1
|
Zhou W, Zhang S, Chen Y, Chen Z, Bi G, Guo M, Jiang X, Yang X, Fang J, Ye L, Fan S, Bi H. PPARα regulates YAP protein levels and activity by affecting its ubiquitination modification. BMC Biol 2025; 23:64. [PMID: 40022055 PMCID: PMC11871725 DOI: 10.1186/s12915-025-02163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor α (PPARα) plays a crucial role in liver physiological and pathological processes. Yes-associated protein (YAP) is a key effector in regulating cell growth and organ size. Ubiquitination is known to modulate YAP protein expression, stability, and nuclear localization. Our previous study demonstrated that PPARα activation promotes hepatomegaly and liver regeneration via YAP activation. However, the underlying molecular mechanisms by which PPARα regulates YAP are unclear. In this study, PPARα was activated by the classical agonist WY-14643, and its effects on YAP ubiquitination were examined using plasmid transfection and immunoprecipitation. The ubiquitination of YAP was further investigated through mutant YAP plasmids, gene knockdown, and immunofluorescence staining. YAP mRNA and protein expression were measured via qRT-PCR and western blotting. RESULTS The results demonstrated that PPARα activation upregulated YAP protein levels and enhanced its activity, while reducing overall YAP ubiquitination. Specifically, PPARα activation inhibited K48-linked ubiquitination while promoting K63-linked ubiquitination of YAP. Mutations at the K252, K321, and K497 residues of YAP markedly reduced the capacity of PPARα activation to facilitate YAP nuclear translocation. Furthermore, knockdown of the E3 ligase TRAF6 abolished the PPARα-induced K63-linked ubiquitination of YAP and the upregulation of its downstream target genes. CONCLUSIONS These findings highlight the pivotal role of ubiquitination in regulating YAP through PPARα activation, providing novel insights for future studies on the post-translational regulation of YAP by PPARα activation.
Collapse
Affiliation(s)
- Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yao Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ziqi Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Manlan Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China
| | - Jianhong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Linhu Ye
- Department of Pharmacy, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, 528200, China.
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Hussein NA, Ebid SA, Ahmad MA, Khedr GE, Saad DM. The possible correlation between miR-762, Hippo signaling pathway, TWIST1, and SMAD3 in lung cancer and chronic inflammatory diseases. Sci Rep 2024; 14:8246. [PMID: 38589525 PMCID: PMC11001855 DOI: 10.1038/s41598-024-58704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
MicroRNAs are small RNA molecules that have a significant role in translational repression and gene silencing through binding to downstream target mRNAs. MiR-762 can stimulate the proliferation and metastasis of various types of cancer. Hippo pathway is one of the pathways that regulate tissue development and carcinogenesis. Dysregulation of this pathway plays a vital role in the progression of cancer. This study aimed to evaluate the possible correlation between miR-762, the Hippo signaling pathway, TWIST1, and SMAD3 in patients with lung cancer, as well as patients with chronic inflammatory diseases. The relative expression of miR-762, MST1, LATS2, YAP, TWIST1, and SMAD3 was determined in 50 lung cancer patients, 30 patients with chronic inflammatory diseases, and 20 healthy volunteers by real-time PCR. The levels of YAP protein and neuron-specific enolase were estimated by ELISA and electrochemiluminescence immunoassay, respectively. Compared to the control group, miR-762, YAP, TWIST1, and SMAD3 expression were significantly upregulated in lung cancer patients and chronic inflammatory patients, except SMAD3 was significantly downregulated in chronic inflammatory patients. MST1, LATS2, and YAP protein were significantly downregulated in all patients. MiR-762 has a significant negative correlation with MST1, LATS2, and YAP protein in lung cancer patients and with MST1 and LATS2 in chronic inflammatory patients. MiR-762 may be involved in the induction of malignant behaviors in lung cancer through suppression of the Hippo pathway. MiR-762, MST1, LATS2, YAP mRNA and protein, TWIST1, and SMAD3 may be effective diagnostic biomarkers in both lung cancer patients and chronic inflammatory patients. High YAP, TWIST1, SMA3 expression, and NSE level are associated with a favorable prognosis for lung cancer.
