1
|
Tian X, Guo J, Song Y, Yu Q, Liu C, Fu Z, Shi Y, Shao Y, Yuan Z. Intraspecific differentiation of Lindera obtusiloba as revealed by comparative plastomic and evolutionary analyses. Ecol Evol 2024; 14:e11119. [PMID: 38469045 PMCID: PMC10927362 DOI: 10.1002/ece3.11119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Lindera obtusiloba Blume is the northernmost tree species in the family Lauraceae, and it is a key species in understanding the evolutionary history of this family. The species of L. obtusiloba in East Asia has diverged into the Northern and Southern populations, which are geographically separated by an arid belt. Though the morphological differences between populations have been observed and well documented, intraspecific variations at the plastomic level have not been systematically investigated to date. Here, ten chloroplast genomes of L. obtusiloba individuals were sequenced and analyzed along with three publicly available plastomes. Comparative plastomic analysis suggests that both the Northern and the Southern populations share similar overall structure, gene order, and GC content in their plastomes although the size of the plasome and the level of intraspecific variability do vary between the two populations. The Northern have relatively larger plastomes while the Southern population possesses higher intraspecific variability, which could be attributed to the complexity of the geological environments in the South. Phylogenomic analyses also support the split of the Northern and Southern clades among L. obtusiloba individuals. However, there is no obvious species boundary between var. obtusiloba and var. heterophylla in the Southern population, indicating that gene flow could still occur between these two varieties, and this could be used as a good example of reticulate evolution. It is also found that a few photosynthesis-related genes are under positive selection, which is mainly related to the geological and environmental differences between the Northern and the Southern regions. Our results provide a reference for phylogenetic analysis within species and suggest that phylogenomic analyses with a sufficient number of nuclear and chloroplast genomic target loci from widely distributed individuals could provide a deeper understanding of the population evolution of the widespread species.
Collapse
Affiliation(s)
- Xiangyu Tian
- College of Life SciencesHenan Agricultural UniversityZhengzhouHenanChina
| | - Jia Guo
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education)Guangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinGuangxiChina
| | - Qunfei Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaYunnanChina
| | - Chao Liu
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingYunnanChina
| | - Zhixi Fu
- College of Life SciencesSichuan Normal UniversityChengduChina
| | - Yuhua Shi
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yizhen Shao
- College of Life SciencesHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhiliang Yuan
- College of Life SciencesHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
2
|
Qin SY, Zuo ZY, Guo C, Du XY, Liu SY, Yu XQ, Xiang XG, Rong J, Liu B, Liu ZF, Ma PF, Li DZ. Phylogenomic insights into the origin and evolutionary history of evergreen broadleaved forests in East Asia under Cenozoic climate change. Mol Ecol 2023; 32:2850-2868. [PMID: 36847615 DOI: 10.1111/mec.16904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
The evergreen versus deciduous leaf habit is an important functional trait for adaptation of forest trees and has been hypothesized to be related to the evolutionary processes of the component species under paleoclimatic change, and potentially reflected in the dynamic history of evergreen broadleaved forests (EBLFs) in East Asia. However, knowledge about the shift of evergreen versus deciduous leaf with the impact of paleoclimatic change using genomic data remains rare. Here, we focus on the Litsea complex (Lauraceae), a key lineage with dominant species of EBLFs, to gain insights into how evergreen versus deciduous trait shifted, providing insights into the origin and historical dynamics of EBLFs in East Asia under Cenozoic climate change. We reconstructed a robust phylogeny of the Litsea complex using genome-wide single-nucleotide variants (SNVs) with eight clades resolved. Fossil-calibrated analyses, diversification rate shifts, ancestral habit, ecological niche modelling and climate niche reconstruction were employed to estimate its origin and diversification pattern. Taking into account studies on other plant lineages dominating EBLFs of East Asia, it was revealed that the prototype of EBLFs in East Asia probably emerged in the Early Eocene (55-50 million years ago [Ma]), facilitated by the greenhouse warming. As a response to the cooling and drying climate in the Middle to Late Eocene (48-38 Ma), deciduous habits were evolved in the dominant lineages of the EBLFs in East Asia. Up to the Early Miocene (23 Ma), the prevailing of East Asian monsoon increased the extreme seasonal precipitation and accelerated the emergence of evergreen habits of the dominant lineages, and ultimately shaped the vegetation resembling that of today.
