1
|
Huber M, Brummer T. Enzyme Is the Name-Adapter Is the Game. Cells 2024; 13:1249. [PMID: 39120280 PMCID: PMC11311582 DOI: 10.3390/cells13151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein-protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, IMMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Chen L, Zhang S, Li Q, Li J, Deng H, Zhang S, Meng R. Emerging role of Protein Kinase CK2 in Tumor immunity. Front Oncol 2022; 12:1065027. [DOI: 10.3389/fonc.2022.1065027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Protein kinase CK2, a conserved serine/threonine-protein kinase, is ubiquitous in cells and regulates various intracellular processes, especially in tumor cells. As one of the earliest discovered protein kinases in humans, CK2 plays a crucial role in phosphorylating or associating with hundreds of substrates to modulate several signaling pathways. Excellent reviews have reported that the overexpression of CK2 could be observed in many cancers and was closely associated with tumor occurrence and development. The elevation of CK2 is also an indicator of a poor prognosis. Recently, increasing attention has been paid to the relationship between CK2 and tumor immunity. However, there is no comprehensive description of how CK2 regulates the immune cells in the tumor microenvironment (TME). Also, the underlying mechanisms are still not very clear. In this review, we systematically summarized the correlation between CK2 and tumor immunity, primarily the effects on various immune cells, both in innate and adaptive immunity in the TME. With the comprehensive development of immunotherapy and the mounting transformation research of CK2 inhibitors from the bench to the clinic, this review will provide vital information to find new treatment options for enhancing the efficacy of immunotherapy.
Collapse
|
3
|
Husain K, Villalobos-Ayala K, Laverde V, Vazquez OA, Miller B, Kazim S, Blanck G, Hibbs ML, Krystal G, Elhussin I, Mori J, Yates C, Ghansah T. Apigenin Targets MicroRNA-155, Enhances SHIP-1 Expression, and Augments Anti-Tumor Responses in Pancreatic Cancer. Cancers (Basel) 2022; 14:3613. [PMID: 35892872 PMCID: PMC9331563 DOI: 10.3390/cancers14153613] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is a deadly disease with a grim prognosis. Pancreatic tumor derived factors (TDF) contribute to the induction of an immunosuppressive tumor microenvironment (TME) that impedes the effectiveness of immunotherapy. PC-induced microRNA-155 (miRNA-155) represses expression of Src homology 2 (SH2) domain-containing Inositol 5'-phosphatase-1 (SHIP-1), a regulator of myeloid cell development and function, thus impacting anti-tumor immunity. We recently reported that the bioflavonoid apigenin (API) increased SHIP-1 expression which correlated with the expansion of tumoricidal macrophages (TAM) and improved anti-tumor immune responses in the TME of mice with PC. We now show that API transcriptionally regulates SHIP-1 expression via the suppression of miRNA-155, impacting anti-tumor immune responses in the bone marrow (BM) and TME of mice with PC. We discovered that API reduced miRNA-155 in the PC milieu, which induced SHIP-1 expression. This promoted the restoration of myelopoiesis and increased anti-tumor immune responses in the TME of heterotopic, orthotopic and transgenic SHIP-1 knockout preclinical mouse models of PC. Our results suggest that manipulating SHIP-1 through miR-155 may assist in augmenting anti-tumor immune responses and aid in the therapeutic intervention of PC.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Valentina Laverde
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Oscar A. Vazquez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Bradley Miller
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Samra Kazim
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Joakin Mori
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Selective deletion of SHIP-1 in hematopoietic cells in mice leads to severe lung inflammation involving ILC2 cells. Sci Rep 2021; 11:9220. [PMID: 33911168 PMCID: PMC8080607 DOI: 10.1038/s41598-021-88677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/14/2021] [Indexed: 11/09/2022] Open
Abstract
Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP-1) regulates the intracellular levels of phosphotidylinositol-3, 4, 5-trisphosphate, a phosphoinositide 3-kinase (PI3K) product. Emerging evidence suggests that the PI3K pathway is involved in allergic inflammation in the lung. Germline or induced whole-body deletion of SHIP-1 in mice led to spontaneous type 2-dominated pulmonary inflammation, demonstrating that SHIP-1 is essential for lung homeostasis. However, the mechanisms by which SHIP-1 regulates lung inflammation and the responsible cell types are still unclear. Deletion of SHIP-1 selectively in B cells, T cells, dendritic cells (DC) or macrophages did not lead to spontaneous allergic inflammation in mice, suggesting that innate immune cells, particularly group 2 innate lymphoid cells (ILC2 cells) may play an important role in this process. We tested this idea using mice with deletion of SHIP-1 in the hematopoietic cell lineage and examined the changes in ILC2 cells. Conditional deletion of SHIP-1 in hematopoietic cells in Tek-Cre/SHIP-1 mice resulted in spontaneous pulmonary inflammation with features of type 2 immune responses and airway remodeling like those seen in mice with global deletion of SHIP-1. Furthermore, when compared to wild-type control mice, Tek-Cre/SHIP-1 mice displayed a significant increase in the number of IL-5/IL-13 producing ILC2 cells in the lung at baseline and after stimulation by allergen Papain. These findings provide some hints that PI3K signaling may play a role in ILC2 cell development at baseline and in response to allergen stimulation. SHIP-1 is required for maintaining lung homeostasis potentially by restraining ILC2 cells and type 2 inflammation.
Collapse
|
5
|
Villalobos-Ayala K, Ortiz Rivera I, Alvarez C, Husain K, DeLoach D, Krystal G, Hibbs ML, Jiang K, Ghansah T. Apigenin Increases SHIP-1 Expression, Promotes Tumoricidal Macrophages and Anti-Tumor Immune Responses in Murine Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123631. [PMID: 33291556 PMCID: PMC7761852 DOI: 10.3390/cancers12123631] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has an extremely poor prognosis due to the expansion of immunosuppressive myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) in the inflammatory tumor microenvironment (TME), which halts the recruitment of effector immune cells and renders immunotherapy ineffective. Thus, the identification of new molecular targets that can modulate the immunosuppressive TME is warranted for PC intervention. Src Homology-2 (SH2) domain-containing Inositol 5'-Phosphatase-1 (SHIP-1) is a lipid signaling protein and a regulator of myeloid cell development and function. Herein, we used the bioflavonoid apigenin (API) to reduce inflammation in different PC models. Wild type mice harboring heterotopic or orthotopic PC were treated with API, which induced SHIP-1 expression, reduced inflammatory tumor-derived factors (TDF), increased the proportion of tumoricidal macrophages and enhanced anti-tumor immune responses, resulting in a reduction in tumor burden compared to vehicle-treated PC mice. In contrast, SHIP-1-deficient mice exhibited an increased tumor burden and displayed augmented proportions of pro-tumor macrophages. These results provide further support for the importance of SHIP-1 expression in promoting pro-tumor macrophage development in the pancreatic TME. Our findings suggest that agents augmenting SHIP-1 expression may provide novel therapeutic options for the treatment of PC.
Collapse
Affiliation(s)
- Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Ivannie Ortiz Rivera
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Ciara Alvarez
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - DeVon DeLoach
- Comparative Medicine at the University of South Florida, Tampa, FL 33612, USA;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Kun Jiang
- Anatomic Pathology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-1825
| |
Collapse
|
6
|
PI3K Is a Linker Between L-selectin and PSGL-1 Signaling to IL-18 Transcriptional Activation at the Promoter Level. Inflammation 2018; 41:555-561. [PMID: 29218606 DOI: 10.1007/s10753-017-0711-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are adhesion molecules which induce similar physiological events. Our previous paper showed that phosphatidylinositol 3-kinase (PI3K) played a crucial role in L-selectin- and PSGL-1-mediated F-actin redistribution and assembly during neutrophil rolling on E-selectin. However, it is not clear whether L-selectin and PSGL-1 induce other similar physiology events by PI3K. Here, we investigated the possibility of PI3K linking the signaling pathways of L-selectin and PSGL-1 to IL-18 transcription. We first demonstrated that L-selectin and PSGL-1 stimulation upregulated IL-18 transcription level in Jurkat cells. Then we found that PI3K inhibitor LY294002 reduced L-selectin- and PSGL-1-induced mRNA upregulation of IL-18 in Jurkat cells. Transfection of phosphatase and tensin homolog expressing plasmid inhibited the transcription level of IL-18. Therefore, PI3K is a signal linker between L-selectin and PSGL-1 in IL-18 transcriptional activation at the promoter level. To our knowledge, this is the first time to directly link PI3K to L-selectin- and PSGL-1-mediated IL-18 transcription, providing a foundation for intervention of PI3K-related inflammation.