Collapse
Affiliation(s)
- Neveen A Hussein
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Samia A Ebid
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammad A Ahmad
- Clinical Pathology Department, Military Medical Academy, Cairo, Egypt
| | - Gamal E Khedr
- Clinical Pathology Department, Tanta Cancer Center, Tanta, Egypt
| | - Dina M Saad
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Gu Y, Ding C, Yu T, Liu B, Tang W, Wang Z, Tang X, Liang G, Peng J, Zhang X, Li Z. SIRT7 promotes Hippo/YAP activation and cancer cell proliferation in hepatocellular carcinoma via suppressing MST1. Cancer Sci 2024; 115:1209-1223. [PMID: 38288904 PMCID: PMC11006999 DOI: 10.1111/cas.16091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 04/12/2024] Open
Abstract
Abnormal activation of the oncogene YAP in the Hippo pathway is a major feature in liver cancer and inactivation of MST1/2 has been shown to be responsible for the overactivation of YAP that led to tumorigenesis. However, mechanisms underlying MST1/2 dysregulation remain poorly understood. RNA-seq analysis and genome (KEGG) pathway enrichment analysis were used to identify genes and pathways that were regulated by SIRT7. qRT-PCR, ChIP, and luciferase assay were used to investigate transcriptional regulation. Mass spectrometry, co-immunoprecipitation and immunoprecipitation were used to exam protein-protein interaction and post-transcriptional modification. A xenograft mouse model was used to confirm the effect of SIRT7 and SIRT7 inhibitors on hepatocellular carcinoma (HCC) proliferation in vivo. We found that SIRT7 suppresses MST1 by both transcriptional regulation and post-transcriptional modification, which in turn promotes YAP nuclear localization and transcriptional activation in liver cancer. Mechanistically, we revealed that SIRT7 suppresses MST1 transcription by binding to the MST1 promoter and inducing H3K18 deacetylation in its promoter region. In addition, SIRT7 directly binds to and deacetylates MST1, which primes acetylation-dependent MST1 ubiquitination and protein degradation. In clinical samples, we confirmed a negative correlation between SIRT7 and MST1 protein levels, and high SIRT7 expression correlated with elevated YAP expression and nuclear localization. In addition, SIRT7 specific inhibitor 2800Z sufficiently inhibited HCC growth by disrupting the SIRT7/MST1/YAP axis. Our data thus revealed the previously undescribed function of SIRT7 in regulating the Hippo pathway in HCC and further proved that targeting SIRT7 might provide novel therapeutic options for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Bohao Liu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Wenbin Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Xiaohui Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Xiangwen Zhang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| |
Collapse
|
4
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
5
|
Xu Y, Qu M, He Y, He Q, Shen T, Luo J, Tan D, Bao H, Xu C, Ji X, Hu X, Barkat MQ, Zeng LH, Wu X. Smurf1 polyubiquitinates on K285/K282 of the kinases Mst1/2 to attenuate their tumor-suppressor functions. J Biol Chem 2023; 299:105395. [PMID: 37890777 PMCID: PMC10696403 DOI: 10.1016/j.jbc.2023.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Sterile 20-like kinases Mst1 and Mst2 (Mst1/2) and large tumor suppressor 1/2 are core kinases to mediate Hippo signaling in maintaining tissue homeostasis. We have previously demonstrated that Smad ubiquitin (Ub) regulatory factor 1 (Smurf1), a HECT-type E3 ligase, ubiquitinates and in turn destabilizes large tumor suppressor 1/2 to induce the transcriptional output of Hippo signaling. Here, we unexpectedly find that Smurf1 interacts with and polyubiquitinates Mst1/2 by virtue of K27- and K29-linked Ub chains, resulting in the proteasomal degradation of Mst1/2 and attenuation of their tumor-suppressor functions. Among the potential Ub acceptor sites on Mst1/2, K285/K282 are conserved and essential for Smurf1-induced polyubiquitination and degradation of Mst1/2 as well as transcriptional output of Hippo signaling. As a result, K285R/K282R mutation of Mst1/2 not only negates the transcriptional output of Hippo signaling but enhances the tumor-suppressor functions of Mst1/2. Together, we demonstrate that Smurf1-mediated polyubiquitination on K285/K282 of Mst1/2 destabilizes Mst1/2 to attenuate their tumor-suppressor functions. Thus, the present study identifies Smurf1-mediated ubiquitination of Mst1/2 as a hitherto uncharacterized mechanism fine-tuning the Hippo signaling pathway and may provide additional targets for therapeutic intervention of diseases associated with this important pathway.
Collapse
Affiliation(s)
- Yana Xu
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Meiyu Qu
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Yangxun He
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiangqiang He
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingyu Shen
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahao Luo
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Tan
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangyang Bao
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyun Xu
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Ji
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Xinhua Hu
- Department of Clinical Pharmacology, The Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Muhammad Qasim Barkat
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China.
