1
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025; 999:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations and clinical observations to provide a comprehensive view of the mechanisms causing pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis, delineating approaches for treatment of SSc patients by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128, Trieste, Italy; Public Health Unit, University Health Agency Giuliano-Isontina (ASUGI), 34148, Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
2
|
Shan N, Shang Y, He Y, Wen Z, Ning S, Chen H. Common biomarkers of idiopathic pulmonary fibrosis and systemic sclerosis based on WGCNA and machine learning. Sci Rep 2025; 15:610. [PMID: 39753882 PMCID: PMC11699037 DOI: 10.1038/s41598-024-84820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Interstitial lung disease (ILD) is known to be a major complication of systemic sclerosis (SSc) and a leading cause of death in SSc patients. As the most common type of ILD, the pathogenesis of idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. In this study, weighted correlation network analysis (WGCNA), protein‒protein interaction, Kaplan-Meier curve, univariate Cox analysis and machine learning methods were used on datasets from the Gene Expression Omnibus database. CCL2 was identified as a common characteristic gene of IPF and SSc. The genes associated with CCL2 expression in both diseases were enriched mainly in chemokine-related pathways and lipid metabolism-related pathways according to Gene Set Enrichment Analysis. Single-cell RNA sequencing (sc-RNAseq) revealed a significant difference in CCL2 expression in alveolar epithelial type 1/2 cells, mast cells, ciliated cells, club cells, fibroblasts, M1/M2 macrophages, monocytes and plasma cells between IPF patients and healthy donors. Statistical analyses revealed that CCL2 was negatively correlated with lung function in IPF patients and decreased after mycophenolate mofetil (MMF) treatment in SSc patients. Finally, we identified CCL2 as a common biomarker from IPF and SSc, revealing the common mechanism of these two diseases and providing clues for the study of the treatment and mechanism of these two diseases.
Collapse
Affiliation(s)
- Ning Shan
- Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu Shang
- The Second Hospital of Heilongjiang Province, Harbin, Heilongjiang Province, China
| | - Yaowu He
- Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhe Wen
- Harbin Medical University, Harbin, Heilongjiang Province, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shangwei Ning
- Harbin Medical University, Harbin, Heilongjiang Province, China.
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Hong Chen
- Harbin Medical University, Harbin, Heilongjiang Province, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
3
|
Kang L, Li Z, Li F, Li Z, Wang L, Li T, Xiang J, Tseng S, Yu N, Huang J, Long X. Transcriptome and Proteome Analysis Identify Decorin as a Principal Antifibrotic Component Trapping TGF‐ β1 Within Adipose‐Derived Stem Cell Secretome. Stem Cells Int 2025; 2025. [PMID: 40386129 PMCID: PMC12084782 DOI: 10.1155/sci/1416567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/15/2025] [Indexed: 06/05/2025] Open
Abstract
Adipose‐derived stem cells (ADSCs) demonstrated therapeutic potential in various fibrotic diseases, with their paracrine proteins playing a crucial role. Nonetheless, the principal paracrine factors of ADSCs responsible for antifibrosis have not yet been well identified. To address this issue, we initially confirmed that ADSCs could attenuate fibrosis and suppress TGF‐β1 in bleomycin‐induced skin fibrosis mouse models. RNA‐sequencing of the cocultured fibroblasts demonstrated that ADSCs effectively inhibited the TGF‐β/Smad2 signaling pathway in fibroblasts through the paracrine approach. Proteomic analysis of the cell supernatant (CS) demonstrated a significant upregulation of 97 proteins in the secretome of ADSCs, among which decorin (DCN) exhibited a particularly elevated level of overexpression. Protein–protein interaction (PPI) network analysis indicated a strong correlation between DCN and TGF‐β1, with DCN effectively trapping TGF‐β1 through core protein binding. Cell experiments demonstrated that DCN could effectively inhibit TGF‐β1‐induced fibroblast proliferation. Therefore, it was concluded that DCN was a crucial protein in ADSC secretome that exerted antifibrotic effects by inhibiting TGF‐β1. This study conducted an in‐depth insight into the paracrine function of ADSCs through transcriptome and proteome analysis, identifying DCN as an essential paracrine factor mediating the antifibrotic effect of ADSCs, which could provide valuable theoretical support for the use of ADSC secretions as well as DCN in the treatment of fibrotic diseases.