Collapse
|
7
|
|
8
|
Jiménez F, Fernández A, Boulifa E, Mansour AI, Alvarez-Manzaneda R, Chahboun R, Alvarez-Manzaneda E. Diastereoselective Intramolecular Heck Reaction Assisted by an Acetate Group: Synthesis of the Decahydrobenzofluorene Derivative Dasyscyphin E. J Org Chem 2017; 82:9550-9559. [DOI: 10.1021/acs.joc.7b01551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fermín Jiménez
- Departamento
de Química Orgánica, Facultad de Ciencias, Instituto
de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Antonio Fernández
- Departamento
de Química Orgánica, Facultad de Ciencias, Instituto
de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Ettahir Boulifa
- Laboratoire
de Chimie Organique Appliquée, Département de Chimie,
Faculté des Sciences, Université Abdelmalek Essaâdi, 93040 Tetouan, Morocco
| | - Ahmed Ibn Mansour
- Laboratoire
de Chimie Organique Appliquée, Département de Chimie,
Faculté des Sciences, Université Abdelmalek Essaâdi, 93040 Tetouan, Morocco
| | - Ramón Alvarez-Manzaneda
- Area
de Química Orgánica, Departamento de Química
y Física, Universidad de Almería, 04120 Almería, Spain
| | - Rachid Chahboun
- Departamento
de Química Orgánica, Facultad de Ciencias, Instituto
de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Enrique Alvarez-Manzaneda
- Departamento
de Química Orgánica, Facultad de Ciencias, Instituto
de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
9
|
Andersen RJ. Sponging off nature for new drug leads. Biochem Pharmacol 2017; 139:3-14. [PMID: 28411115 DOI: 10.1016/j.bcp.2017.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Marine sponges have consistently been the richest source of new marine natural products with unprecedented chemical scaffolds and potent biological activities that have been reported in the chemical literature since the early 1970s. During the last 40years, chemists in the Andersen laboratory at UBC, in collaboration with biologists, have discovered many novel bioactive sponge natural products. Four experimental drug candidates for treatment of inflammation and cancer, that were inspired by members of this sponge natural product collection, have progressed to phase I/II/III clinical trials. This review recounts the scientific stories behind the discovery and development of these four drug candidates; IPL576,092, HTI-286 (Taltobulin), EPI-506 (Ralaniten acetate), and AQX-1125.
Collapse
Affiliation(s)
- Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
10
|
Lu ZJ, Wu JJ, Jiang WL, Xiao JH, Tao KZ, Ma L, Zheng P, Wan R, Wang XP. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J Gastroenterol 2017; 23:976-985. [PMID: 28246471 PMCID: PMC5311107 DOI: 10.3748/wjg.v23.i6.976] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/27/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
AIM
To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis.
METHODS
A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3’-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain- and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry.
RESULTS
MiR-155 directly bound to the 3’-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and pro-inflammatory secretions including IL-6, TNF-α, IL-1β, and IFN-γ, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and inflammatory response, were observed in the antagomiR-155-treated mice.
CONCLUSION
MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antagomirs/administration & dosage
- Antagomirs/therapeutic use
- Blotting, Western
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/metabolism
- Cytokines/metabolism
- Dextran Sulfate/toxicity
- Disease Models, Animal
- Down-Regulation
- Female
- Immunohistochemistry
- Mice
- Mice, Inbred BALB C
- MicroRNAs/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Primary Cell Culture
- Proto-Oncogene Proteins c-akt/metabolism
- RAW 264.7 Cells
- RNA Interference
- RNA, Small Interfering
- Signal Transduction
Collapse
|
11
|
Li F, Li L, Cheng M, Wang X, Hao J, Liu S, Duan H. SHIP, a novel factor to ameliorate extracellular matrix accumulation via suppressing PI3K/Akt/CTGF signaling in diabetic kidney disease. Biochem Biophys Res Commun 2016; 482:1477-1483. [PMID: 27965087 DOI: 10.1016/j.bbrc.2016.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023]
Abstract
Tubular interstitial extracellular matrix accumulation, which plays a key role in the pathogenesis and progression of diabetic kidney disease (DKD), is believed to be mediated by activation of PI3K/Akt signal pathway. However, it is still not clear whether SH2 domain-containing inositol 5'-phosphatase (SHIP), known as a negative regulator of PI3K/Akt pathway is also involved in extracellular matrix metabolism of diabetic kidney. In the present study, decreased SHIP and increased phospho-Akt (Ser 473, Thr 308) were found in renal tubular cells of diabetic mice accompanied by overexpression of connective tissue growth factor (CTGF) and extracellular matrix deposition versus normal mice. Again, high glucose attenuated SHIP expression in a time-dependent manner, concomitant with activation of PI3K/Akt signaling and extracellular matrix production in human renal proximal tubular epithelial cells (HK2) cultured in vitro, which was significantly prevented by transfection of M90-SHIP vector. Furthermore, in vivo delivery of rAd-INPP5D vector (SHIP expression vector) via intraperitoneal injection in diabetic mice increased SHIP expression by 3.36 times followed by 65.26%, 70.38% and 46.71% decreases of phospho-Akt (Ser 473), phospho-Akt (Thr 308) and CTGF expression versus diabetic mice receiving rAd-EGFP vector. Meanwhile, increased renal extracellular matrix accumulation of diabetic mice was also inhibited with intraperitoneal injection of rAd-INPP5D vector. These above data suggested that overexpression of SHIP might be a potent method to lessen renal extracellular matrix accumulation via inactivation of PI3K/Akt pathway and suppression of CTGF expression in DKD.
Collapse
Affiliation(s)
- Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lisha Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meijuan Cheng
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiumin Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuxia Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
12
|
Pena-Philippides JC, Caballero-Garrido E, Lordkipanidze T, Roitbak T. In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J Neuroinflammation 2016; 13:287. [PMID: 27829437 PMCID: PMC5103429 DOI: 10.1186/s12974-016-0753-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNA miR-155 is implicated in modulation of the inflammatory processes in various pathological conditions. In our previous studies, we demonstrated that in vivo inhibition of miR-155 promotes functional recovery after mouse experimental stroke. In the present study, we explored if this beneficial effect is associated with miR-155 inhibition-induced alterations in post-stroke inflammatory response. Methods Intravenous injections of a specific miR-155 inhibitor were initiated at 48 h after mouse distal middle cerebral artery occlusion (dMCAO). Temporal changes in the expression of cytokines and key molecules associated with cytokine signaling were assessed at 7, 14, and 21 days after dMCAO, using mouse cytokine gene and protein arrays and Western blot analyses. Electron and immunofluorescence confocal microscopy techniques were used to evaluate the ultrastructural changes, as well as altered expression of specific phenotypic markers, at different time points after dMCAO. Results In the inhibitor-injected mice (inhibitor group), there was a significant decrease in CCL12 and CXCL3 cytokine expression at 7 days and significantly increased levels of major cytokines IL-10, IL-4, IL-6, MIP-1α, IL-5, and IL-17 at 14 days after dMCAO. These temporal changes correlated with altered expression of miR-155 target proteins SOCS-1, SHIP-1, and C/EBP-β and phosphorylation levels of cytokine signaling regulator STAT-3. Electron microscopy showed decreased number of phagocytically active peri-vascular microglia/macrophages in the inhibitor samples. Immunofluorescence and Western blot of these samples demonstrated that expression of leukocyte/ macrophage marker CD45 and phagocytosis marker CD68 was reduced at 7 days, and in contrast, significantly increased at 14 days after dMCAO, as compared to controls. Conclusions Based on our findings, we propose that in vivo miR-155 inhibition following mouse stroke significantly alters the time course of the expression of major cytokines and inflammation-associated molecules, which could influence inflammation process and tissue repair after experimental cerebral ischemia. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0753-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Carlos Pena-Philippides
- Department of Neurosurgery, University of New Mexico Health Sciences Center, 1101 Yale Blvd, Albuquerque, NM, 87106-3834, USA
| | - Ernesto Caballero-Garrido
- Department of Neurosurgery, University of New Mexico Health Sciences Center, 1101 Yale Blvd, Albuquerque, NM, 87106-3834, USA
| | | | - Tamara Roitbak
- Department of Neurosurgery, University of New Mexico Health Sciences Center, 1101 Yale Blvd, Albuquerque, NM, 87106-3834, USA.
