and differentiation. Therefore, it is particularly interesting to investigate how the blood flows through the heart and how hemodynamics is linked to a particular species and its development, including human. The appropriate patterns and magnitude of hemodynamic stresses are necessary for the proper formation of cardiac structures, and hemodynamic perturbations have been found to cause malformations via identifiable mechanobiological molecular pathways. There are significant differences in cardiac hemodynamics among vertebrate species, which go hand in hand with the presence of specific anatomical structures. However, strong similarities during development suggest a common pattern for cardiac hemodynamics in human adults. In the human fetal heart, hemodynamic abnormalities during gestation are known to progress to congenital heart malformations by birth. In this chapter, we discuss the current state of the knowledge of the prenatal cardiac hemodynamics, as discovered through small and large animal models, as well as from clinical investigations, with parallels gathered from the poikilotherm vertebrates that emulate some hemodynamically significant human congenital heart diseases.
Collapse
Affiliation(s)
- Martina Gregorovicova
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Choon Hwai Yap
- Department of Bioengineering, Imperial College, London, UK
| | - Viktor Tomek
- Pediatric Cardiology, Motol University Hospital, Prague, Czech Republic
| | - David Sedmera
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Parker LE, Kurzlechner LM, Landstrom AP. Induced Pluripotent Stem Cell-Based Modeling of Single-Ventricle Congenital Heart Diseases. Curr Cardiol Rep 2023; 25:295-305. [PMID: 36930454 PMCID: PMC10726018 DOI: 10.1007/s11886-023-01852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE OF REVIEW Congenital heart disease includes a wide variety of structural cardiac defects, the most severe of which are single ventricle defects (SVD). These patients suffer from significant morbidity and mortality; however, our understanding of the developmental etiology of these conditions is limited. Model organisms offer a window into normal and abnormal cardiogenesis yet often fail to recapitulate complex congenital heart defects seen in patients. The use of induced pluripotent stem cells (iPSCs) derived from patients with single-ventricle defects opens the door to studying SVD in patient-derived cardiomyocytes (iPSC-CMs) in a variety of different contexts, including organoids and chamber-specific cardiomyocytes. As the genetic and cellular causes of SVD are not well defined, patient-derived iPSC-CMs hold promise for uncovering mechanisms of disease development and serve as a platform for testing therapies. The purpose of this review is to highlight recent advances in iPSC-based models of SVD. RECENT FINDINGS Recent advances in patient-derived iPSC-CM differentiation, as well as the development of both chamber-specific and non-myocyte cardiac cell types, make it possible to model the complex genetic and molecular architecture involved in SVD development. Moreover, iPSC models have become increasingly complex with the generation of 3D organoids and engineered cardiac tissues which open the door to new mechanistic insight into SVD development. Finally, iPSC-CMs have been used in proof-of-concept studies that the molecular underpinnings of SVD may be targetable for future therapies. While each platform has its advantages and disadvantages, the use of patient-derived iPSC-CMs offers a window into patient-specific cardiogenesis and SVD development. Advancement in stem-cell based modeling of SVD promises to revolutionize our understanding of the developmental etiology of SVD and provides a tool for developing and testing new therapies.
Collapse
Affiliation(s)
- Lauren E Parker
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Leonie M Kurzlechner
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke University Medical Center, Box 2652, Durham, NC, 27710, USA.
| |
Collapse
|
7
|
Wang M, Lin BY, Sun S, Dai C, Long F, Butcher JT. Shear and hydrostatic stress regulate fetal heart valve remodeling through YAP-mediated mechanotransduction. eLife 2023; 12:e83209. [PMID: 37078699 PMCID: PMC10162797 DOI: 10.7554/elife.83209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/19/2023] [Indexed: 04/21/2023] Open
Abstract
Clinically serious congenital heart valve defects arise from improper growth and remodeling of endocardial cushions into leaflets. Genetic mutations have been extensively studied but explain less than 20% of cases. Mechanical forces generated by beating hearts drive valve development, but how these forces collectively determine valve growth and remodeling remains incompletely understood. Here, we decouple the influence of those forces on valve size and shape, and study the role of YAP pathway in determining the size and shape. The low oscillatory shear stress promotes YAP nuclear translocation in valvular endothelial cells (VEC), while the high unidirectional shear stress restricts YAP in cytoplasm. The hydrostatic compressive stress activated YAP in valvular interstitial cells (VIC), whereas the tensile stress deactivated YAP. YAP activation by small molecules promoted VIC proliferation and increased valve size. Whereas YAP inhibition enhanced the expression of cell-cell adhesions in VEC and affected valve shape. Finally, left atrial ligation was performed in chick embryonic hearts to manipulate the shear and hydrostatic stress in vivo. The restricted flow in the left ventricle induced a globular and hypoplastic left atrioventricular (AV) valves with an inhibited YAP expression. By contrast, the right AV valves with sustained YAP expression grew and elongated normally. This study establishes a simple yet elegant mechanobiological system by which transduction of local stresses regulates valve growth and remodeling. This system guides leaflets to grow into proper sizes and shapes with the ventricular development, without the need of a genetically prescribed timing mechanism.
