1
|
Wang J, Cheng Y, Shi X, Feng L. GT Transcription Factors of Rosa rugosa Thunb. Involved in Salt Stress Response. BIOLOGY 2023; 12:biology12020176. [PMID: 36829455 PMCID: PMC9952457 DOI: 10.3390/biology12020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Rosa rugosa was a famous aromatic plant while poor salt tolerance of commercial cultivars has hindered its culture in saline-alkali soil. In many plants, the roles of GT (or trihelix) genes in salt stresses responses have been emerging. In the wild R. rugosa, a total of 37 GTs (RrGTs) were grouped into GT-1, GT-2, GTγ, SH4, and SIP1 lineages. SIP1 lineage expanded by transposition. The motifs involved in the binding of GT cis-elements were conserved. Four RrGTs (RrGT11/14/16/18) significantly differentially expressed in roots or leaves under salt stress. The responsive patterns within 8 h NaCl treatment indicated that RrGTγ-4 (RrGT18) and RrGT-1 (RrGT16) were significantly induced by salt in roots of R. rugosa. Subcellular localizations of RrSIP1 (RrGT11) and RrGTγ-4 were on chloroplasts while RrGT-1 and RrSIP2 (RrGT14) located on cell nucleus. Regulation of ion transport could be the most important role of RrSIPs and RrGTγ-4. And RrGT-1 could be a halophytic gene with higher transcription abundance than glycophytic GT-1. These results provide key clue for further investigations of roles of RrGTs in salt stress response and would be helpful in the understanding the salt tolerance regulation mechanism of R. rugosa.
Collapse
Affiliation(s)
| | | | | | - Liguo Feng
- Correspondence: ; Tel.: +86-514-8797-1026
| |
Collapse
|
2
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
3
|
Potuschak T, Palatnik J, Schommer C, Sierro N, Ivanov NV, Kwon Y, Genschik P, Davière J, Otten L. Inhibition of Arabidopsis thaliana CIN-like TCP transcription factors by Agrobacterium T-DNA-encoded 6B proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1303-1317. [PMID: 31659801 PMCID: PMC7187390 DOI: 10.1111/tpj.14591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/03/2019] [Indexed: 05/26/2023]
Abstract
Agrobacterium T-DNA-encoded 6B proteins cause remarkable growth effects in plants. Nicotiana otophora carries two cellular T-DNAs with three slightly divergent 6b genes (TE-1-6b-L, TE-1-6b-R and TE-2-6b) originating from a natural transformation event. In Arabidopsis thaliana, expression of 2×35S:TE-2-6b, but not 2×35S:TE-1-6b-L or 2×35S:TE-1-6b-R, led to plants with crinkly leaves, which strongly resembled mutants of the miR319a/TCP module. This module is composed of MIR319A and five CIN-like TCP (TEOSINTHE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR) genes (TCP2, TCP3, TCP4, TCP10 and TCP24) targeted by miR319a. The CIN-like TCP genes encode transcription factors and are required for cell division arrest at leaf margins during development. MIR319A overexpression causes excessive growth and crinkly leaves. TE-2-6b plants did not show increased miR319a levels, but the mRNA levels of the TCP4 target gene LOX2 were decreased, as in jaw-D plants. Co-expression of green fluorescent protein (GFP)-tagged TCPs with native or red fluorescent protein (RFP)-tagged TE-6B proteins led to an increase in TCP protein levels and formation of numerous cytoplasmic dots containing 6B and TCP proteins. Yeast double-hybrid experiments confirmed 6B/TCP binding and showed that TE-1-6B-L and TE-1-6B-R bind a smaller set of TCP proteins than TE-2-6B. A single nucleotide mutation in TE-1-6B-R enlarged its TCP-binding repertoire to that of TE-2-6B and caused a crinkly phenotype in Arabidopsis. Deletion analysis showed that TE-2-6B targets the TCP4 DNA-binding domain and directly interferes with transcriptional activation. Taken together, these results provide detailed insights into the mechanism of action of the N. otophora TE-encoded 6b genes.