Collapse
|
4
|
Tobal R, Potjewijd J, de Vries F, van Doorn DPC, Jaminon A, Bittner R, Akbulut C, van Empel V, Heeringa P, Damoiseaux J, Schurgers L, van Paassen P. Dephosphorylated uncarboxylated Matrix-Gla-Protein as candidate biomarker for immune-mediated vascular remodeling and prognosis in pulmonary hypertension. Sci Rep 2024; 14:26633. [PMID: 39496657 PMCID: PMC11535036 DOI: 10.1038/s41598-024-77000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by pulmonary vascular remodeling. Since dephosphorylated-uncarboxylated Matrix Gla-Protein (dp-ucMGP) is associated with cardiovascular mortality in systemic sclerosis, a disease associated with PAH, and immune-system involvement in PAH is increasingly recognized, we investigated the relationship between dp-ucMGP, vascular remodeling and soluble immune-checkpoint proteins in PAH. This prospective cohort study included patients with idiopathic (I)PAH, connective tissue disease (CTD)-PAH, chronic thrombo-embolic PH (CTEPH) and CTD patients without PAH. Patients with IPAH and CTD-PAH were stratified by clinical signs of immune-mediated inflammatory disease (IMID). We measured dp-ucMGP plasma levels, soluble immune-checkpoint proteins (sICPs), and vascular smooth muscle cell (iVSMC) calcification. We found elevated dp-ucMGP levels in all PAH subtypes and CTD patients compared to healthy controls. PAH patients showed increased iVSMC calcification, but no direct correlation was found with dp-ucMGP. IMID-PAH patients had higher dp-ucMGP levels than non-IMID PAH patients. dp-ucMGP correlated with several sICPs in both IPAH and CTD patients; multiple sICPs were elevated in IMID PAH patients. High dp-ucMGP levels in IPAH patients were associated with worse survival. Our findings suggest dp-ucMGP as a potential biomarker of immune-mediated vascular remodeling in PAH. Hence, dp-ucMGP, could help identify PAH patients who might benefit from immunosuppressive therapies.
Collapse
Affiliation(s)
- R Tobal
- Department of Internal Medicine, Division of Clinical and Experimental Immunology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - J Potjewijd
- Department of Internal Medicine, Division of Clinical and Experimental Immunology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - F de Vries
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - D P C van Doorn
- Department of Internal Medicine, Division of Clinical and Experimental Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Jaminon
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - R Bittner
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - C Akbulut
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - V van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - J Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L Schurgers
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - P van Paassen
- Department of Internal Medicine, Division of Clinical and Experimental Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
5
|
Wang X, Guo J, Dai Q. Mesenchymal stem cell-derived extracellular vesicles in systemic sclerosis: role and therapeutic directions. Front Cell Dev Biol 2024; 12:1492821. [PMID: 39483335 PMCID: PMC11524835 DOI: 10.3389/fcell.2024.1492821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease with clinical symptoms of vascular damage, immune disorders, and fibrosis, presenting significant treatment challenges and limited therapeutic options. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been demonstrated in numerous studies as more effective than MSCs in treating autoimmune diseases. Recent studies demonstrate that MSC-EVs can significantly ameliorate the symptoms of SSc and mitigate pathological changes such as vascular injury, immune dysregulation, and fibrosis. These findings underscore the promising therapeutic potential of MSC-EVs in the treatment of SSc. MSC-EVs promote angiogenesis, modulate immune dysfunction, and combat fibrosis. This article summarizes the therapeutic applications and possible mechanisms of MSC-EVs for SSc, thereby offering a novel therapeutic direction for the treatment of SSc.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jiaying Guo
- Department of Geriatric Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangfu Dai
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
6
|
Zhou Y, Ling T, Shi W. Current state of signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2024; 25:245. [PMID: 38886743 PMCID: PMC11184855 DOI: 10.1186/s12931-024-02878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) represents a chronic and progressive pulmonary disorder distinguished by a notable mortality rate. Despite the elusive nature of the pathogenic mechanisms, several signaling pathways have been elucidated for their pivotal roles in the progression of this ailment. This manuscript aims to comprehensively review the existing literature on the signaling pathways linked to the pathogenesis of IPF, both within national and international contexts. The objective is to enhance the comprehension of the pathogenic mechanisms underlying IPF and offer a scholarly foundation for the advancement of more efficacious therapeutic strategies, thereby fostering research and clinical practices within this domain.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Tingting Ling
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Weihong Shi
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China.