| | - Ximei Wu
- Department of Orthopaedics, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Jung J, Kim JW, Kim G, Kim JY. Low MST1/2 and negative LATS1/2 expressions are associated with poor prognosis of colorectal cancers. Pathol Res Pract 2023; 248:154608. [PMID: 37302275 DOI: 10.1016/j.prp.2023.154608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Mammalian STe20-like protein kinase 1/2 (MST1/2) and large tumor suppressor homolog 1/2 (LATS1/2) are the core components of the tumor-suppressive Hippo pathway. Dysregulation of this pathway is associated with the progression and metastasis of various cancers. However, MST1/2 and LATS1/2 expressions have not been systematically evaluated in colorectal cancers. We evaluated the clinicopathologic correlation and prognostic significance of MST1/2 and LATS1/2 immunohistochemical expressions in 327 colorectal cancer patients. Low MST1/2 expression, identified in 235 (71.9 %) cases, was significantly associated with poor differentiation (P = 0.018) and large size (P < 0.001) of the tumor. Negative LATS1/2 expression, identified in 226 (69.1 %) cases, was significantly correlated with low MST1/2 expression (P = 0.044). Low MST1/2 and negative LATS1/2 expressions were significantly associated with poor overall survivals (P = 0.015 and P = 0.038, respectively). Furthermore, the combined MST1/2lowLATS1/2negative expression group showed significantly worse overall survival than other groups (P = 0.003), and considered as an independent poor prognostic factor for colorectal cancer patients (hazard ratio = 1.720; 95 % confidence interval, 1.143-2.588; P = 0.009). Low MST1/2 and negative LATS1/2 expressions may serve as prognostic indicators in patients with colorectal cancer.
Collapse
Affiliation(s)
- Jiyoon Jung
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jeong Won Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Gilhyang Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Joo Young Kim
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Lee CS, Hwang G, Nam YW, Hwang CH, Song J. IKK-mediated TRAF6 and RIPK1 interaction stifles cell death complex assembly leading to the suppression of TNF-α-induced cell death. Cell Death Differ 2023; 30:1575-1584. [PMID: 37085671 PMCID: PMC10244383 DOI: 10.1038/s41418-023-01161-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Tumor necrosis factor α (TNF-α) is a pro-inflammatory cytokine capable of inducing extrinsic apoptosis and necroptosis. Tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ligase, is a member of the TRAF family of proteins, which mediates inflammatory signals by activating nuclear factor kappa B (NFкB) and mitogen-activated protein kinase (MAPK). Although the functions of TRAF6 have been identified, its role in TNF-α-induced cell death remains poorly understood. Here, we report that TRAF6 is a negative modulator of TNF-α-induced cell death but does not affect TNF-α-induced NFκB activation. TRAF6 deficiency accelerates both TNF-α-induced apoptosis and necroptosis; however, the acceleration can be reversed by reconstituting TRAF6 or TRAF6C70A, suggesting that E3 ligase activity is not required for this activity. Mechanistically, TRAF6 directly interacts with RIPK1 during TNF-α-induced cell death signaling, which prevents RIPK1 from interacting with components of the cell death complex such as itself, FADD or RIPK3. These processes suppress the assembly of the death complex. Notably, IKK was required for TRAF6 to interact with RIPK1. In vivo, Traf6-/- embryos exhibited higher levels of cell death in the liver but could be rescued by the simultaneous knockout of Tnf. Finally, TRAF6 knockdown xenografts were highly sensitive to necroptotic stimuli. We concluded that TRAF6 suppresses TNF-α-induced cell death in coordination with IKK complexes in vivo and in vitro by suppressing the assembly of cell death complex.
Collapse
Affiliation(s)
- Choong-Sil Lee
- Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Korea
| | - Gyuho Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Chi Hyun Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jaewhan Song
- Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Korea.
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
8
|
Huang Y, Yang S, Yu W, Gui L. Somatic nuclear auto-antigenic sperm protein sensitizes human breast cancer cells to 5-Fluorouracil. Cancer Chemother Pharmacol 2022; 89:559-564. [PMID: 35133490 DOI: 10.1007/s00280-021-04391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To assess the potential role of nuclear auto-antigenic sperm protein (NASP) in the cellular sensitivity to 5-Fluorouracil (5-FU) in breast cancer cells. METHODS The expression of two NASP isotypes, namely somatic NASP (sNASP) and testis NASP (tNASP) in breast cancer lines were detected under 5-FU treatment using real-time polymerase chain reaction and western blot assays. NASP effect on cellular viability and apoptosis under 5-FU treatment were evaluated. The interaction between NASP and its downstream proteins were evaluated using the co-immunoprecipitation (Co-IP) assays. RESULTS 5-FU significantly decreased the mRNA and protein expression levels of sNASP. Inhibition of sNASP increased cellular viability, colony formation ability, but reduced apoptosis in tested cell lines in response to 5-FU, which were reversed by sNASP over-expression. Further study reveals 5-FU disrupts sNASP/TNF receptor-associated factor 6 (TRAF6) complex, potentiates cellular sensitivity to 5-FU via NK-kB. CONCLUSION Our findings suggest sNASP is a novel molecular target having potential to overcome the resistance to 5-FU in breast cancer cells.