Collapse
Affiliation(s)
- Thomas Potuschak
- Institut de Biologie Moléculaire des Plantes (IBMP)Rue du Général Zimmer 1267084StrasbourgFrance
| | - Javier Palatnik
- IBR‐CONICETPredio CCTOcampo y Esmeralda s/n2000RosarioArgentina
| | - Carla Schommer
- IBR‐CONICETPredio CCTOcampo y Esmeralda s/n2000RosarioArgentina
| | - Nicolas Sierro
- PMI R&DPhilip Morris Products S. A.Quai Jeanrenaud 52000NeuchâtelSwitzerland
| | - Nikolai V. Ivanov
- PMI R&DPhilip Morris Products S. A.Quai Jeanrenaud 52000NeuchâtelSwitzerland
| | - Yerim Kwon
- Institut de Biologie Moléculaire des Plantes (IBMP)Rue du Général Zimmer 1267084StrasbourgFrance
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes (IBMP)Rue du Général Zimmer 1267084StrasbourgFrance
| | - Jean‐Michel Davière
- Institut de Biologie Moléculaire des Plantes (IBMP)Rue du Général Zimmer 1267084StrasbourgFrance
| | - Léon Otten
- Institut de Biologie Moléculaire des Plantes (IBMP)Rue du Général Zimmer 1267084StrasbourgFrance
| |
Collapse
|
4
|
de Bossoreille S, Morel P, Trehin C, Negrutiu I. REBELOTE, a regulator of floral determinacy in Arabidopsis thaliana, interacts with both nucleolar and nucleoplasmic proteins. FEBS Open Bio 2018; 8:1636-1648. [PMID: 30338215 PMCID: PMC6168688 DOI: 10.1002/2211-5463.12504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
The nucleoplasm and nucleolus are the two main territories of the nucleus. While specific functions are associated with each of these territories (such as mRNA synthesis in the nucleoplasm and ribosomal rRNA synthesis in the nucleolus), some proteins are known to be located in both. Here, we investigated the molecular function of REBELOTE (RBL), an Arabidopsis thaliana protein previously characterized as a regulator of floral meristem termination. We show that RBL displays a dual localization, in the nucleolus and nucleoplasm. Moreover, we used direct and global approaches to demonstrate that RBL interacts with nucleic acid-binding proteins. It binds to the NOC proteins SWA2, AtNOC2 and AtNOC3 in both the nucleolus and nucleoplasm, and also to OBE1 and VFP3/ENAP1. Taking into account the identities of these RBL interactors, we hypothesize that RBL acts both in ribosomal biogenesis and in the regulation of gene expression.
Collapse
Affiliation(s)
- Stève de Bossoreille
- Laboratoire Reproduction et Développement des Plantes Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA Lyon France
| | - Patrice Morel
- Laboratoire Reproduction et Développement des Plantes Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA Lyon France
| | - Christophe Trehin
- Laboratoire Reproduction et Développement des Plantes Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA Lyon France
| | - Ioan Negrutiu
- Laboratoire Reproduction et Développement des Plantes Univ Lyon ENS de Lyon UCB Lyon 1 CNRS, INRA Lyon France
| |
Collapse
|
5
|
Chen K, Dorlhac de Borne F, Sierro N, Ivanov NV, Alouia M, Koechler S, Otten L. Organization of the TC and TE cellular T-DNA regions in Nicotiana otophora and functional analysis of three diverged TE-6b genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:274-287. [PMID: 29396989 DOI: 10.1111/tpj.13853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 05/27/2023]
Abstract
Nicotiana otophora contains Agrobacterium-derived T-DNA sequences introduced by horizontal gene transfer (Chen et al., 2014). Sixty-nine contigs were assembled into four different cellular T-DNAs (cT-DNAs) totalling 83 kb. TC and TE result from two successive transformation events, each followed by duplication, yielding two TC and two TE inserts. TC is also found in other Nicotiana species, whereas TE is unique to N. otophora. Both cT-DNA regions are partially duplicated inverted repeats. Analysis of the cT-DNA divergence patterns allowed reconstruction of the evolution of the TC and TE regions. TC and TE carry 10 intact open reading frames. Three of these are TE-6b genes, derived from a single 6b gene carried by the Agrobacterium strain which inserted TE in the N. otophora ancestor. 6b genes have so far only been found in Agrobacterium tumefaciens or Agrobacterium vitis T-DNAs and strongly modify plant growth (Chen and Otten, 2016). The TE-6b genes were expressed in Nicotiana tabacum under the constitutive 2 × 35S promoter. TE-1-6b-R and TE-2-6b led to shorter plants, dark-green leaves, a strong increase in leaf vein development and modified petiole wings. TE-1-6b-L expression led to a similar phenotype, but in addition leaves show outgrowths at the margins, flowers were modified and plants became viviparous, i.e. embryos germinated in the capsules at an early stage of their development. Embryos could be rescued by culture in vitro. The TE-6b phenotypes are very different from the earlier described 6b phenotypes and could provide new insight into the mode of action of the 6b genes.