| |
Collapse
|
7
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 216] [Impact Index Per Article: 216.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Muruganandam M, Ariza-Hutchinson A, Patel RA, Sibbitt WL. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J Inflamm Res 2023; 16:4633-4660. [PMID: 37868834 PMCID: PMC10590076 DOI: 10.2147/jir.s379815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vascular damage, vasoinstability, and decreased perfusion with ischemia, inflammation, and exuberant fibrosis of the skin and internal organs. Biomarkers are analytic indicators of the biological and disease processes within an individual that can be accurately and reproducibly measured. The field of biomarkers in SSc is complex as recent studies have implicated at least 240 pathways and dysregulated proteins in SSc pathogenesis. Anti-nuclear antibodies (ANA) are classical biomarkers with well-described clinical classifications and are present in more than 90% of SSc patients and include anti-centromere, anti-Th/To, anti-RNA polymerase III, and anti-topoisomerase I antibodies. Transforming growth factor-β (TGF-β) is central to the fibrotic process of SSc and is intimately intertwined with other biomarkers. Tyrosine kinases, interferon-1 signaling, IL-6 signaling, endogenous thrombin, peroxisome proliferator-activated receptors (PPARs), lysophosphatidic acid receptors, and amino acid metabolites are new biomarkers with the potential for developing new therapeutic agents. Other biomarkers implicated in SSc-ILD include signal transducer and activator of transcription 4 (STAT4), CD226 (DNAX accessory molecule 1), interferon regulatory factor 5 (IRF5), interleukin-1 receptor-associated kinase-1 (IRAK1), connective tissue growth factor (CTGF), pyrin domain containing 1 (NLRP1), T-cell surface glycoprotein zeta chain (CD3ζ) or CD247, the NLR family, SP-D (surfactant protein), KL-6, leucine-rich α2-glycoprotein-1 (LRG1), CCL19, genetic factors including DRB1 alleles, the interleukins (IL-1, IL-4, IL-6, IL-8, IL-10 IL-13, IL-16, IL-17, IL-18, IL-22, IL-32, and IL-35), the chemokines CCL (2,3,5,13,20,21,23), CXC (8,9,10,11,16), CX3CL1 (fractalkine), and GDF15. Adiponectin (an indicator of PPAR activation) and maresin 1 are reduced in SSc patients. A new trend has been the use of biomarker panels with combined complex multifactor analysis, machine learning, and artificial intelligence to determine disease activity and response to therapy. The present review is an update of the various biomarker molecules, pathways, and receptors involved in the pathology of SSc.