Collapse
Affiliation(s)
- Yanjing Huang
- Department of Medical Oncology, Hainan General Hospital Affiliated to Hainan Medical University, Haikou, 570311, Hainan, China
| | - Shenghui Yang
- Department of Medical Oncology, Hainan General Hospital Affiliated to Hainan Medical University, Haikou, 570311, Hainan, China
| | - Weiling Yu
- Department of Medical Oncology, Haikou City People's Hospital, Haikou, 570208, Hainan, China
| | - Ling Gui
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
RNF6 promotes the migration and invasion of breast cancer by promoting the ubiquitination and degradation of MST1. Exp Ther Med 2022; 23:118. [PMID: 34970341 PMCID: PMC8713179 DOI: 10.3892/etm.2021.11041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Ring finger protein 6 (RNF6), a member of E3 ubiquitin ligases, plays a potential role as a tumour promoter in numerous carcinomas. However, the role and expression of RNF6 in breast cancer (BC) remains to be elucidated. The present study showed that RNF6 upregulation was detected in BC tissues and was associated with short survival in patients with BC. Multivariate analysis also revealed that RNF6 overexpression is an independent predictor for poor outcome of patients with BC. Furthermore, migration and metastasis assay indicated that RNF6 silencing significantly inhibited the invasion and migration of BC cells in vivo and in vitro, and RNF6 suppression decreased YES-associated protein (YAP) expression. RNF6 promoted the metastatic ability of BC cells via YAP. Mechanistically, RNF6 interacts with mammalian STE20-like protein kinase 1 (MST1), a key factor that regulates YAP, and promoted its ubiquitination and degradation. Additionally, RNF6 regulated YAP signalling by promoting ubiquitination and degradation of MST1 in BC. Taken together, these data may highlight a role of RNF6 in BC, which could serve as a valuable prognostic indicator and potential therapeutic target for patients with BC.
Collapse
|
10
|
Huang H, Li X, Yu L, Liu L, Zhu H, Cao W, Sun Z, Yu X. Wogonoside inhibits TNF receptor-associated factor 6 (TRAF6) mediated-tumor microenvironment and prognosis of pancreatic cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1460. [PMID: 34734012 PMCID: PMC8506702 DOI: 10.21037/atm-21-4164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 11/06/2022]
Abstract
Background Pancreatic cancer (PC) is one of the worst prognostic cancers. Here, we probed the anti-cancer activity of wogonoside (Wog), a flavonoid isolated from Scutellaria baicalensis Georgi, on PC, as well as potential molecular mechanism. Methods Following Wog stimulation, the viability, proliferation, apoptosis, stem cell-like transition, and mesenchymal transition were detected in PC cells. Bioinformatics analysis was used to identify possible signaling pathways involved in the anti-PC activity of Wog. Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) was overexpressed and TRAF6 activator IL-1β was used in PC cells to confirm whether Wog exerted anti-PC activity via modulating TRAF6. In vivo, an experiment was conducted to further confirm our supposition. Results Wog inhibited PC cell proliferation, promoted cell apoptosis, limited PC cell stem cell-like transition and mesenchymal transition. TNF signaling pathway was activated in PC. Besides, Wog inactivated TRAF6/nuclear factor-kappa B (NF-κB)/p65 pathway in PC cells. TRAF6, vascular cell adhesion molecule-1 (VCAM1), CD44, and matrix metalloproteinase 14 (MMP14) expressions were upregulated in PC tissues and negatively correlated with PC survival and prognosis. Finally, Wog suppressed TRAF6 overexpression-induced PC cell stem cell-like transition and mesenchymal transition in vitro and tumor growth in vivo. Conclusions Wog exerted anti-cancer activity on PC and suppressed the TRAF6 mediated-tumor microenvironment of PC, thereby regulating PC's prognosis.
Collapse
Affiliation(s)
- Hui Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xia Li
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Liu
- Department of Cardiology, Second People's Hospital of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhongling Sun
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Chen N, Zheng Q, Wan G, Guo F, Zeng X, Shi P. Impact of posttranslational modifications in pancreatic carcinogenesis and treatments. Cancer Metastasis Rev 2021; 40:739-759. [PMID: 34342796 DOI: 10.1007/s10555-021-09980-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer (PC) is a highly aggressive cancer, with a 9% 5-year survival rate and a high risk of recurrence. In part, this is because PC is composed of heterogeneous subgroups with different biological and functional characteristics and personalized anticancer treatments are required. Posttranslational modifications (PTMs) play an important role in modifying protein functions/roles and are required for the maintenance of cell viability and biological processes; thus, their dysregulation can lead to disease. Different types of PTMs increase the functional diversity of the proteome, which subsequently influences most aspects of normal cell biology or pathogenesis. This review primarily focuses on ubiquitination, SUMOylation, and NEDDylation, as well as the current understanding of their roles and molecular mechanisms in pancreatic carcinogenesis. Additionally, we briefly summarize studies and clinical trials on PC treatments to advance our knowledge of drugs available to target the ubiquitination, SUMOylation, and NEDDylation PTM types. Further investigation of PTMs could be a critical field of study in relation to PC, as they have been implicated in the initiation and progression of many other types of cancer.