Collapse
Affiliation(s)
- Ke Chen
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | | | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A. [part of Philip Morris International group of companies], Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A. [part of Philip Morris International group of companies], Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Malek Alouia
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
| | - Sandrine Koechler
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
| | - Léon Otten
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
| |
Collapse
|
6
|
Abstract
The transfer of T-DNA sequences from Agrobacterium to plant cells is a well-understood process of natural genetic engineering. The expression of T-DNA genes in plants leads to tumors, hairy roots, or transgenic plants. The transformed cells multiply and synthesize small molecules, called opines, used by Agrobacteria for their growth. Several T-DNA genes stimulate or influence plant growth. Among these, iaaH and iaaM encode proteins involved in auxin synthesis, whereas ipt encodes a protein involved in cytokinin synthesis. Growth can also be induced or modified by other T-DNA genes, collectively called plast genes (for phenotypic plasticity). The plast genes are defined by their common ancestry and are mostly found on T-DNAs. They can influence plant growth in different ways, but the molecular basis of their morphogenetic activity remains largely unclear. Only some plast genes, such as 6b, rolB, rolC, and orf13, have been studied in detail. Plast genes have a significant potential for applied research and may be used to modify the growth of crop plants. In this review, I summarize the most important findings and models from 30 years of plast gene research and propose some outlooks for the future.
Collapse
|
7
|
Chen K, Otten L. Morphological analysis of the 6b oncogene-induced enation syndrome. PLANTA 2016; 243:131-48. [PMID: 26353911 DOI: 10.1007/s00425-015-2387-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION The T-DNA 6b oncogene induces complex and partly unprecedented phenotypic changes in tobacco stems and leaves, which result from hypertrophy and hyperplasia with ectopic spot-like, ridge-like and sheet-like meristems. The Agrobacterium T-DNA oncogene 6b causes complex growth changes in tobacco including enations; this unusual phenotype has been called "6b enation syndrome". A detailed morphological and anatomical analysis of the aerial part of Nicotiana tabacum plants transformed with a dexamethasone-inducible dex-T-6b gene revealed several striking growth phenomena. Among these were: uniform growth of ectopic photosynthetic cells on the abaxial leaf side, gutter-like petioles with multiple parallel secondary veins, ectopic leaf primordia emerging behind large glandular trichomes, corniculate structures emerging from distal ends of secondary veins, pin-like structures with remarkable branching patterns, ectopic vascular strands in midveins and petioles extending down along the stem, epiascidia and hypoascidia, double enations and complete inhibition of leaf outgrowth. Ectopic stipule-like leaves and inverted leaves were found at the base of the petioles. Epinastic and hyponastic growth of petioles and midveins yielded complex but predictable leaf folding patterns. Detailed anatomical analysis of over sixty different 6b-induced morphological changes showed that the different modifications are derived from hypertrophy and abaxial hyperplasia, with ectopic photosynthetic cells forming spot-like, ridge-like and sheet-like meristems and ectopic vascular strands forming regular patterns in midveins, petioles and stems. Part of the enation syndrome is due to an unknown phloem-mobile enation factor. Graft experiments showed that the 6b mRNA is mobile and could be the enation factor. Our work provides a better insight in the basic effects of the 6b oncogene.
Collapse
Affiliation(s)
- Ke Chen
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
| | - Léon Otten
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France.
| |
Collapse
|
8
|
García-Cano E, Magori S, Sun Q, Ding Z, Lazarowitz SG, Citovsky V. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF. PLoS One 2015; 10:e0142128. [PMID: 26571494 PMCID: PMC4646629 DOI: 10.1371/journal.pone.0142128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 02/01/2023] Open
Abstract
Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq) revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis.