Collapse
Affiliation(s)
- Maheswari Muruganandam
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Angie Ariza-Hutchinson
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rosemina A Patel
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Wilmer L Sibbitt
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
9
|
Di Maggio G, Confalonieri P, Salton F, Trotta L, Ruggero L, Kodric M, Geri P, Hughes M, Bellan M, Gilio M, Lerda S, Baratella E, Confalonieri M, Mondini L, Ruaro B. Biomarkers in Systemic Sclerosis: An Overview. Curr Issues Mol Biol 2023; 45:7775-7802. [PMID: 37886934 PMCID: PMC10604992 DOI: 10.3390/cimb45100490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by significant fibrosis of the skin and internal organs, with the main involvement of the lungs, kidneys, heart, esophagus, and intestines. SSc is also characterized by macro- and microvascular damage with reduced peripheral blood perfusion. Several studies have reported more than 240 pathways and numerous dysregulation proteins, giving insight into how the field of biomarkers in SSc is still extremely complex and evolving. Antinuclear antibodies (ANA) are present in more than 90% of SSc patients, and anti-centromere and anti-topoisomerase I antibodies are considered classic biomarkers with precise clinical features. Recent studies have reported that trans-forming growth factor β (TGF-β) plays a central role in the fibrotic process. In addition, interferon regulatory factor 5 (IRF5), interleukin receptor-associated kinase-1 (IRAK-1), connective tissue growth factor (CTGF), transducer and activator of transcription signal 4 (STAT4), pyrin-containing domain 1 (NLRP1), as well as genetic factors, including DRB1 alleles, are implicated in SSc damage. Several interleukins (e.g., IL-1, IL-6, IL-10, IL-17, IL-22, and IL-35) and chemokines (e.g., CCL 2, 5, 23, and CXC 9, 10, 16) are elevated in SSc. While adiponectin and maresin 1 are reduced in patients with SSc, biomarkers are important in research but will be increasingly so in the diagnosis and therapeutic approach to SSc. This review aims to present and highlight the various biomarker molecules, pathways, and receptors involved in the pathology of SSc.
Collapse
Affiliation(s)
- Giuseppe Di Maggio
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Liliana Trotta
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Luca Ruggero
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Metka Kodric
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Pietro Geri
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Michael Hughes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester M6 8HD, UK;
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Center for Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale (UPO), 28100 Novara, Italy
- Department of Medicine, Azienda Ospedaliero–Universitaria, Maggiore della Carità, 28100 Novara, Italy
| | - Michele Gilio
- Infectious Disease Unit, San Carlo Hospital, 85100 Potenza, Italy
| | - Selene Lerda
- Graduate School, University of Milan, 20149 Milano, Italy
| | - Elisa Baratella
- Department of Radiology, Cattinara Hospital, University of Trieste, 34149 Trieste, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Lucrezia Mondini
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Healt Sciencies, Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (G.D.M.); (M.K.); (P.G.); (L.M.)
| |
Collapse
|
10
|
Lomeli-Nieto JA, Muñoz-Valle JF, Navarro-Zarza JE, Baños-Hernández CJ, García-Arellano S, Alvarado-Navarro A, Anaya-Macías BU, Oregón-Romero E, Fuentes-Baez CE, Parra-Rojas I, Hernández-Bello J. TGFB1 mRNA expression and frequency of the + 869T>C and + 915G>C genetic variants: impact on risk for systemic sclerosis. Clin Exp Med 2023; 23:1349-1357. [PMID: 36464760 DOI: 10.1007/s10238-022-00966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Systemic Sclerosis (SSc) is a chronic autoimmune disease characterized by immune disorder, microvascular damage, and fibrosis. TGFB1 gene encodes for the transforming growth factor isoform 1 (TGF-β1), one of the most important pro-fibrotic cytokines. Therefore, variants in TGFB1 and changes in its expression could be associated with the pathogenesis of SSc. We aimed to evaluate the association of TGFB1 variants (+ 869T>C [rs1982073] and + 915G > C [rs1800471]) with the TGFB1 mRNA expression and SSc risk in the Southern Mexican population. We included 56 SSc patients and 112 control subjects (CS). The genetic variants were determined by the PCR-RFLP method. The TGFB1 mRNA expression was determined by qPCR. For the + 869T>C variant, the C allele was associated with SSc risk (OR = 1.733; CI = 1.087-2.762; p = 0.020). The C allele for the + 915G>C variant was also associated with SSc risk (OR = 11.168; CI = 1.289-96.754; p = 0.023). The relative expression of TGFB1 mRNA was 1.77-fold lower in SSc patients than in CS. Carriers of polymorphic alleles (TC or CC genotypes) for the + 869T>C variant showed 3.7-fold lower mRNA expression than the TT genotype in patients and 4.81-fold lower in CS. For the + 915G>C variant, patients with GA genotype had 1.78-fold lower mRNA expression than GG genotype carriers. In conclusion, the present study showed that + 869T>C and + 915G>C variants could be SSc risk factors for patients from Southern Mexico, and these genetic variants could induce lower mRNA expression of TGFB1.