| |
Collapse
|
13
|
Kakde BN, Kumar N, Mondal PK, Bisai A. Approach to Merosesquiterpenes via Lewis Acid Catalyzed Nazarov-Type Cyclization: Total Synthesis of Akaol A. Org Lett 2016; 18:1752-5. [DOI: 10.1021/acs.orglett.6b00446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Badrinath N. Kakde
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, Madhya Pradesh 462 066, India
| | - Nivesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, Madhya Pradesh 462 066, India
| | - Pradip Kumar Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass
Road, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
14
|
Huber M, Gibbs BF. SHIP1 and the negative control of mast cell/basophil activation by supra-optimal antigen concentrations. Mol Immunol 2015; 63:32-7. [DOI: 10.1016/j.molimm.2014.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
15
|
Khalaj M, Tavakkoli M, Stranahan AW, Park CY. Pathogenic microRNA's in myeloid malignancies. Front Genet 2014; 5:361. [PMID: 25477897 PMCID: PMC4237136 DOI: 10.3389/fgene.2014.00361] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/27/2014] [Indexed: 12/21/2022] Open
Abstract
Recent studies have significantly improved our understanding of the role microRNAs (miRNAs) play in regulating normal hematopoiesis. miRNAs are critical for maintaining hematopoietic stem cell function and the development of mature progeny. Thus, perhaps it is not surprising that miRNAs serve as oncogenes and tumor suppressors in hematologic malignancies arising from hematopoietic stem and progenitor cells, such as the myeloid disorders. A number of studies have extensively documented the widespread dysregulation of miRNA expression in human acute myeloid leukemia (AML), inspiring numerous explorations of the functional role of miRNAs in myeloid leukemogenesis. While these investigations have confirmed that a large number of miRNAs exhibit altered expression in AML, only a small fraction has been confirmed as functional mediators of AML development or maintenance. Herein, we summarize the miRNAs for which strong experimental evidence supports their functional roles in AML pathogenesis. We also discuss the implications of these studies on the development of miRNA-directed therapies in AML.
Collapse
Affiliation(s)
- Mona Khalaj
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Montreh Tavakkoli
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Alec W Stranahan
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Christopher Y Park
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA ; Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center NY, USA
| |
Collapse
|
16
|
Evangelisti C, Evangelisti C, Chiarini F, Lonetti A, Buontempo F, Bressanin D, Cappellini A, Orsini E, McCubrey JA, Martelli AM. Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (review). Int J Oncol 2014; 45:909-18. [PMID: 24968804 DOI: 10.3892/ijo.2014.2525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/12/2014] [Indexed: 11/05/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases. Even if the prognosis of T-ALL has improved especially in the childhood due to the use of new intensified treatment protocols, the outcome of relapsed patients who are resistant to conventional chemotherapeutic drugs or who relapse is still poor. For this reason, there is a need for novel and less toxic targeted therapies against signaling pathways aberrantly activated in T-ALL, such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR). Small molecules designed to target key components of this signaling axis have proven their efficacy both in vitro and in vivo in pre-clinical settings of T-ALL. In particular, different classes of mTOR inhibitors have been disclosed by pharmaceutical companies, and they are currently being tested in clinical trials for treating T-ALL patients. One of the most promising approaches for the treatment of T-ALL seems to be the combination of mTOR inhibitors with traditional chemotherapeutic agents. This could lead to a lower drug dosage that may circumvent the systemic side effects of chemotherapeutics. In this review, we focus on the different classes of mTOR inhibitors that will possibly have an impact on the therapeutic arsenal we have at our disposal against T-ALL.
Collapse
Affiliation(s)
- Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Abstract
Mast cells (MCs) are tissue-resident sentinels of hematopoietic origin that play a prominent role in allergic diseases. They express the high-affinity receptor for IgE (FcεRI), which when cross-linked by multivalent antigens triggers the release of preformed mediators, generation of arachidonic acid metabolites, and the synthesis of cytokines and chemokines. Stimulation of the FcεRI with increasing antigen concentrations follows a characteristic bell-shaped dose-responses curve. At high antigen concentrations, the so-called supra-optimal conditions, repression of FcεRI-induced responses is facilitated by activation and incorporation of negative signaling regulators. In this context, the SH2-containing inositol-5'-phosphatase, SHIP1, has been demonstrated to be of particular importance. SHIP1 with its catalytic and multiple protein interaction sites provides several layers of control for FcεRI signaling. Regulation of SHIP1 function occurs on various levels, e.g., protein expression, receptor and membrane recruitment, competition for protein-protein interaction sites, and activating modifications enhancing the phosphatase function. Apart from FcεRI-mediated signaling, SHIP1 can be activated by diverse unrelated receptor systems indicating its involvement in the regulation of antigen-dependent cellular responses by autocrine feedback mechanisms or tissue-specific and/or (patho-) physiologically determined factors. Thus, pharmacologic engagement of SHIP1 may represent a beneficial strategy for patients suffering from acute or chronic inflammation or allergies.