Collapse
Affiliation(s)
- Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
- Department of Cell Biology & University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guoqing Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China
| | - Feng Guo
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
12
|
Qiu Y, Huang D, Sheng Y, Huang J, Li N, Zhang S, Hong Z, Yin X, Yan J. Deubiquitinating enzyme USP46 suppresses the progression of hepatocellular carcinoma by stabilizing MST1. Exp Cell Res 2021; 405:112646. [PMID: 34029571 DOI: 10.1016/j.yexcr.2021.112646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
The deubiquitinating enzyme USP46 (ubiquitin-specific protease 46) is implicated in various cancers. However, its role and regulatory mechanism in HCC (hepatocellular carcinoma) are still unknown. In this study, we showed that USP46 is downregulated in HCC tissues and that low USP46 levels are associated with poor prognosis in HCC patients. In functional experiments, overexpression of USP46 impaired proliferation and metastasis of HCC cells, whereas knockdown of USP46 enhanced cell proliferation and invasiveness in vitro and in vivo. Furthermore, we found that USP46 suppresses HCC cell proliferation and metastasis by inhibiting YAP1. Ectopic expression of YAP1 rescued the inhibition of cell proliferation and metastasis caused by USP46 overexpression. Mechanistically, USP46 promotes the degradation of YAP1 by increasing expression of MST1, and the increase in MST1 protein antagonizes YAP1 to suppress HCC progression. Finally, we demonstrated that USP46 stabilizes the MST1 protein by directly binding to it and decreasing its ubiquitination. Taken together, our results demonstrated that USP46 may be a novel tumor suppressor in HCC. Moreover, USP46 acts as a deubiquitinating enzyme of MST1 to potentiate MST1 kinase activity to suppress tumor growth and metastasis, indicating that USP46 activation may represent a potential treatment strategy for HCC.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dan Huang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yanling Sheng
- Department of Ultrasound, The Affliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, 330006, China
| | - Jinshi Huang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Nuoya Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Zhengdong Hong
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiangbao Yin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
13
|
Li L, Yu Y, Zhang Z, Guo Y, Yin T, Wu H, Yang M. TRIM47 accelerates aerobic glycolysis and tumor progression through regulating ubiquitination of FBP1 in pancreatic cancer. Pharmacol Res 2021; 166:105429. [PMID: 33529753 DOI: 10.1016/j.phrs.2021.105429] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 01/26/2023]
Abstract
Increasing studies demonstrated that ubiquitination plays a vital role in the pathogenesis of pancreatic cancer, and targeting regulation of the ubiquitination process is a potential means for cancer treatment. However, the role of tripartite motif 47 (TRIM47) in pancreatic cancer is still unclear. Here, significantly upregulated TRIM47 and decreased FBP1 expressions were found in pancreatic cancer patient tissues and pointed to a lower survival rate. In addition, we show that TRIM47 was upregulated in pancreatic cancer cells and promoted cell proliferation in vitro and in vivo. Mechanistic investigations showed that TRIM47 promoted the aerobic glycolysis of pancreatic cancer cells, which was largely dependent on the direct binding to and ubiquitination of fructose-1, 6-biphosphatase (FBP1). Furthermore, the promotion of TRIM47 on the Warburg effect and pancreatic cancer progression was abolished by the overexpression of FBP1. Therefore, targeting TRIM47/FBP1 axis might provide a novel strategy to suppress the development of pancreatic cancer.
