1
|
Choi SW, Graf L, Choi JW, Jo J, Boo GH, Kawai H, Choi CG, Xiao S, Knoll AH, Andersen RA, Yoon HS. Ordovician origin and subsequent diversification of the brown algae. Curr Biol 2024; 34:740-754.e4. [PMID: 38262417 DOI: 10.1016/j.cub.2023.12.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Brown algae are the only group of heterokont protists exhibiting complex multicellularity. Since their origin, brown algae have adapted to various marine habitats, evolving diverse thallus morphologies and gamete types. However, the evolutionary processes behind these transitions remain unclear due to a lack of a robust phylogenetic framework and problems with time estimation. To address these issues, we employed plastid genome data from 138 species, including heterokont algae, red algae, and other red-derived algae. Based on a robust phylogeny and new interpretations of algal fossils, we estimated the geological times for brown algal origin and diversification. The results reveal that brown algae first evolved true multicellularity, with plasmodesmata and reproductive cell differentiation, during the late Ordovician Period (ca. 450 Ma), coinciding with a major diversification of marine fauna (the Great Ordovician Biodiversification Event) and a proliferation of multicellular green algae. Despite its early Paleozoic origin, the diversification of major orders within this brown algal clade accelerated only during the Mesozoic Era, coincident with both Pangea rifting and the diversification of other heterokont algae (e.g., diatoms), coccolithophores, and dinoflagellates, with their red algal-derived plastids. The transition from ancestral isogamy to oogamy was followed by three simultaneous reappearances of isogamy during the Cretaceous Period. These are concordant with a positive character correlation between parthenogenesis and isogamy. Our new brown algal timeline, combined with a knowledge of past environmental conditions, shed new light on brown algal diversification and the intertwined evolution of multicellularity and sexual reproduction.
Collapse
Affiliation(s)
- Seok-Wan Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Institut de Biologie de l'École Normale Supérieure, Université Paris Sciences et Lettres, Paris 75005, France
| | - Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihoon Jo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Ga Hun Boo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Rokkodai, Nadaku, Kobe 657-8501, Japan
| | - Chang Geun Choi
- Department of Ecological Engineering, College of Environmental and Marine Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert A Andersen
- Friday Harbor Laboratories, University of Washington, Seattle, WA 98250, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Bogaert KA, Zakka EE, Coelho SM, De Clerck O. Polarization of brown algal zygotes. Semin Cell Dev Biol 2023; 134:90-102. [PMID: 35317961 DOI: 10.1016/j.semcdb.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Brown algae are a group of multicellular, heterokont algae that have convergently evolved developmental complexity that rivals that of embryophytes, animals or fungi. Early in development, brown algal zygotes establish a basal and an apical pole, which will become respectively the basal system (holdfast) and the apical system (thallus) of the adult alga. Brown algae are interesting models for understanding the establishment of cell polarity in a broad evolutionary context, because they exhibit a large diversity of life cycles, reproductive strategies and, importantly, their zygotes are produced in large quantities free of parental tissue, with symmetry breaking and asymmetric division taking place in a highly synchronous manner. This review describes the current knowledge about the establishment of the apical-basal axis in the model brown seaweeds Ectocarpus, Dictyota, Fucus and Saccharina, highlighting the advantages and specific interests of each system. Ectocarpus is a genetic model system that allows access to the molecular basis of early development and life-cycle control over apical-basal polarity. The oogamous brown alga Fucus, together with emerging comparative models Dictyota and Saccharina, emphasize the diversity of strategies of symmetry breaking in determining a cell polarity vector in brown algae. A comparison with symmetry-breaking mechanisms in land plants, animals and fungi, reveals that the one-step zygote polarisation of Fucus compares well to Saccharomyces budding and Arabidopsis stomata development, while the two-phased symmetry breaking in the Dictyota zygote compares to Schizosaccharomyces fission, the Caenorhabditis anterior-posterior zygote polarisation and Arabidopsis prolate pollen polarisation. The apical-basal patterning in Saccharina zygotes on the other hand, may be seen as analogous to that of land plants. Overall, brown algae have the potential to bring exciting new information on how a single cell gives rise to an entire complex body plan.
Collapse
Affiliation(s)
- Kenny A Bogaert
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.
| | - Eliane E Zakka
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium
| |
Collapse
|
3
|
Sharma V, Clark AJ, Kawashima T. Insights into the molecular evolution of fertilization mechanism in land plants. PLANT REPRODUCTION 2021; 34:353-364. [PMID: 34061252 DOI: 10.1007/s00497-021-00414-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/14/2021] [Indexed: 05/27/2023]
Abstract
Comparative genetics and genomics among green plants, including algae, provide deep insights into the evolution of land plant sexual reproduction. Land plants have evolved successive changes during their conquest of the land and innovations in sexual reproduction have played a major role in their terrestrialization. Recent years have seen many revealing dissections of the molecular mechanisms of sexual reproduction and much new genomics data from the land plant lineage, including early diverging land plants, as well as algae. This new knowledge is being integrated to further understand how sexual reproduction in land plants evolved, identifying highly conserved factors and pathways, but also molecular changes that underpinned the emergence of new modes of sexual reproduction. Here, we review recent advances in the knowledge of land plant sexual reproduction from an evolutionary perspective and also revisit the evolution of angiosperm double fertilization.