Collapse
|
18
|
Evangelisti C, Evangelisti C, Bressanin D, Buontempo F, Chiarini F, Lonetti A, Soncin M, Spartà A, McCubrey JA, Martelli AM. Targeting phosphatidylinositol 3-kinase signaling in acute myelogenous leukemia. Expert Opin Ther Targets 2013; 17:921-36. [DOI: 10.1517/14728222.2013.808333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Huber M. Activation/Inhibition of mast cells by supra-optimal antigen concentrations. Cell Commun Signal 2013; 11:7. [PMID: 23339289 PMCID: PMC3598417 DOI: 10.1186/1478-811x-11-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/13/2013] [Indexed: 01/12/2023] Open
Abstract
Mast cells (MCs) are tissue resident cells of hemopoietic origin and are critically involved in allergic diseases. MCs bind IgE by means of their high-affinity receptor for IgE (FcεRI). The FcεRI belongs to a family of multi-chain immune recognition receptors and is activated by cross-linking in response to multivalent antigens (Ags)/allergens. Activation of the FcεRI results in immediate release of preformed granular substances (e.g. histamine, heparin, and proteases), generation of arachidonic acid metabolites, and production of pro-inflammatory cytokines. The FcεRI shows a remarkable, bell-shaped dose-response behavior with weak induction of effector responses at both low and high (so-called supra-optimal) Ag concentrations. This is significantly different from many other receptors, which reach a plateau phase in response to high ligand concentrations. To explain this unusual dose-response behavior of the FcεRI, scientists in the past have drawn parallels to so-called precipitin curves resulting from titration of Ag against a fixed concentration of antibody (Ab) in solution (a.k.a. Heidelberger curves). Thus, for high, supra-optimal Ag concentrations one could assume that every IgE-bound FcεRI formed a monovalent complex with “its own Ag”, thus resulting in marginal induction of effector functions due to absence of receptor cross-linking. However, this was never proven to be the case. More recently, careful studies of FcεRI activation and signaling events in MCs in response to supra-optimal Ag concentrations have suggested a molecular explanation for the descending part of this bell-shaped curve. It is obvious now that extensive FcεRI/IgE/Ag clusters are formed and inhibitory molecules and signalosomes are engaged in response to supra-optimal cross-linking (amongst them the Src family kinase Lyn and the inositol-5′-phosphatase SHIP1) and they actively down-regulate MC effector responses. Thus, the analysis of MC signaling triggered by supra-optimal crosslinking holds great potential for identifying novel targets for pharmacologic therapeutic intervention to benefit patients with acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Pauwelsstr, 30, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Akhaouzan A, Fernández A, Mansour AI, Alvarez E, Haidöur A, Alvarez-Manzaneda R, Chahboun R, Alvarez-Manzaneda E. First synthesis of antitumoral dasyscyphin B. Org Biomol Chem 2013; 11:6176-85. [DOI: 10.1039/c3ob41290c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Leung WH, Tarasenko T, Biesova Z, Kole H, Walsh ER, Bolland S. Aberrant antibody affinity selection in SHIP-deficient B cells. Eur J Immunol 2012; 43:371-81. [PMID: 23135975 DOI: 10.1002/eji.201242809] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/18/2012] [Accepted: 11/02/2012] [Indexed: 01/01/2023]
Abstract
The strength of the Ag receptor signal influences development and negative selection of B cells, and it might also affect B-cell survival and selection in the GC. Here, we have used mice with B-cell-specific deletion of the 5'-inositol phosphatase SHIP as a model to study affinity selection in cells that are hyperresponsive to Ag and cytokine receptor stimulation. In the absence of SHIP, B cells have lower thresholds for Ag- and interferon (IFN)-induced activation, resulting in augmented negative selection in the BM and enhanced B-cell maturation in the periphery. Despite a tendency to spontaneously downregulate surface IgM expression, SHIP deficiency does not alter anergy induction in response to soluble hen-egg lysozyme Ag in the MDA4 transgenic model. SHIP-deficient B cells spontaneously produce isotype-switched antibodies; however, they are poor responders in immunization and infection models. While SHIP-deficient B cells form GCs and undergo mutation, they are not properly selected for high-affinity antibodies. These results illustrate the importance of negative regulation of B-cell responses, as lower thresholds for B-cell activation promote survival of low affinity and deleterious receptors to the detriment of optimal Ab affinity maturation.
Collapse
Affiliation(s)
- Wai-Hang Leung
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | |
Collapse
|
22
|
Martelli AM, Chiarini F, Evangelisti C, Cappellini A, Buontempo F, Bressanin D, Fini M, McCubrey JA. Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget 2012; 3:371-94. [PMID: 22564882 PMCID: PMC3380573 DOI: 10.18632/oncotarget.477] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) are two key components of the PI3K/Akt/mTOR signaling pathway. This signal transduction cascade regulates a wide range of physiological cell processes, that include differentiation, proliferation, apoptosis, autophagy, metabolism, motility, and exocytosis. However, constitutively active PI3K/Akt/mTOR signaling characterizes many types of tumors where it negatively influences response to therapeutic treatments. Hence, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors may improve cancer patient outcome. The PI3K/Akt/mTOR signaling cascade is overactive in acute leukemias, where it correlates with enhanced drug-resistance and poor prognosis. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds targeting the catalytic site of both kinases. In preclinical models, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against acute leukemia cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin. At variance with rapamycin, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenic protein translation. Therefore, they strongly reduced cell proliferation and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors may represent a promising option for future targeted therapies of acute leukemia patients.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Human Anatomy, University of Bologna, Cellular Signalling Laboratory, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee DW, Futami M, Carroll M, Feng Y, Wang Z, Fernandez M, Whichard Z, Chen Y, Kornblau S, Shpall EJ, Bueso-Ramos CE, Corey SJ. Loss of SHIP-1 protein expression in high-risk myelodysplastic syndromes is associated with miR-210 and miR-155. Oncogene 2012; 31:4085-94. [PMID: 22249254 DOI: 10.1038/onc.2011.579] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/22/2011] [Accepted: 11/07/2011] [Indexed: 02/03/2023]
Abstract
The myelodysplastic syndromes (MDSs) comprise a group of disorders characterized by multistage progression from cytopenias to acute myeloid leukemia (AML). They display exaggerated apoptosis in early stages, but lose this behavior during evolution to AML. The molecular basis for loss of apoptosis is unknown. To investigate this critical event, we analyzed phosphatidylinositol (PI) 3'kinase signaling, implicated as a critical pathway of cell survival control in epithelial and hematological malignancies. PI 3'kinase activates Akt through its production of 3' phosphoinositides. In turn, the phosphoinositides are dephosphorylated by two lipid phosphatases, PTEN and SHIP-1, in myeloid cells. We studied primary MDS-enriched bone marrow cells and bone marrow sections by western blotting, immunohistochemistry, immunocytochemistry and quantitative PCR for components of the SHIP/PTEN/PI 3'kinase signaling circuit. We reported constitutively activated Akt, variable levels of PTEN and uniformly decreased SHIP-1 expression in MDS progenitor cells. Overexpression of SHIP-1, but not the phosphatase-deficient form, inhibited myeloid leukemic growth. Levels of microRNA (miR)-210 and miR-155 transcripts, which target SHIP-1, were increased in CD34(+) MDS cells compared with their normal counterparts. Direct binding of miR-210 to the 3' untranslated region of SHIP-1 was confirmed by luciferase reporter assay. Transfection of a myeloid cell line with miR-210 resulted in loss of SHIP-1 protein expression. These data suggest that miR-155 and miR-210/SHIP-1/Akt pathways could serve as clinical biomarkers for disease progression, and that miR-155 and miR-210 might serve as novel therapeutic targets in MDS.
Collapse
Affiliation(s)
- D W Lee
- Division of Pediatrics, University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wymann MP, Schultz C. The chemical biology of phosphoinositide 3-kinases. Chembiochem 2012; 13:2022-35. [PMID: 22965647 DOI: 10.1002/cbic.201200089] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 07/13/2012] [Indexed: 01/14/2023]
Abstract
Since its discovery in the late 1980s, phosphoinositide 3-kinase (PI3K), and its isoforms have arguably reached the forefront of signal transduction research. Regulation of this lipid kinase, its functions, its effectors, in short its entire signaling network, has been extensively studied. PI3K inhibitors are frequently used in biochemistry and cell biology. In addition, many pharmaceutical companies have launched drug-discovery programs to identify modulators of PI3Ks. Despite these efforts and a fairly good knowledge of the PI3K signaling network, we still have only a rudimentary picture of the signaling dynamics of PI3K and its lipid products in space and time. It is therefore essential to create and use novel biological and chemical tools to manipulate the phosphoinositide signaling network with spatial and temporal resolution. In this review, we discuss the current and potential future tools that are available and necessary to unravel the various functions of PI3K and its isoforms.
Collapse
Affiliation(s)
- Matthias P Wymann
- Institute of Biochemistry & Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | | |
Collapse
|
25
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M, Nicoletti F, Fagone P, Malaponte G, Mazzarino MC, Candido S, Libra M, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Cocco L, Evangelisti C, Chiarini F, Martelli AM. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 2012; 3:954-87. [PMID: 23006971 PMCID: PMC3660063 DOI: 10.18632/oncotarget.652] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/17/2012] [Indexed: 02/07/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Alvarez-Manzaneda E, Chahboun R, Alvarez E, Fernández A, Alvarez-Manzaneda R, Haidour A, Ramos JM, Akhaouzan A. First enantiospecific synthesis of marine sesquiterpene quinol akaol A. Chem Commun (Camb) 2012; 48:606-8. [DOI: 10.1039/c1cc14608d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) control cell growth, proliferation, cell survival, metabolic activity, vesicular trafficking, degranulation, and migration. Through these processes, PI3Ks modulate vital physiology. When over-activated in disease, PI3K promotes tumor growth, angiogenesis, metastasis or excessive immune cell activation in inflammation, allergy and autoimmunity. This chapter will introduce molecular activation and signaling of PI3Ks, and connections to target of rapamycin (TOR) and PI3K-related protein kinases (PIKKs). The focus will be on class I PI3Ks, and extend into current developments to exploit mechanistic knowledge for therapy.