Collapse
Affiliation(s)
- Sheng-Yuan Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shui-Yin Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Qin Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Centre for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Centre for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhi-Fang Liu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
3
|
Comparative Analysis of Complete Chloroplast Genomes of Nine Species of Litsea (Lauraceae): Hypervariable Regions, Positive Selection, and Phylogenetic Relationships. Genes (Basel) 2022; 13:genes13091550. [PMID: 36140718 PMCID: PMC9498446 DOI: 10.3390/genes13091550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Litsea is a group of evergreen trees or shrubs in the laurel family, Lauraceae. Species of the genus are widely used for a wide range of medicinal and industrial aspects. At present, most studies related to the gene resources of Litsea are restricted to morphological analyses or features of individual genomes, and currently available studies of select molecular markers are insufficient. In this study, we assembled and annotated the complete chloroplast genomes of nine species in Litsea, carried out a series of comparative analyses, and reconstructed phylogenetic relationships within the genus. The genome length ranged from 152,051 to 152,747 bp and a total of 128 genes were identified. High consistency patterns of codon bias, repeats, divergent analysis, single nucleotide polymorphisms (SNP) and insertions and deletions (InDels) were discovered across the genus. Variations in gene length and the presence of the pseudogene ycf1Ψ, resulting from IR contraction and expansion, are reported. The hyper-variable gene rpl16 was identified for its exceptionally high Ka/Ks and Pi values, implying that those frequent mutations occurred as a result of positive selection. Phylogenetic relationships were recovered for the genus based on analyses of full chloroplast genomes and protein-coding genes. Overall, both genome sequences and potential molecular markers provided in this study enrich the available genomic resources for species of Litsea. Valuable genomic resources and divergent analysis are also provided for further research of the evolutionary patterns, molecular markers, and deeper phylogenetic relationships of Litsea.
Collapse
|
4
|
Liu C, Chen HH, Tang LZ, Khine PK, Han LH, Song Y, Tan YH. Plastid genome evolution of a monophyletic group in the subtribe Lauriineae (Laureae, Lauraceae). PLANT DIVERSITY 2022; 44:377-388. [PMID: 35967258 PMCID: PMC9363652 DOI: 10.1016/j.pld.2021.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/15/2023]
Abstract
Litsea, a non-monophyletic group of the tribe Laureae (Lauraceae), plays important roles in the tropical and subtropical forests of Asia, Australia, Central and North America, and the islands of the Pacific. However, intergeneric relationships between Litsea and Laurus, Lindera, Parasassafras and Sinosassafras of the tribe Laureae remain unresolved. In this study, we present phylogenetic analyses of seven newly sequenced Litsea plastomes, together with 47 Laureae plastomes obtained from public databases, representing six genera of the Laureae. Our results highlight two highly supported monophyletic groups of Litsea taxa. One is composed of 16 Litsea taxa and two Lindera taxa. The 18 plastomes of these taxa were further compared for their gene structure, codon usage, contraction and expansion of inverted repeats, sequence repeats, divergence hotspots, and gene evolution. The complete plastome size of newly sequenced taxa varied between 152,377 bp (Litsea auriculata) and 154,117 bp (Litsea pierrei). Seven of the 16 Litsea plastomes have a pair of insertions in the IRa (trnL-trnH) and IRb (ycf2) regions. The 18 plastomes of Litsea and Lindera taxa exhibit similar gene features, codon usage, oligonucleotide repeats, and inverted repeat dynamics. The codons with the highest frequency among these taxa favored A/T endings and each of these plastomes had nine divergence hotspots, which are located in the same regions. We also identified six protein coding genes (accD, ndhJ, rbcL, rpoC2, ycf1 and ycf2) under positive selection in Litsea; these genes may play important roles in adaptation of Litsea species to various environments.