Collapse
Affiliation(s)
- José Alvaro Lomeli-Nieto
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, 44340, Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, 44340, Guadalajara, Jalisco, Mexico
| | - José Eduardo Navarro-Zarza
- Departamento de Medicina Interna-Servicio de Reumatología, Hospital General de Chilpancingo "Dr. Raymundo Abarca Alarcón", Chilpancingo de los Bravo, Guerrero, Mexico
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, 44340, Guadalajara, Jalisco, Mexico
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, 44340, Guadalajara, Jalisco, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Brian Uriel Anaya-Macías
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, 44340, Guadalajara, Jalisco, Mexico
| | - Edith Oregón-Romero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, 44340, Guadalajara, Jalisco, Mexico
| | - Carlos Eduardo Fuentes-Baez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, 44340, Guadalajara, Jalisco, Mexico
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, 44340, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
11
|
Bale S, Verma P, Yalavarthi B, Scarneo SA, Hughes P, Amin MA, Tsou PS, Khanna D, Haystead TA, Bhattacharyya S, Varga J. Pharmacological inhibition of TAK1 prevents and induces regression of experimental organ fibrosis. JCI Insight 2023; 8:e165358. [PMID: 37306632 PMCID: PMC10443806 DOI: 10.1172/jci.insight.165358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Multiorgan fibrosis in systemic sclerosis (SSc) accounts for substantial mortality and lacks effective therapies. Lying at the crossroad of TGF-β and TLR signaling, TGF-β-activated kinase 1 (TAK1) might have a pathogenic role in SSc. We therefore sought to evaluate the TAK1 signaling axis in patients with SSc and to investigate pharmacological TAK1 blockade using a potentially novel drug-like selective TAK1 inhibitor, HS-276. Inhibiting TAK1 abrogated TGF-β1 stimulation of collagen synthesis and myofibroblasts differentiation in healthy skin fibroblasts, and it ameliorated constitutive activation of SSc skin fibroblasts. Moreover, treatment with HS-276 prevented dermal and pulmonary fibrosis and reduced the expression of profibrotic mediators in bleomycin-treated mice. Importantly, initiating HS-276 treatment even after fibrosis was already established prevented its progression in affected organs. Together, these findings implicate TAK1 in the pathogenesis of SSc and identify targeted TAK1 inhibition using a small molecule as a potential strategy for the treatment of SSc and other fibrotic diseases.
Collapse
Affiliation(s)
- Swarna Bale
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Philip Hughes
- EydisBio Inc., Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - M. Asif Amin
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pei-Suen Tsou
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dinesh Khanna
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy A.J. Haystead
- EydisBio Inc., Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Swati Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Farina N, Campochiaro C, Lescoat A, Benanti G, De Luca G, Khanna D, Dagna L, Matucci-Cerinic M. Drug development and novel therapeutics to ensure a personalized approach in the treatment of systemic sclerosis. Expert Rev Clin Immunol 2023; 19:1131-1142. [PMID: 37366065 DOI: 10.1080/1744666x.2023.2230370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a systemic disease encompassing autoimmunity, vasculopathy, and fibrosis. SSc is still burdened by high mortality and morbidity rates. Recent advances in understanding the pathogenesis of SSc have identified novel potential therapeutic targets. Several clinical trials have been subsequently designed to evaluate the efficacy of a number of new drugs. The aim of this review is to provide clinicians with useful information about these novel molecules. AREA COVERED In this narrative review, we summarize the available evidence regarding the most promising targeted therapies currently under investigation for the treatment of SSc. These medications include kinase inhibitors, B-cell depleting agents, and interleukin inhibitors. EXPERT OPINION Over the next five years, several new, targeted drugs will be introduced in clinical practice for the treatment of SSc. Such pharmacological agents will expand the existing pharmacopoeia and enable a more personalized and effective approach to patients with SSc. Thus, it will not only possible to target a specific disease domain, but also different stages of the disease.
Collapse
Affiliation(s)
- N Farina
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - C Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - A Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - G Benanti
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - G De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - D Khanna
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - L Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - M Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|