Collapse
Affiliation(s)
- Matthias Wymann
- Institute Biochemistry & Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland,
| |
Collapse
|
28
|
Mukherjee O, Weingarten L, Padberg I, Pracht C, Sinha R, Hochdörfer T, Kuppig S, Backofen R, Reth M, Huber M. The SH2-domain of SHIP1 interacts with the SHIP1 C-terminus: impact on SHIP1/Ig-α interaction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:206-14. [PMID: 22182704 DOI: 10.1016/j.bbamcr.2011.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
The SH2-containing inositol 5'-phosphatase, SHIP1, negatively regulates signal transduction from the B cell antigen receptor (BCR). The mode of coupling between SHIP1 and the BCR has not been elucidated so far. In comparison to wild-type cells, B cells expressing a mutant IgD- or IgM-BCR containing a C-terminally truncated Ig-α respond to pervanadate stimulation with markedly reduced tyrosine phosphorylation of SHIP1 and augmented activation of protein kinase B. This indicates that SHIP1 is capable of interacting with the C-terminus of Ig-α. Employing a system of fluorescence resonance energy transfer in S2 cells, we can clearly demonstrate interaction between the SH2-domain of SHIP1 and Ig-α. Furthermore, a fluorescently labeled SH2-domain of SHIP1 translocates to the plasma membrane in an Ig-α-dependent manner. Interestingly, whereas the SHIP1 SH2-domain can be pulled-down with phospho-peptides corresponding to the immunoreceptor tyrosine-based activation motif (ITAM) of Ig-α from detergent lysates, no interaction between full-length SHIP1 and the phosphorylated Ig-α ITAM can be observed. Further studies show that the SH2-domain of SHIP1 can bind to the C-terminus of the SHIP1 molecule, most probably by inter- as well as intra-molecular means, and that this interaction regulates the association between different forms of SHIP1 and Ig-α.
Collapse
Affiliation(s)
- Oindrilla Mukherjee
- RWTH Aachen University, Medical Faculty, Department of Biochemistry and Molecular Immunology, Institute of Biochemistry and Molecular Biology, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Smith AJ, Daut J, Schwappach B. Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport. Physiology (Bethesda) 2011; 26:181-91. [PMID: 21670164 DOI: 10.1152/physiol.00042.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
14-3-3 proteins regulate the function and subcellular sorting of membrane proteins. Often, 14-3-3 binding to client proteins requires phosphorylation of the client, but the relevant kinase is unknown in most cases. We summarize current progress in identifying kinases that target membrane proteins with 14-3-3 binding sites and discuss the molecular mechanisms of 14-3-3 action. One of the kinases involved is Akt/PKB, which has recently been shown to activate the 14-3-3-dependent switch in a number of client membrane proteins.
Collapse
Affiliation(s)
- Andrew J Smith
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
30
|
Martelli AM, Evangelisti C, Chiarini F, McCubrey JA. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget 2011; 1:89-103. [PMID: 20671809 PMCID: PMC2911128 DOI: 10.18632/oncotarget.114] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling axis plays a central role in cell proliferation, growth, and survival under physiological conditions. However, aberrant PI3K/Akt/mTOR signaling has been implicated in many human cancers, including acute myelogenous leukemia (AML). Therefore, the PI3K/Akt/mTOR network is considered as a validated target for innovative cancer therapy. The limit of acceptable toxicity for standard polychemotherapy has been reached in AML. Novel therapeutic strategies are therefore needed. This review highlights how the PI3K/Akt/mTOR signaling axis is constitutively active in AML patients, where it affects survival, proliferation, and drug-resistance of leukemic cells including leukemic stem cells. Effective targeting of this pathway with small molecule kinase inhibitors, employed alone or in combination with other drugs, could result in the suppression of leukemic cell growth. Furthermore, targeting the PI3K/Akt/mTOR signaling network with small pharmacological inhibitors, employed either alone or in combinations with other drugs, may result in less toxic and more efficacious treatment of AML patients. Efforts to exploit pharmacological inhibitors of the PI3K/Akt/mTOR cascade which show efficacy and safety in the clinical setting are now underway.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Human Anatomical Sciences University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
31
|
Involvement of phosphatases in proliferation, maturation, and hemoglobinization of developing erythroid cells. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:860985. [PMID: 21785724 PMCID: PMC3139203 DOI: 10.1155/2011/860985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/11/2011] [Accepted: 05/04/2011] [Indexed: 12/16/2022]
Abstract
Production of RBCs is triggered by the action of erythropoietin (Epo) through its binding to surface receptors
(Epo-R) on erythroid precursors in the bone marrow. The intensity and the duration of the Epo signal are regulated by several factors,
including the balance between the activities of kinesase and phosphatases. The Epo signal determines the proliferation and maturation
of the precursors into hemoglobin (Hb)-containing RBCs. The activity of various protein tyrosine phosphatases, including those involved in the
Epo pathway, can be inhibited by sodium orthovanadate (Na3VO4, vanadate). Adding vanadate to cultured erythroid precursors of normal
donors and patients with β-thalassemia enhanced cell proliferation and arrested maturation. This was associated with an increased production
of fetal hemoglobin (HbF). Increased HbF in patients with β-hemoglobinopathies (β-thalassemia and sickle cell disease) ameliorates the clinical
symptoms of the disease. These results raise the possibility that specific and nontoxic inhibitors of phosphatases may be considered as a
therapeutic modality for elevating HbF in patients with β-hemoglobinopathies
as well as for intensifying the Epo response in other forms of anemia.
Collapse
|
32
|
Büchse T, Horras N, Lenfert E, Krystal G, Körbel S, Schümann M, Krause E, Mikkat S, Tiedge M. CIN85 interacting proteins in B cells-specific role for SHIP-1. Mol Cell Proteomics 2011; 10:M110.006239. [PMID: 21725061 DOI: 10.1074/mcp.m110.006239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Cbl-interacting 85-kDa protein (CIN85) plays an important role as a negative regulator of signaling pathways induced by receptor tyrosine kinases. By assembling multiprotein complexes this versatile adaptor enhances receptor tyrosine kinase-activated clathrin-mediated endocytosis and reduces phosphatidylinositol-3-kinase-induced phosphatidylinositol-3,4,5-trisphosphate production. Here we report the expression of CIN85 in primary splenic B lymphocytes and the B-lymphoma cell lines WEHI 231 and Ba/F3. Cross-linking of the B cell antigen receptor resulted in an increased association of CIN85 with the ubiquitin ligase Cbl. Through a systematic pull-down proteomics approach we identified 51 proteins that interact with CIN85 in B cells, including proteins not shown previously to be CIN85-associated. Among these proteins, the SH2-containing inositol phosphatase 1 (SHIP-1) co-precipitated with both the full-length CIN85 and each of its three SH3 domains. We also showed that this association is constitutive and depends on a region of 79 amino acids near the carboxyl terminus of SHIP-1, a region rich in potential SH3 domain binding sites. Because SHIP-1 is a major negative regulator of the phosphatidylinositol-3-kinase pathway in lymphocytes, we hypothesize that the interaction between SHIP-1 and CIN85 might synergistically facilitate the down-regulation of phosphatidylinositol-3,4,5-trisphosphate levels.