Collapse
Affiliation(s)
- Mingkun Wang
- Meinig School of Biomedical Engineering, Cornell UniversityIthacaUnited States
| | - Belle Yanyu Lin
- Meinig School of Biomedical Engineering, Cornell UniversityIthacaUnited States
| | - Shuofei Sun
- Meinig School of Biomedical Engineering, Cornell UniversityIthacaUnited States
| | - Charles Dai
- Meinig School of Biomedical Engineering, Cornell UniversityIthacaUnited States
| | - Feifei Long
- Meinig School of Biomedical Engineering, Cornell UniversityIthacaUnited States
| | - Jonathan T Butcher
- Meinig School of Biomedical Engineering, Cornell UniversityIthacaUnited States
| |
Collapse
|
8
|
Lashkarinia SS, Chan WX, Motakis E, Ho S, Siddiqui HB, Coban M, Sevgin B, Pekkan K, Yap CH. Myocardial Biomechanics and the Consequent Differentially Expressed Genes of the Left Atrial Ligation Chick Embryonic Model of Hypoplastic Left Heart Syndrome. Ann Biomed Eng 2023; 51:1063-1078. [PMID: 37032398 PMCID: PMC10122626 DOI: 10.1007/s10439-023-03187-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Left atrial ligation (LAL) of the chick embryonic heart is a model of the hypoplastic left heart syndrome (HLHS) where a purely mechanical intervention without genetic or pharmacological manipulation is employed to initiate cardiac malformation. It is thus a key model for understanding the biomechanical origins of HLHS. However, its myocardial mechanics and subsequent gene expressions are not well-understood. We performed finite element (FE) modeling and single-cell RNA sequencing to address this. 4D high-frequency ultrasound imaging of chick embryonic hearts at HH25 (ED 4.5) were obtained for both LAL and control. Motion tracking was performed to quantify strains. Image-based FE modeling was conducted, using the direction of the smallest strain eigenvector as the orientations of contractions, the Guccione active tension model and a Fung-type transversely isotropic passive stiffness model that was determined via micro-pipette aspiration. Single-cell RNA sequencing of left ventricle (LV) heart tissues was performed for normal and LAL embryos at HH30 (ED 6.5) and differentially expressed genes (DEG) were identified.After LAL, LV thickness increased by 33%, strains in the myofiber direction increased by 42%, while stresses in the myofiber direction decreased by 50%. These were likely related to the reduction in ventricular preload and underloading of the LV due to LAL. RNA-seq data revealed potentially related DEG in myocytes, including mechano-sensing genes (Cadherins, NOTCH1, etc.), myosin contractility genes (MLCK, MLCP, etc.), calcium signaling genes (PI3K, PMCA, etc.), and genes related to fibrosis and fibroelastosis (TGF-β, BMP, etc.). We elucidated the changes to the myocardial biomechanics brought by LAL and the corresponding changes to myocyte gene expressions. These data may be useful in identifying the mechanobiological pathways of HLHS.
Collapse
Affiliation(s)
- S Samaneh Lashkarinia
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Wei Xuan Chan
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | | | - Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | - Mervenur Coban
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Bortecine Sevgin
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
9
|
Sedmera D. HLHS: Power of the Chick Model. J Cardiovasc Dev Dis 2022; 9:jcdd9040113. [PMID: 35448089 PMCID: PMC9031965 DOI: 10.3390/jcdd9040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Hypoplastic left heart syndrome (HLHS) is a rare but deadly form of human congenital heart disease, most likely of diverse etiologies. Hemodynamic alterations such as those resulting from premature foramen ovale closure or aortic stenosis are among the possible pathways. Methods: The information gained from studies performed in the chick model of HLHS is reviewed. Altered hemodynamics leads to a decrease in myocyte proliferation causing hypoplasia of the left heart structures and their functional changes. Conclusions: Although the chick phenocopy of HLHS caused by left atrial ligation is certainly not representative of all the possible etiologies, it provides many useful hints regarding the plasticity of the genetically normal developing myocardium under altered hemodynamic loading leading to the HLHS phenotype, and even suggestions on some potential strategies for prenatal repair.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|