Collapse
Affiliation(s)
- Chao Liu
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Huan-Huan Chen
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Li-Zhou Tang
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Phyo Kay Khine
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Li-Hong Han
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education), Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Yun-Hong Tan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| |
Collapse
|
5
|
Chen Z, He L, Weicai S, Shi W, Gong Q, Shi C. Complete chloroplast genome sequence and annotation of Actinodaphne lecomtei C.K.Allen, 1938 (Lauraceae). Mitochondrial DNA B Resour 2022; 7:548-549. [PMID: 35372691 PMCID: PMC8967194 DOI: 10.1080/23802359.2022.2054382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Zimeng Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Li He
- College of Art, Qingdao University of Science and Technology, Qingdao, China
| | - Song Weicai
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenbo Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Qin Gong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chao Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Gang Z, Liu B, Rohwer JG, Ferguson DK, Yang Y. Leaf epidermal micromorphology defining the clades in Cinnamomum (Lauraceae). PHYTOKEYS 2021; 182:125-148. [PMID: 34720625 PMCID: PMC8516828 DOI: 10.3897/phytokeys.182.67289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/07/2021] [Indexed: 05/23/2023]
Abstract
In this study, we sampled 48 species of Asian Cinnamomum covering the species groups that were identified in recent phylogenetic studies and conducted leaf micromorphological observations using both light microscopy (LM) and scanning electron microscopy (SEM). Synapomorphies were determined by means of mapping micromorphological characters on a phylogenetic tree. The results indicate that Cinnamomum exhibits two different types of leaf upper epidermis: Type I has smooth/non-reticulate periclinal walls whereas Type II has reticulate periclinal walls and is unusual in the family Lauraceae. We found that the two types of micromorphological characters are clade-specific, sect. Camphora s.s. possesses Type I leaf upper epidermis, and sect. Cinnamomum s.l. has Type II leaf upper epidermis. Our study also reveals that C.saxatile, a member of sect. Camphora s.l. in the traditional classification, actually has Type II leaf upper epidermis, thus reinforcing the result of a recent molecular phylogeny that has this species in a clade consisting mainly of species of sect. Cinnamomum.
Collapse
Affiliation(s)
- Zeng Gang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 10093, ChinaXishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglaChina
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, ChinaUniversität HamburgHamburgGermany
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 10093, ChinaXishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglaChina
| | - Jens G. Rohwer
- Universität Hamburg, Institute of Plant Science and Microbiology, Ohnhorststr. 18, 22609 Hamburg, GermanyUniversity of ViennaViennaAustria
| | - David Kay Ferguson
- University of Vienna, Department of Paleontology, 1090 Vienna, AustriaNanjing Forestry UniversityViennaAustria
| | - Yong Yang
- College of Biology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, Jiangsu, ChinaInstitute of Botany, the Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Srinivas SG, Krishnamurthy YL, Kumar SS. Diversity, ecology and molecular phylogeny of genus Litsea (Lauraceae) in Central Western Ghat areas of India. Trop Ecol 2021. [DOI: 10.1007/s42965-021-00168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Research Progress in Plant Molecular Systematics of Lauraceae. BIOLOGY 2021; 10:biology10050391. [PMID: 34062846 PMCID: PMC8147330 DOI: 10.3390/biology10050391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Lauraceae, as an angiosperm group with high ecological and economic value, has been widely studied. With the development of science and technology, the research of Lauraceae has changed from morphology to molecular systematics. Our paper reviewed the molecular phylogeny of Lauraceae in recent years. From the aspects of gene fragments, chloroplast genome and DNA barcodes, we mainly discussed the establishment of Cinnamomeae in the ‘Core Lauraceae’ and the tribal controversial genera (Actinodaphne, Sassafras, Caryodaphnopsis, Neocinnamomum and Cassytha). We think that the whole genome and inflorescence characteristics are the breakthrough to solve the tribal problem of Lauraceae. Using reliable molecular and morphological evidence to reconstruct the phylogenetic relationship of Lauraceae will provide an important theoretical basis for the rational utilization of Lauraceae resources, the development of potential resources and the protection of rare plants. Abstract Lauraceae is a large family of woody plants with high ecological and economic value. The tribal and generic division and phylogenetic relationship of Lauraceae have long been controversial. Based on morphological and molecular evidence, phylogenetic relationships within the Cinnamomeae, Laureae and Perseeae tribes, also called ‘the Core Lauraceae’, have arisen particular attention. In this review, we comprehensively collated the literatures on the phylogeny of Lauraceae published in recent years and summarized progress made in molecular systematic researches employing gene fragments, chloroplast genomes and DNA barcodings analyses. We clarified the phylogenetic relationships and main controversies of ‘the Core Lauraceae’, the systemic position of fuzzy genera (Neocinnamomum, Caryodaphnopsis and Cassytha) and the development of chloroplast genome and DNA barcodes. We further suggested and proposed the whole genome analysis and different inflorescence types would be possible to provide more information for further research on phylogenetic relationships and taxonomy of Lauraceae.