Collapse
Affiliation(s)
- Tom Büchse
- Institute of Medical Biochemistry and Molecular Biology, Medical Faculty, University of Rostock, Schillingallee 70, 18057 Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Piccioni M, Monari C, Bevilacqua S, Perito S, Bistoni F, Kozel TR, Vecchiarelli A. A critical role for FcgammaRIIB in up-regulation of Fas ligand induced by a microbial polysaccharide. Clin Exp Immunol 2011; 165:190-201. [PMID: 21605112 DOI: 10.1111/j.1365-2249.2011.04415.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The microbial capsular polysaccharide glucuronoxylomannan (GXM) from the opportunistic fungus Cryptoccocus neoformans is able to alter the innate and adaptive immune response through multi-faceted mechanisms of immunosuppression. The ability of GXM to dampen the immune response involves the induction of T cell apoptosis, which is dependent on GXM-induced up-regulation of Fas ligand (FasL) on antigen-presenting cells. In this study we elucidate the mechanism exploited by GXM to induce up-regulation of FasL. We demonstrate that (i) the activation of FasL is dependent on GXM interaction with FcgammaRIIB (FcγRIIB); (ii) GXM induces activation of c-Jun NH(2) -terminal kinase (JNK) and p38 signal transduction pathways via FcγRIIB; (iii) this leads to downstream activation of c-Jun; (iv) JNK and p38 are simultaneously, but independently, activated; (v) FasL up-regulation occurs via JNK and p38 activation; and (vi) apoptosis occurs via FcγRIIB engagement with consequent JNK and p38 activation. Our results highlight a fast track to FasL up-regulation via FcγRIIB, and assign to this receptor a novel anti-inflammatory role that also accounts for induced peripheral tolerance. These results contribute to our understanding of the mechanism of immunosuppression that accompanies cryptococcosis.
Collapse
Affiliation(s)
- M Piccioni
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Blaser C, Wittwer M, Grandgirard D, Leib SL. Adjunctive dexamethasone affects the expression of genes related to inflammation, neurogenesis and apoptosis in infant rat pneumococcal meningitis. PLoS One 2011; 6:e17840. [PMID: 21412436 PMCID: PMC3055894 DOI: 10.1371/journal.pone.0017840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/15/2011] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories "inflammation", "growth", "apoptosis" and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis.
Collapse
Affiliation(s)
- Cornelia Blaser
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Cappellini A, Ognibene A, McCubrey JA. The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:991-1002. [DOI: 10.1016/j.bbamcr.2010.04.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 12/19/2022]
|
36
|
Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, McCubrey JA. The emerging role of the phosphatidylinositol 3-kinase/ akt/mammalian target of rapamycin signaling network in cancer stem cell biology. Cancers (Basel) 2010; 2:1576-96. [PMID: 24281174 PMCID: PMC3837323 DOI: 10.3390/cancers2031576] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 08/16/2010] [Indexed: 12/23/2022] Open
Abstract
The cancer stem cell theory entails the existence of a hierarchically organized, rare population of cells which are responsible for tumor initiation, self-renewal/maintenance, and mutation accumulation. The cancer stem cell proposition could explain the high frequency of cancer relapse and resistance to currently available therapies. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway regulates a wide array of physiological cell functions which include differentiation, proliferation, survival, metabolism, autophagy, and motility. Dysregulated PI3K/Akt/mTOR signaling has been documented in many types of neoplasias. It is now emerging that this signaling network plays a key role in cancer stem cell biology. Interestingly, cancer stem cells displayed preferential sensitivity to pathway inhibition when compared to healthy stem cells. This observation provides the proof-of-principle that functional differences in signaling pathways between neoplastic stem cells and healthy stem cells could be identified. In this review, we present the evidence which links the signals emanating from the PI3K/Akt/mTOR cascade with the functions of cancer stem cells, both in solid and hematological tumors. We then highlight how targeting PI3K/Akt/mTOR signaling with small molecules could improve cancer patient outcome.
Collapse
Affiliation(s)
- Alberto M. Martelli
- Department of Human Anatomy, University of Bologna, via Irnerio 48, 40126 Bologna, Italy; E-Mails: (C.E.); (F.C.); (C.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-051-2091580; Fax: +39-051-2091695
| | - Camilla Evangelisti
- Department of Human Anatomy, University of Bologna, via Irnerio 48, 40126 Bologna, Italy; E-Mails: (C.E.); (F.C.); (C.G.)
| | - Francesca Chiarini
- Department of Human Anatomy, University of Bologna, via Irnerio 48, 40126 Bologna, Italy; E-Mails: (C.E.); (F.C.); (C.G.)
| | - Cecilia Grimaldi
- Department of Human Anatomy, University of Bologna, via Irnerio 48, 40126 Bologna, Italy; E-Mails: (C.E.); (F.C.); (C.G.)
| | - James A. McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, NC 27834, USA; E-Mail: (J.A.M.)
| |
Collapse
|
37
|
The inositol phosphatase SHIP-1 is negatively regulated by Fli-1 and its loss accelerates leukemogenesis. Blood 2010; 116:428-36. [PMID: 20445019 DOI: 10.1182/blood-2009-10-250217] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The activation of Fli-1, an Ets transcription factor, is the critical genetic event in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia. Fli-1 overexpression leads to erythropoietin-dependent erythroblast proliferation, enhanced survival, and inhibition of terminal differentiation, through activation of the Ras pathway. However, the mechanism by which Fli-1 activates this signal transduction pathway has yet to be identified. Down-regulation of the Src homology 2 (SH2) domain-containing inositol-5-phosphatase-1 (SHIP-1) is associated with erythropoietin-stimulated erythroleukemic cells and correlates with increased proliferation of transformed cells. In this study, we have shown that F-MuLV-infected SHIP-1 knockout mice display accelerated erythroleukemia progression. In addition, RNA interference (RNAi)-mediated suppression of SHIP-1 in erythroleukemia cells activates the phosphatidylinositol 3-kinase (PI 3-K) and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathways, blocks erythroid differentiation, accelerates erythropoietin-induced proliferation, and leads to PI 3-K-dependent Fli-1 up-regulation. Chromatin immunoprecipitation and luciferase assays confirmed that Fli-1 binds directly to an Ets DNA binding site within the SHIP-1 promoter and suppresses SHIP-1 transcription. These data provide evidence to suggest that SHIP-1 is a direct Fli-1 target, SHIP-1 and Fli-1 regulate each other in a negative feedback loop, and the suppression of SHIP-1 by Fli-1 plays an important role in the transformation of erythroid progenitors by F-MuLV.
Collapse
|
38
|
Keck S, Freudenberg M, Huber M. Activation of murine macrophages via TLR2 and TLR4 is negatively regulated by a Lyn/PI3K module and promoted by SHIP1. THE JOURNAL OF IMMUNOLOGY 2010; 184:5809-18. [PMID: 20385881 DOI: 10.4049/jimmunol.0901423] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Src family kinases are involved in a plethora of aspects of cellular signaling. We demonstrate in this study that the Src family kinase Lyn negatively regulates TLR signaling in murine bone marrow-derived macrophages (BMM Phis) and in vivo. LPS-stimulated Lyn(-/-) BMM Phis produced significantly more IL-6, TNF-alpha, and IFN-alpha/beta compared with wild type (WT) BMM Phis, suggesting that Lyn is able to control both MyD88- and TRIF-dependent signaling pathways downstream of TLR4. CD14 was not involved in this type of regulation. Moreover, Lyn attenuated proinflammatory cytokine production in BMM Phis in response to the TLR2 ligand FSL-1, but not to ligands for TLR3 (dsRNA) or TLR9 (CpG 1668). In agreement with these in vitro experiments, Lyn-deficient mice produced higher amounts of proinflammatory cytokines than did WT mice after i. v. injection of LPS or FSL-1. Although Lyn clearly acted as a negative regulator downstream of TLR4 and TLR2, it did not, different from what was proposed previously, prevent the induction of LPS tolerance. Stimulation with a low dose of LPS resulted in reduced production of proinflammatory cytokines after subsequent stimulation with a high dose of LPS in both WT and Lyn(-/-) BMM Phis, as well as in vivo. Mechanistically, Lyn interacted with PI3K; in correlation, PI3K inhibition resulted in increased LPS-triggered cytokine production. In this line, SHIP1(-/-) BMM Phis, exerting enhanced PI3K-pathway activation, produced fewer cytokines than did WT BMM Phis. The data suggest that the Lyn-mediated negative regulation of TLR signaling proceeds, at least in part, via PI3K.