Collapse
Affiliation(s)
- Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhengle Zhang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Yang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Jin X, Zhu L, Xiao S, Cui Z, Tang J, Yu J, Xie M. MST1 inhibits the progression of breast cancer by regulating the Hippo signaling pathway and may serve as a prognostic biomarker. Mol Med Rep 2021; 23:383. [PMID: 33760220 PMCID: PMC7986037 DOI: 10.3892/mmr.2021.12022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BCa) is the most common malignancy threatening the health of women worldwide, and the incidence rate has significantly increased in the last 10 years. Mammalian STE20-like protein kinase 1 (MST1) is involved in the development of various types of malignant tumor. The present study aimed to investigate the role of MST1 in BCa and its potential involvement in the poor prognosis of patients with BCa. Reverse transcription-quantitative PCR and immunohistochemistry were used to analyze the expression levels of MST1 in BCa, and the clinicopathological characteristics and prognosis of patients with BCa were further analyzed by statistical analysis. MST1 was overexpressed in BCa cell lines (MCF-7, MDA-MB-231 and SKBR3). Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine and flow cytometry assays were used to analyze cell proliferation and apoptosis, respectively, and a wound healing assay was used to analyze cell migration. The results of the present study revealed that the downregulated expression levels of MST1 in BCa were closely associated with the poor prognosis of patients, and MST1 may be an independent risk factor for BCa. The overexpression of MST1 significantly inhibited the proliferation and migration, and promoted the apoptosis of BCa cells. In addition, the overexpression of MST1 significantly activated the Hippo signaling pathway. Treatment with XMU-MP-1 downregulated the expression levels of MST1 and partially reversed the inhibitory effects of MST1 on proliferation, migration and apoptosis-related proteins, and inhibited the Hippo signaling pathway. In conclusion, the results of the present study suggested that MST1 expression levels may be downregulated in BCa and closely associated with tumor size and clinical stage, as well as the poor prognosis of affected patients. Furthermore, MST1 may inhibit the progression of BCa by targeting the Hippo signaling pathway.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Lihua Zhu
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Sheng Xiao
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Zhuhong Cui
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Jing Tang
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Jiangyong Yu
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Mingjun Xie
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| |
Collapse
|
15
|
ALKBH5 suppresses tumor progression via an m 6A-dependent epigenetic silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma. Cell Death Dis 2021; 12:60. [PMID: 33431791 PMCID: PMC7801648 DOI: 10.1038/s41419-020-03315-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023]
Abstract
ALKBH5 is the main enzyme for m6A-based demethylation of RNAs and it has been implicated in many biological and pathophysiological processes. Here, we aimed to explore the potential involvement of ALKBH5 in osteosarcoma and decipher the underlying cellular/molecular mechanisms. We discovered downregulated levels of demethylase ALKBH5 were correlated with increased m6A methylation in osteosarcoma cells/tissues compared with normal osteoblasts cells/tissues. ALKBH5 overexpression significantly suppressed osteosarcoma cell growth, migration, invasion, and trigged cell apoptosis. In contrast, inhibition of ALKBH5 produced the opposite effects. Whereas ALKBH5 silence enhanced m6A methylations of pre-miR-181b-1 and YAP-mRNA exerting oncogenic functions in osteosarcoma. Moreover, upregulation of YAP or downregulation of mature miR-181b-5p displayed a remarkable attenuation of anti-tumor activities caused by ALKBH5. Further results revealed that m6A methylated pre-miR-181b-1 was subsequently recognized by m6A-binding protein YTHDF2 to mediate RNA degradation. However, methylated YAP transcripts were recognized by YTHDF1 to promote its translation. Therefore, ALKBH5-based m6A demethylation suppressed osteosarcoma cancer progression through m6A-based direct/indirect regulation of YAP. Thus, ALKBH5 overexpression might be considered a new approach of replacement therapy for osteosarcoma treatment.
Collapse
|
16
|
Zhu G, Cheng Z, Lin C, Wang Q, Huang Y, Zheng W, Yang S, Ye J. The Effects of TRAF6 on Growth and Progression in Colorectal Cancer are Regulated by miRNA-140. Onco Targets Ther 2020; 13:11991-12001. [PMID: 33244241 PMCID: PMC7685390 DOI: 10.2147/ott.s257733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background and Aim Some studies have confirmed that miRNA-140 exhibits a suppressive role in gastric cancer, Wilms’ tumor. However, the function of miRNA-140 in colorectal cancer has not been completely elucidated. The present study aims to verify TRAF6 as the targeted gene by miRNA-140 which was investigated in colorectal cancer tissues and cells, and its effects on the biological characteristics of colorectal cancer cells were determined, in order to provide an experimental and theoretical basis for the application of TRAF6 in the treatment of colorectal cancer. Methods qPCR analyzed miRNA-140 expression levels in colorectal cancer tissues, normal colorectal cancer tissues and colorectal cells including SW480 and HCT116 cancer cells and FHC normal colorectal epithetical cells. A serial biological experiment analyzed miRNA-140 effects on cell proliferation, migration and invasion capacities in SW480 and HCT116 cells. miRNA targeting gene prediction and a dual luciferase assay were used to analyze miRNA-140-targeted TRAF6. qPCR and Western blot analyzed miRNA-140 effects on the mRNA and protein expression of TRAF6. Western blot analyzed miRNA-140 effects on NF-κB/c-jun signaling pathways. Animal studies were performed to investigate the effects of miRNA-140 on colorectal cancer implantation tumor growth. Immunohistochemistry analyzed TRAF6 expression in animal experimentation tumors. Results miRNA-140 expression is lower in colorectal cancer tissues and colorectal cancer cells. Over-expression of miRNA-140 inhibited the proliferation, migration and invasion capacities of colorectal cancer cells. miRNA-140 targeted the TRAF6 mRNA 3ʹUTR area and decreased TRAF6 protein expression. miRNA-140 suppressed p-NF-κB/p-c-jun proteins expression. miRNA-140 inhibited colorectal cancer implantation tumor growth in the mice model. Conclusion miRNA-140 targeting TRAF6 affects the progression and growth of colorectal cancer, the mechanism could be miRNA-140 decreasing the TRAF6 expression effects on the NF-κB/c-jun signaling pathways.