Collapse
Affiliation(s)
- Elena García-Cano
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
| | - Shimpei Magori
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York, United States of America
| | - Zehong Ding
- Computational Biology Service Unit, Cornell University, Ithaca, New York, United States of America
| | - Sondra G. Lazarowitz
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ito M, Machida Y. Reprogramming of plant cells induced by 6b oncoproteins from the plant pathogen Agrobacterium. JOURNAL OF PLANT RESEARCH 2015; 128:423-435. [PMID: 25694001 DOI: 10.1007/s10265-014-0694-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Reprogramming of plant cells is an event characterized by dedifferentiation, reacquisition of totipotency, and enhanced cell proliferation, and is typically observed during formation of the callus, which is dependent on plant hormones. The callus-like cell mass, called a crown gall tumor, is induced at the sites of infection by Agrobacterium species through the expression of hormone-synthesizing genes encoded in the T-DNA region, which probably involves a similar reprogramming process. One of the T-DNA genes, 6b, can also by itself induce reprogramming of differentiated cells to generate tumors and is therefore recognized as an oncogene acting in plant cells. The 6b genes belong to a group of Agrobacterium T-DNA genes, which include rolB, rolC, and orf13. These genes encode proteins with weakly conserved sequences and may be derived from a common evolutionary origin. Most of these members can modify plant growth and morphogenesis in various ways, in most cases without affecting the levels of plant hormones. Recent studies have suggested that the molecular function of 6b might be to modify the patterns of transcription in the host nuclei, particularly by directly targeting the host transcription factors or by changing the epigenetic status of the host chromatin through intrinsic histone chaperone activity. In light of the recent findings on zygotic resetting of nucleosomal histone variants in Arabidopsis thaliana, one attractive idea is that acquisition of totipotency might be facilitated by global changes of epigenetic status, which might be induced by replacement of histone variants in the zygote after fertilization and in differentiated cells upon stimulation by plant hormones as well as by expression of the 6b gene.
Collapse
Affiliation(s)
- Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan,
| | | |
Collapse
|
10
|
Ishibashi N, Kitakura S, Terakura S, Machida C, Machida Y. Protein encoded by oncogene 6b from Agrobacterium tumefaciens has a reprogramming potential and histone chaperone-like activity. FRONTIERS IN PLANT SCIENCE 2014; 5:572. [PMID: 25389429 PMCID: PMC4211554 DOI: 10.3389/fpls.2014.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/05/2014] [Indexed: 05/31/2023]
Abstract
Crown gall tumors are formed mainly by actions of a group of genes in the T-DNA that is transferred from Agrobacterium tumefaciens and integrated into the nuclear DNA of host plants. These genes encode enzymes for biosynthesis of auxin and cytokinin in plant cells. Gene 6b in the T-DNA affects tumor morphology and this gene alone is able to induce small tumors on certain plant species. In addition, unorganized calli are induced from leaf disks of tobacco that are incubated on phytohormone-free media; shooty teratomas, and morphologically abnormal plants, which might be due to enhanced competence of cell division and meristematic states, are regenerated from the calli. Thus, the 6b gene appears to stimulate a reprogramming process in plants. To uncover mechanisms behind this process, various approaches including the yeast-two-hybrid system have been exploited and histone H3 was identified as one of the proteins that interact with 6b. It has been also demonstrated that 6b acts as a histone H3 chaperon in vitro and affects the expression of various genes related to cell division competence and the maintenance of meristematic states. We discuss current views on a role of 6b protein in tumorigenesis and reprogramming in plants.
Collapse
Affiliation(s)
- Nanako Ishibashi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Saeko Kitakura
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
- Graduate School of Bioscience and Biotechnology, Chubu UniversityKasugai, Japan
| | - Shinji Terakura
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu UniversityKasugai, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoya, Japan
| |
Collapse
|
11
|
Takahashi S, Sato R, Takahashi M, Hashiba N, Ogawa A, Toyofuku K, Sawata T, Ohsawa Y, Ueda K, Wabiko H. Ectopic localization of auxin and cytokinin in tobacco seedlings by the plant-oncogenic AK-6b gene of Agrobacterium tumefaciens AKE10. PLANTA 2013; 238:753-70. [PMID: 23873395 DOI: 10.1007/s00425-013-1930-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 07/05/2013] [Indexed: 06/02/2023]
Abstract
The oncogenic 6b gene of Agrobacterium tumefaciens induces a number of morphological and metabolic alterations in plants. Although molecular functions associated with the 6b genes have been proposed, including auxin transport, sugar transport, transcriptional regulation, and miRNA metabolism, so far an unequivocal conclusion has not been obtained. We investigated the association between auxin accumulation and tumor development of the tobacco seedlings expressing the AK-6b gene under the control of the dexamethasone-inducible promoter. Indole-3-acetic acid (IAA) localization was examined by immunochemical staining with monoclonal antibody against IAA and by histochemical analysis using the IAA-specific induced construct, DR5::GUS (β-glucuronidase). Both procedures indicated that IAA preferentially accumulated in the tumorous protrusions as well as in newly developing vascular bundles in the tumors. Furthermore, true leaves also showed abaxial IAA localization, leading to altered leaves in which the adaxial and abaxial identities were no longer evident. Co-localization of cytokinin and auxin in the abaxial tumors was verified by immunochemical staining with an antibody against cytokinin. Treatment of AK-6b-seedlings with N-1-naphthylphthalamic acid, an inhibitor of polar auxin transport, promoted the morphological severity of phenotypes, whereas 1-naphthoxyacetic acid, a specific auxin influx carrier inhibitor, induced tumor regression on cotyledons and new tumorous proliferations on hypocotyls. Prominent accumulation of both auxin and cytokinin was observed in both regressed and newly developing tumors. We suggest from these results that modulation of auxin/cytokinin localization as a result of AK-6b gene expression is responsible for the tumorous proliferation.