Collapse
Affiliation(s)
- Simone Keck
- Department of Molecular Immunology, Biology III, University of Freiburg, Germany
| | | | | |
Collapse
|
39
|
IL-6 increases B-cell IgG production in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid production. Blood 2010; 115:4699-706. [PMID: 20351305 DOI: 10.1182/blood-2009-07-230631] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Src homology 2 domain-containing inositol 5-phosphatase (SHIP(-/-)) animals display an age-related increase in interleukin-6 (IL-6), a decrease in B lymphopoiesis, and an elevation in myelopoiesis. We investigated the origin of the IL-6 production and show that it is largely produced by peritoneal and splenic macrophages. IL-6 production by these macrophages is not a direct result of the loss of SHIP: IL-6 production is not spontaneous, is absent from bone marrow-derived macrophages, declines with prolonged culture of macrophages, and requires a stimulus present in vivo. The IL-6-rich peritoneal cavity of SHIP(-/-) mice shows more than 700-fold more immunoglobulin G (IgG) than wild-type, approximately 20% of which is aggregated or in an immune complex and contains B220(+) cells that secrete IgG. The SHIP-deficient peritoneal macrophages show evidence of IgG receptor stimulation. Animals lacking both the signal-transducing gamma-chain of IgG receptors and SHIP or Ig and SHIP produce less IL-6. The data indicate a feed-forward process in which peripheral macrophages, responding through IgG receptors to secreted IgG, produce IL-6, to support further B-cell production of IgG. Because of the proinflammatory phenotype of SHIP(-/-) animals, these findings emphasize the importance of IL-6-neutralizing strategies in autoimmune and proinflammatory diseases.
Collapse
|
40
|
Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Manzoli L, McCubrey JA. Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Investig Drugs 2010; 18:1333-49. [PMID: 19678801 DOI: 10.1517/14728220903136775] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The PI3K/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a central role in cell growth, proliferation and survival not only under physiological conditions but also in a variety of tumor cells. Therefore, the PI3K/Akt/mTOR axis may be a critical target for cancer therapy. OBJECTIVE This review discusses how PI3K/Akt/mTOR signaling network is constitutively active in acute myelogenous leukemia (AML), where it strongly influences proliferation, survival and drug-resistance of leukemic cells, and how effective targeting of this pathway with pharmacological inhibitors, used alone or in combination with existing drugs, may result in suppression of leukemic cell growth, including leukemic stem cells. METHODS We searched the literature for articles dealing with activation of this pathway in AML and highlighting the efficacy of small molecules directed against the PI3K/Akt/mTOR signaling cascade. CONCLUSIONS The limit of acceptable toxicity for standard chemotherapy has been reached in AML. Therefore, new therapeutic strategies are needed. Targeting the PI3K/Akt/mTOR signaling network with small molecule inhibitors, alone or in combinations with other drugs, may result in less toxic and more efficacious treatment of AML patients. Efforts to exploit selective inhibitors of the PI3K/Akt/mTOR pathway that show effectiveness and safety in the clinical setting are currently underway.
Collapse
Affiliation(s)
- Alberto M Martelli
- Università di Bologna, Dipartimento di Scienze Anatomiche Umane, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
De Schutter J, Guillabert A, Imbault V, Degraef C, Erneux C, Communi D, Pirson I. SHIP2 (SH2 domain-containing inositol phosphatase 2) SH2 domain negatively controls SHIP2 monoubiquitination in response to epidermal growth factor. J Biol Chem 2009; 284:36062-36076. [PMID: 19880507 DOI: 10.1074/jbc.m109.064923] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SH2 domain containing inositol 5-phosphatase SHIP2 contains several interacting domains that are important for scaffolding properties. We and others have previously reported that SHIP2 interacts with the E3 ubiquitin ligase c-Cbl. Here, we identified human SHIP2 monoubiquitination on lysine 315. SHIP2 could also be polyubiquitinated but was not degraded by the 26 S proteasome. Furthermore, we identified a ubiquitin-interacting motif at the C-terminal end of SHIP2 that confers ubiquitin binding capacity. However, this ubiquitin-interacting motif is dispensable for its monoubiquitination. We showed that neither c-Cbl nor Nedd4-1 play the role of ubiquitin ligase for SHIP2. Strikingly, monoubiquitination of the DeltaSH2-SHIP2 mutant (lacking the N-terminal SH2 domain) is strongly increased, suggesting an intrinsic inhibitory effect of the SHIP2 SH2 domain on its monoubiquitination. Moreover, SHIP2 monoubiquitination was increased upon 30 min of epidermal growth factor stimulation. This correlates with the loss of interaction between the SHIP2 SH2 domain and c-Cbl. In this model, c-Cbl could mask the monoubiquitination site and thereby prevent SHIP2 monoubiquitination. The present study thus reveals an unexpected and novel role of SHIP2 SH2 domain in the regulation of its newly identified monoubiquitination.
Collapse
Affiliation(s)
- Julie De Schutter
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Aude Guillabert
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Virginie Imbault
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Chantal Degraef
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Christophe Erneux
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - David Communi
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Isabelle Pirson
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium.
| |
Collapse
|
42
|
Wöhrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009; 7:22. [PMID: 19737390 PMCID: PMC2747914 DOI: 10.1186/1478-811x-7-22] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/08/2009] [Indexed: 01/13/2023] Open
Abstract
Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease. In this review, we provide a detailed overview of the structure, effector functions, regulation and evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.
Collapse
Affiliation(s)
- Franziska U Wöhrle
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Germany.
| | | | | |
Collapse
|
43
|
Matheny RW, Adamo ML. Current perspectives on Akt Akt-ivation and Akt-ions. Exp Biol Med (Maywood) 2009; 234:1264-70. [PMID: 19596822 DOI: 10.3181/0904-mr-138] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The serine/threonine kinase Akt is an effector of PI3K-generated phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and is a principle mediator of growth factor-induced signal transduction. Akt is activated through phosphorylation by specific kinases, and its activity is reduced directly by phosphorylation-site-specific phosphatases. In addition, Akt activity is effectively reduced by the action of phosphatases which dephosphorylate PI(3,4,5)P3, thereby reducing the levels of the essential lipid activators of PDK1 and Akt. The functions of Akt are pleiotropic and include regulation of cellular proliferation, differentiation, protein synthesis, and survival. Akt stimulates protein synthesis through actions on mTOR/p70S6K, and promotes survival by phosphorylating and inactivating pro-apoptotic molecules such as Ask1, Bad, Bax, and FoxO3a. Furthermore, loss of Akt decreases the intracellular ATP:AMP ratio, thus establishing a role for Akt in energy regulation. Three isoforms of Akt have been identified, and although redundant functions between isoforms exist, recent investigations have enumerated unique functions for each. Therefore, targeting specific Akt isozymes in a tissue- and context-specific fashion may lead to a greater understanding of Akt-mediated processes.
Collapse
Affiliation(s)
- Ronald W Matheny
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | |
Collapse
|
44
|
Leung WH, Tarasenko T, Bolland S. Differential roles for the inositol phosphatase SHIP in the regulation of macrophages and lymphocytes. Immunol Res 2009; 43:243-51. [PMID: 18989630 DOI: 10.1007/s12026-008-8078-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The SH2 domain-containing inositol 5'-phosphatase (SHIP) negatively regulates antigen, cytokine, and Fc receptor signaling pathways in immune cells. Our knowledge of the function of SHIP largely derives from in vitro studies that utilized SHIP-deficient cell lines and immune cells isolated from SHIP null mice. To avoid the pleiotropic effects observed in mice with germline deletion of SHIP, we have used the Cre-lox system to generate SHIP conditional knockout mice with deletion in specific immune cell populations. In this review we summarize our observations from mice with deletion of SHIP in lymphocyte and macrophage lineages and contrast them with earlier data gathered by the analysis of SHIP null mice.