Collapse
Affiliation(s)
- Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Zhibin Cheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Qin Wang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Wei Zheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou 350005, People's Republic of China
| |
Collapse
|
17
|
He G, Yao W, Li L, Wu Y, Feng G, Chen L. LOXL1-AS1 contributes to the proliferation and migration of laryngocarcinoma cells through miR-589-5p/TRAF6 axis. Cancer Cell Int 2020; 20:504. [PMID: 33061856 PMCID: PMC7552551 DOI: 10.1186/s12935-020-01565-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background LOXL1-AS1 is a long non-coding RNA (lncRNA) that plays crucial roles in various cancers. However, the functional role of LOXL1-AS1 in laryngocarcinoma remains unclear. Thus we planned to probe into the function and underlying mechanism of LOXL1-AS1 in laryngocarcinoma. Methods Gene expression was evaluated in laryngocarcinoma cells using RT-qPCR. The ability of cell proliferation and migration was assessed by CCK8, colony formation, wound healing and transwell assays. The interaction among LOXL1-AS1, miR-589-5p and TRAF6 was detected by Ago2-RIP, RNA pull down and luciferase reporter assays. Results LOXL1-AS1 was overexpressed in laryngocarcinoma cells. Silencing of LOXL1-AS1 suppressed cell proliferation, migration and EMT in laryngocarcinoma. Moreover, miR-589-5p, the downstream of LOXL1-AS1, directly targeted TRAF6 in laryngocarcinoma. Importantly, LOXL1-AS1 augmented TRAF6 expression in laryngocarcinoma cells by sequestering miR-589-5p. Besides, miR-589-5p worked as a tumor-inhibitor while TRAF6 functioned as a tumor-facilitator in laryngocarcinoma. Of note, rescue experiments both in vitro and in vivo validated that LOXL1-AS1 aggravated the malignancy in laryngocarcinoma by targeting miR-589-5p/TRAF6 pathway. Conclusions LOXL1-AS1 promotes the proliferation and migration of laryngocarcinoma cells through absorbing miR-589-5p to upregulate TRAF6 expression.
Collapse
Affiliation(s)
- Guijun He
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Wenfeng Yao
- Department of Otolaryngology, The First People's Hospital of Xinxiang City, Xinxiang, 453000 Henan China
| | - Liang Li
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Yang Wu
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Guojian Feng
- Department of Otolaryngology and Head and Neck Surgery, Lianyungang Second People's Hospital, Lianyungang, 222023 Jiangsu China
| | - Li Chen
- Department of Otorhinolaryngology, Zaozhuang Municipal Hospital, No. 41, Longtou Middle Road, Shizhong District, Zaozhuang, 277100 Shandong China
| |
Collapse
|
18
|
Abstract
Tumor necrosis factor receptor (TNFR)-related factors (TRAFs) are important linker molecules in the tumor necrosis factor superfamily (TNFSF) and the Toll-like/interleukin-1 receptor (TLR/ILR) superfamily. There are seven members: TRAF1-TRAF7, among those members, tumor necrosis factor receptor-associated factor 6 (TRAF6) is upregulated in various tumors, which has been related to tumorigenesis and development. With the in-depth study of the relationship between TRAF6 and different types of tumors, TRAF6 has oncogenic characteristics involved in tumorigenesis, tumor development, invasion, and metastasis through various signaling pathways, therefore, targeting TRAF6 has provided a novel strategy for tumor treatment. This review summarizes and analyzes the role of TRAF6 in tumorigenesis and tumor development in combination with the current research on TRAF6 and tumors.
Collapse
|
19
|
Guo F, Wang W, Song Y, Wu L, Wang J, Zhao Y, Ma X, Ji H, Liu Y, Li Z, Qin G. LncRNA SNHG17 knockdown promotes Parkin-dependent mitophagy and reduces apoptosis of podocytes through Mst1. Cell Cycle 2020; 19:1997-2006. [PMID: 32627655 PMCID: PMC7469517 DOI: 10.1080/15384101.2020.1783481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 10/23/2022] Open
Abstract
LncRNAs play important roles in the regulation of podocyte apoptosis in diabetic nephropathy (DN). However, the role of lncRNA SNHG17 in controlling mitophagy-induced apoptosis of podocytes in DN is unknown. This study aims to elucidate the underlying mechanism of lncRNA SNHG17 in the regulation of mitophagy-induced apoptosis of podocytes in DN. LncRNA SNHG17 and Mammalian Sterile 20-like kinase 1 (Mst1) expression were upregulated in glomeruli and podocytes of DM mice and high glucose-treated podocytes, whereas Parkin expression was downregulated. LncRNA SNHG17 overexpression suppressed mitophagy and induced apoptosis of podocytes while silencing lncRNA SNHG17 promoted mitophagy and reduced the apoptosis of podocytes. In addition, lncRNA SNHG17 interacted with Mst1 and regulated the degradation of Mst1. We further found lncRNA SNHG17 regulated Parkin expression through Mst1. Mechanistically, lncRNA SNHG17 regulated Parkin-dependent mitophagy and apoptosis of podocytes through regulating Mst1. Finally, silencing lncRNA SNHG17 promoted mitophagy and relieved DNin vivo. In conclusion, lncRNA SNHG17 knockdown promotes Parkin-dependent mitophagy and reduces apoptosis of podocytes through regulating the degradation of Mst1.