Collapse
Affiliation(s)
- Sachiko Takahashi
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata Nishi, Nakano-Aza, Shimoshinjo, Akita, 010-0195, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jin YK, Liu CL, Ruan Y. [6b genes: the important effective factors relative to tumor formation in plants]. YI CHUAN = HEREDITAS 2011; 33:1212-1218. [PMID: 22120076 DOI: 10.3724/sp.j.1005.2011.01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In recent years, the functional mechanisms of the oncogenens from Agrobacterium in plants were received more and more attentions. 6b genes, derived from the T-DNA fragment, are vital carcinogenesis factors of plants and belong to rolB genes family. In plants, 6b genes can affect phytohormone levels and carbohydrate contents, and can also cause accumulation of secondary metabolites, as well as change the relative genes expression. The specific mechanisms behind these impacts remain to be researched in-depth. In this paper, the function, structure, activity, and acting mode of the 6b genes were summarized, which provide a theoretical foundation for further study and application of these functional genes.
Collapse
Affiliation(s)
- Yun-Kai Jin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.
| | | | | |
Collapse
|
13
|
Wang M, Soyano T, Machida S, Yang JY, Jung C, Chua NH, Yuan YA. Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev 2010; 25:64-76. [PMID: 21156810 DOI: 10.1101/gad.1985511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Agrobacterium Ti plasmid (T-DNA) 6b proteins interact with many different host proteins implicated in plant cell proliferation. Here, we show that Arabidopsis plants overexpressing 6b display microRNA (miRNA) deficiency by directly targeting SERRATE and AGO1 via a specific loop fragment (residues 40-55). In addition, we report the crystal structures of Agrobacterium tumefaciens AK6b at 2.1 Å, Agrobacterium vitis AB6b at 1.65 Å, and Arabidopsis ADP ribosylation factor (ARF) at 1.8 Å. The 6b structure adopts an ADP-ribosylating toxin fold closely related to cholera toxin. In vitro ADP ribosylation analysis demonstrates that 6b represents a new toxin family, with Tyr 66, Thr 93, and Tyr 153 as the ADP ribosylation catalytic residues in the presence of Arabidopsis ARF and GTP. Our work provides molecular insights, suggesting that 6b regulates plant cell growth by the disturbance of the miRNA pathway through its ADP ribosylation activity.
Collapse
Affiliation(s)
- Meimei Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | | | |
Collapse
|
14
|
Gelvin SB. Plant proteins involved in Agrobacterium-mediated genetic transformation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:45-68. [PMID: 20337518 DOI: 10.1146/annurev-phyto-080508-081852] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Agrobacterium species genetically transform plants by transferring a region of plasmid DNA, T-DNA, into host plant cells. The bacteria also transfer several virulence effector proteins. T-DNA and virulence proteins presumably form T-complexes within the plant cell. Super-T-complexes likely also form by interaction of plant-encoded proteins with T-complexes. These protein-nucleic acid complexes traffic through the plant cytoplasm, enter the nucleus, and eventually deliver T-DNA to plant chromatin. Integration of T-DNA into the plant genome establishes a permanent transformation event, permitting stable expression of T-DNA-encoded transgenes. The transformation process is complex and requires participation of numerous plant proteins. This review discusses our current knowledge of plant proteins that contribute to Agrobacterium-mediated transformation, the roles these proteins play in the transformation process, and the modern technologies that have been employed to elucidate the cell biology of transformation.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|