Collapse
Affiliation(s)
- Wai-Hang Leung
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn drive, Twinbrook 2, Room 217, Rockville, MD 20852, USA
| | | | | |
Collapse
|
45
|
Scapini P, Pereira S, Zhang H, Lowell CA. Multiple roles of Lyn kinase in myeloid cell signaling and function. Immunol Rev 2009; 228:23-40. [PMID: 19290919 DOI: 10.1111/j.1600-065x.2008.00758.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lyn is an Src family kinase present in B lymphocytes and myeloid cells. In these cell types, Lyn establishes signaling thresholds by acting as both a positive and a negative modulator of a variety of signaling responses and effector functions. Lyn deficiency in mice results in the development of myeloproliferation and autoimmunity. The latter has been attributed to the hyper-reactivity of Lyn-deficient B cells due to the unique role of Lyn in downmodulating B-cell receptor activation, mainly through phosphorylation of inhibitory molecules and receptors. Myeloproliferation results, on the other hand, from the enhanced sensitivity of Lyn-deficient progenitors to a number of colony-stimulating factors (CSFs). The hyper-sensitivity to myeloid growth factors may also be secondary to poor inhibitory receptor phosphorylation, leading to impaired recruitment/activation of tyrosine phosphatases and reduced downmodulation of CSF signaling responses. Despite these observations, the overall role of Lyn in the modulation of myeloid cell effector functions is much less well understood, as often both positive and negative roles of this kinase have been reported. In this review, we discuss the current knowledge of the duplicitous nature of Lyn in the modulation of myeloid cell signaling and function.
Collapse
Affiliation(s)
- Patrizia Scapini
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0451, USA
| | | | | | | |
Collapse
|
46
|
Abstract
MicroRNA-155 (miR-155) has emerged as a critical regulator of immune cell development, function, and disease. However, the mechanistic basis for its impact on the hematopoietic system remains largely unresolved. Because miRNAs function by repressing specific mRNAs through direct 3'UTR interactions, we have searched for targets of miR-155 implicated in the regulation of hematopoiesis. In the present study, we identify Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP1) as a direct target of miR-155, and, using gain and loss of function approaches, show that miR-155 represses SHIP1 through direct 3'UTR interactions that have been highly conserved throughout evolution. Repression of endogenous SHIP1 by miR-155 occurred following sustained over-expression of miR-155 in hematopoietic cells both in vitro and in vivo, and resulted in increased activation of the kinase Akt during the cellular response to LPS. Furthermore, SHIP1 was also repressed by physiologically regulated miR-155, which was observed in LPS-treated WT versus miR-155(-/-) primary macrophages. In mice, specific knockdown of SHIP1 in the hematopoietic system following retroviral delivery of a miR-155-formatted siRNA against SHIP1 resulted in a myeloproliferative disorder, with striking similarities to that observed in miR-155-expressing mice. Our study unveils a molecular link between miR-155 and SHIP1 and provides evidence that repression of SHIP1 is an important component of miR-155 biology.
Collapse
|
47
|
Reduced proliferation of CD34(+) cells from patients with acute myeloid leukemia after gene transfer of INPP5D. Gene Ther 2009; 16:570-3. [PMID: 19148132 DOI: 10.1038/gt.2008.184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant disease characterized by deregulated proliferation of immature myeloid cells. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is frequently detected in approximately 50-70% of AML patients. The gene INPP5D encodes the SH2-containing inositol 5-phosphatase 1 (SHIP1), which is a negative regulator of PI3K/AKT signaling. After lentiviral-mediated gene transfer of INPP5D into CD34(+) cells derived from AML patients (n=12) the granulocyte macrophage-colony stimulating factor (GM-CSF)-dependent proliferation was reduced in all samples analyzed (average 86%; range 72-93%). An enzymatically inactive form of SHIP1 (D672A) had no effect. In addition, SHIP1 reduced the autonomous proliferation of CD34(+) cells from a patient with a secondary AML who had a very high peripheral blast count (300 x 10(9) l(-1)). These data show that SHIP1 can effectively block GM-CSF-dependent and autonomous proliferation of AML cells.
Collapse
|
48
|
RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 649:100-13. [PMID: 19731623 DOI: 10.1007/978-1-4419-0298-6_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osteoporosis or rheumatoid arthritis are bone diseases affecting hundreds of millions of people worldwide and thus pose a tremendous burden to health care. Ground-breaking discoveries made in basic science over the last decade shed light on the molecular mechanisms of bone metabolism and bone turnover. Thereby, it became possible over the past years to devise new and promising strategies for treating such diseases. In particular, three molecules, the receptor activator of NF-kappaB (RANK), its ligand RANKL and the decoy receptor of RANKL, osteoprotegerin (OPG), have been a major focus of scientists and pharmaceutical companies alike, since experiments using mice in which these genes have been inactivated unanimously established their pivotal role as central regulators ofosteoclast function. RANK(L) signaling not only activates a variety of downstream signaling pathways required for osteoclast development, but crosstalk with other signaling pathways also fine-tunes bone homeostasis both in normal physiology and disease. Consequently, novel drugs specifically targeting RANK-RANKL and their signaling pathways in osteoclasts are expected to revolutionize the treatment ofvarious bone diseases, such as cancer metastases, osteoporosis, or arthropathies.
Collapse
|
49
|
Xie J, Onnockx S, Vandenbroere I, Degraef C, Erneux C, Pirson I. The docking properties of SHIP2 influence both JIP1 tyrosine phosphorylation and JNK activity. Cell Signal 2008; 20:1432-41. [PMID: 18486448 DOI: 10.1016/j.cellsig.2008.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 12/30/2022]
Abstract
SHIP2 (SH2-containing inositol polyphosphate 5-phosphatase 2) is an ubiquitously expressed phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase which contains various motifs susceptible to mediate protein-protein interaction. In cell models, evidence has been provided that SHIP2 plays a role in insulin and growth factor signaling, cytoskeletal organization, cell adhesion and migration. Herein we describe the c-Jun NH2-terminal kinase (JNK)-interacting protein 1 (JIP1) as a new protein partner of SHIP2. The interaction between SHIP2 and JIP1 was confirmed in both overexpression systems and native cells. Without modifying the association of JIP1 with the MAPKs in the scaffold complex and with no apparent change of Akt phosphorylation, SHIP2 positively modulated the MLK3/JIP1-mediated JNK1 activation. Moreover, SHIP2 positively regulated the tyrosine phosphorylation of JIP1. This up-regulation was prevented by inhibitors of the Src family and Abl kinases, PP2 and Glivec. The effects of SHIP2 on JNK activity and JIP1 tyrosine phosphorylation were independent of the SHIP2 phosphoinositide 5-phosphatase activity, as similar results were obtained when using a SHIP2 catalytic inactive mutant instead of wild-type SHIP2. Together, these data suggest that by its docking properties, SHIP2 can modulate JIP1-mediated JNK pathway signaling.
Collapse
Affiliation(s)
- Jingwei Xie
- Institute of Interdisciplinary Research (IRIBHM), School of Medicine, Free University of Brussels, Campus Erasme, Building C, Route de Lennik 808, B-1070 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
PIP3 pathway in regulatory T cells and autoimmunity. Immunol Res 2008; 39:194-224. [PMID: 17917066 DOI: 10.1007/s12026-007-0075-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Tregs) play an important role in preventing both autoimmune and inflammatory diseases. Many recent studies have focused on defining the signal transduction pathways essential for the development and the function of Tregs. Increasing evidence suggest that T-cell receptor (TCR), interleukin-2 (IL-2) receptor (IL-2R), and co-stimulatory receptor signaling are important in the early development, peripheral homeostasis, and function of Tregs. The phosphoinositide-3 kinase (PI3K)-regulated pathway (PIP3 pathway) is one of the major signaling pathways activated upon TCR, IL-2R, and CD28 stimulation, leading to T-cell activation, proliferation, and cell survival. Activation of the PIP3 pathway is also negatively regulated by two phosphatidylinositol phosphatases SHIP and PTEN. Several mouse models deficient for the molecules involved in PIP3 pathway suggest that impairment of PIP3 signaling leads to dysregulation of immune responses and, in some cases, autoimmunity. This review will summarize the current understanding of the importance of the PIP3 pathway in T-cell signaling and the possible roles this pathway performs in the development and the function of Tregs.
Collapse
|