Collapse
Affiliation(s)
- Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weimin Wang
- Division of Hematology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongfei Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanling Liu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhizhen Li
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Hu Y, Wang B, Wang L, Wang Z, Jian Z, Deng L. Mammalian STE20‑like kinase 1 regulates pancreatic cancer cell survival and migration through Mfn2‑mediated mitophagy. Mol Med Rep 2020; 22:398-404. [PMID: 32377725 PMCID: PMC7248474 DOI: 10.3892/mmr.2020.11098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian STE20-like kinase 1 (MST1) plays an important role in pancreatic cancer progression, but its downstream targets are still unknown. In the present study, our results indicated that MST1 expression was significantly downregulated in pancreatic cancer cell lines (PANC‑1, BxPC‑3 and HPAC) compared with that in the normal ductal epithelial cell line (hTERT‑HPNE). Moreover, MST1 overexpression in PANC‑1 cells led to increased apoptosis as determined by MTT and TUNEL assays and inhibited cellular migration. Mechanistically, upregulation of MST1 expression caused mitochondrial dysfunction, decreased ATP production, and activation of the mitochondrial‑dependent apoptotic pathway via inhibition of mitofusin 2 (Mfn2)‑mediated mitophagy, which ultimately resulted in increased cellular apoptosis and decreased cellular migration. Collectively, the present study demonstrated that MST1 may regulate pancreatic cancer PANC‑1 cell survival, invasion and migration through Mfn2‑mediated mitophagy, laying the foundation for the exploration of novel therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Yongli Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Bing Wang
- Department of General Surgery, 900th Hospital of the Joint Service Support Force of the PLA, Fuzhou, Fujian 350000, P.R. China
| | - Lie Wang
- Department of General Surgery, 900th Hospital of the Joint Service Support Force of the PLA, Fuzhou, Fujian 350000, P.R. China
| | - Zhenran Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Zhiyuan Jian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Lin Deng
- Department of General Surgery, 900th Hospital of the Joint Service Support Force of the PLA, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
21
|
|
22
|
Zhao S, Jiang J, Jing Y, Liu W, Yang X, Hou X, Gao L, Wei L. The concentration of tumor necrosis factor-α determines its protective or damaging effect on liver injury by regulating Yap activity. Cell Death Dis 2020; 11:70. [PMID: 31988281 PMCID: PMC6985193 DOI: 10.1038/s41419-020-2264-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Previous studies have shown that tumor necrosis factor (TNF)-α is a mediator of hepatotoxicity in liver injury. Moreover, TNF-α has also been reported to have a protective effect in liver regeneration, yet the function of TNF-α during liver injury remains controversial. Here, we report that the concentration of TNF-α determines its functions. High concentrations of TNF-α could aggravate LPS-induced liver injury. However, the TNF-α level was unchanged during APAP-induced liver injury, which exerted a protective effect. We expected that the concentration of TNF-α may affect its function. To test this hypothesis, TNF-α−/− rats or hepatocyte cells were treated with different concentrations of TNF-α. We found low TNF-α could reduce the levels of ALT and AST in the plasma of TNF-α−/− rats and promote the proliferation of hepatocyte cells. However, the levels of ALT and AST increased gradually with increasing TNF-α concentration after reaching the lowest value. Moreover, we showed that TNF-α affects the cell proliferation and cell death of hepatocytes by regulating Yap activity. Low TNF-α promoted Yap1 nuclear translocation, triggering the proliferation of hepatocytes. However, high TNF-α triggered the phosphorylation and inactivation of Yap1, preventing its nuclear import and consequently promoting cell death. Collectively, our findings provide novel evidence that the concentration of TNF-α is an important factor affecting its function in liver injury, which may provide a reference for the clinical treatment of liver injury.
Collapse
Affiliation(s)
- Shanmin Zhao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China.,Laboratory Animal Center of Second Military Medical University, Shanghai, 200433, China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Yingying Jing
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Wenting Liu
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Xiaojuan Hou
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|