Collapse
Affiliation(s)
- Vijyesh Sharma
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Anthony J Clark
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
4
|
Fatema U, Ali MF, Hu Z, Clark AJ, Kawashima T. Gamete Nuclear Migration in Animals and Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:517. [PMID: 31068960 PMCID: PMC6491811 DOI: 10.3389/fpls.2019.00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/03/2019] [Indexed: 05/04/2023]
Abstract
The migration of male and female gamete nuclei to each other in the fertilized egg is a prerequisite for the blending of genetic materials and the initiation of the next generation. Interestingly, many differences have been found in the mechanism of gamete nuclear movement among animals and plants. Female to male gamete nuclear movement in animals and brown algae relies on microtubules. By contrast, in flowering plants, the male gamete nucleus is carried to the female gamete nucleus by the filamentous actin cytoskeleton. As techniques have developed from light, electron, fluorescence, immunofluorescence, and confocal microscopy to live-cell time-lapse imaging using fluorescently labeled proteins, details of these differences in gamete nuclear migration have emerged in a wide range of eukaryotes. Especially, gamete nuclear migration in flowering plants such as Arabidopsis thaliana, rice, maize, and tobacco has been further investigated, and showed high conservation of the mechanism, yet, with differences among these species. Here, with an emphasis on recent developments in flowering plants, we survey gamete nuclear migration in different eukaryotic groups and highlight the differences and similarities among species.
Collapse
Affiliation(s)
- Umma Fatema
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Mohammad F. Ali
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Zheng Hu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Anthony J. Clark
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
- *Correspondence: Tomokazu Kawashima,
| |
Collapse
|
5
|
Motomura T, Nagasato C, Kimura K. Cytoplasmic inheritance of organelles in brown algae. JOURNAL OF PLANT RESEARCH 2010; 123:185-92. [PMID: 20145971 DOI: 10.1007/s10265-010-0313-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
Brown algae, together with diatoms and chrysophytes, are a member of the heterokonts. They have either a characteristic life cycle of diplohaplontic alternation of gametophytic and sporophytic generations that are isomorphic or heteromorphic, or a diplontic life cycle. Isogamy, anisogamy and oogamy have been recognized as the mode of sexual reproduction. Brown algae are the characteristic group having elaborated multicellular organization within the heterokonts. In this study, cytoplasmic inheritance of chloroplasts, mitochondria and centrioles was examined, with special focus on sexual reproduction and subsequent zygote development. In oogamy, chloroplasts and mitochondria are inherited maternally. In isogamy, chloroplasts in sporophyte cells are inherited biparentally (maternal or paternal); however, mitochondria (or mitochondrial DNA) derived from the female gamete only remained during zygote development after fertilization. Centrioles in zygotes are definitely derived from the male gamete, irrespective of the sexual reproduction pattern. Female centrioles in zygotes are selectively broken down within 1-2 h after fertilization. The remaining male centrioles play a crucial role as a part of the centrosome for microtubule organization, mitosis, determination of the cytokinetic plane and cytokinesis, as well as for maintaining multicellularity and regular morphogenesis in brown algae.
Collapse
Affiliation(s)
- Taizo Motomura
- Muroran Marine Station, Field Science Centre for Northern Biosphere, Hokkaido University, Muroran 051-0003, Japan.
| | | | | |
Collapse
|
6
|
Reininger L, Tewari R, Fennell C, Holland Z, Goldring D, Ranford-Cartwright L, Billker O, Doerig C. An essential role for the Plasmodium Nek-2 Nima-related protein kinase in the sexual development of malaria parasites. J Biol Chem 2009; 284:20858-68. [PMID: 19491095 PMCID: PMC2742851 DOI: 10.1074/jbc.m109.017988] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/08/2009] [Indexed: 11/24/2022] Open
Abstract
The molecular control of cell division and development in malaria parasites is far from understood. We previously showed that a Plasmodium gametocyte-specific NIMA-related protein kinase, nek-4, is required for completion of meiosis in the ookinete, the motile form that develops from the zygote in the mosquito vector. Here, we show that another NIMA-related kinase, Pfnek-2, is also predominantly expressed in gametocytes, and that Pfnek-2 is an active enzyme displaying an in vitro substrate preference distinct from that of Pfnek-4. A functional nek-2 gene is required for transmission of both Plasmodium falciparum and the rodent malaria parasite Plasmodium berghei to the mosquito vector, which is explained by the observation that disruption of the nek-2 gene in P. berghei causes dysregulation of DNA replication during meiosis and blocks ookinete development. This has implications (i) in our understanding of sexual development of malaria parasites and (ii) in the context of control strategies aimed at interfering with malaria transmission.
Collapse
Affiliation(s)
- Luc Reininger
- From the INSERM U609-Wellcome Centre for Molecular Parasitology, Biomedical Research Centre, and
| | - Rita Tewari
- the Institute of Genetics, School of Biology, University of Nottingham, Nottingham NG72UH, United Kingdom
- the Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Clare Fennell
- From the INSERM U609-Wellcome Centre for Molecular Parasitology, Biomedical Research Centre, and
| | - Zoe Holland
- From the INSERM U609-Wellcome Centre for Molecular Parasitology, Biomedical Research Centre, and
| | - Dean Goldring
- the Department of Biochemistry, School of Biochemistry, Genetics Microbiology and Plant Pathology, University of KwaZulu-Natal, Scottsville 3209, South Africa
| | - Lisa Ranford-Cartwright
- Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, Scotland, United Kingdom
| | - Oliver Billker
- the Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
- the Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Christian Doerig
- From the INSERM U609-Wellcome Centre for Molecular Parasitology, Biomedical Research Centre, and
- INSERM U609, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Bisgrove SR, Kropf DL. Asymmetric Cell Divisions: Zygotes of Fucoid Algae as a Model System. PLANT CELL MONOGRAPHS 2007. [DOI: 10.1007/7089_2007_134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|