Collapse
|
9
|
Xiao TW, Xu Y, Jin L, Liu TJ, Yan HF, Ge XJ. Conflicting phylogenetic signals in plastomes of the tribe Laureae (Lauraceae). PeerJ 2020; 8:e10155. [PMID: 33088627 PMCID: PMC7568859 DOI: 10.7717/peerj.10155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Gene tree discordance is common in phylogenetic analyses. Many phylogenetic studies have excluded non-coding regions of the plastome without evaluating their impact on tree topology. In general, plastid loci have often been treated as a single unit, and tree discordance among these loci has seldom been examined. Using samples of Laureae (Lauraceae) plastomes, we explored plastome variation among the tribe, examined the influence of non-coding regions on tree topology, and quantified intra-plastome conflict. Results We found that the plastomes of Laureae have low inter-specific variation and are highly similar in structure, size, and gene content. Laureae was divided into three groups, subclades I, II and III. The inclusion of non-coding regions changed the phylogenetic relationship among the three subclades. Topologies based on coding and non-coding regions were largely congruent except for the relationship among subclades I, II and III. By measuring the distribution of phylogenetic signal across loci that supported different topologies, we found that nine loci (two coding regions, two introns and five intergenic spacers) played a critical role at the contentious node. Conclusions Our results suggest that subclade III and subclade II are successively sister to subclade I. Conflicting phylogenetic signals exist between coding and non-coding regions of Laureae plastomes. Our study highlights the importance of evaluating the influence of non-coding regions on tree topology and emphasizes the necessity of examining discordance among different plastid loci in phylogenetic studies.
Collapse
Affiliation(s)
- Tian-Wen Xiao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lu Jin
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tong-Jian Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Hai-Fei Yan
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xue-Jun Ge
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
10
|
Jo S, Kim YK, Cheon SH, Fan Q, Kim KJ. Characterization of 20 complete plastomes from the tribe Laureae (Lauraceae) and distribution of small inversions. PLoS One 2019; 14:e0224622. [PMID: 31675370 PMCID: PMC6824564 DOI: 10.1371/journal.pone.0224622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/17/2019] [Indexed: 01/24/2023] Open
Abstract
Lindera Thunb. (Lauraceae) consists of approximately 100 species, mainly distributed in the temperate and tropical regions of East Asia. In this study, we report 20 new, complete plastome sequences including 17 Lindera species and three related species, Actinodaphne lancifolia, Litsea japonica and Sassafras tzumu. The complete plastomes of Lindera range from 152,502 bp (L. neesiana) to 154,314 bp (L. erythrocarpa) in length. Eleven small inversion (SI) sites are documented among the plastomes. Six of the 11 SI sites are newly reported and they locate in rpoB-trnC, psbC-trnS, petA-psbJ, rpoA and ycf2 regions. The distribution patterns of SIs are useful for species identification. An average of 83 simple sequence repeats (SSRs) were detected in each plastome. The mono-SSRs accounted for 72.7% of total SSRs, followed by di- (12.4%), tetra- (9.4%), tri- (4.2%), and penta-SSRs (1.3%). Of these SSRs, 64.6% were distributed in an intergenic spacer (IGS) region. In addition, 79.8% of the SSRs are located in a large single copy (LSC) region. In contrast, almost no SSRs are distributed in inverted repeat (IR) regions. The SSR loci are useful to identifying species but the phylogenetic value is low because the majority of them show autapomorphic status or highly homoplastic characteristics. The nucleotide diversity (Pi) values also indicated the conserved nature of the IR region compared to LSC and small single copy (SSC) regions. Five spacer regions with high Pi values, trnH-psbA, petA-psbJ and ndhF-rpl32, rpl32-trnL and Ψycf1-ndhF, have a potential use for the molecular identification study of Lindera and related species. Lindera species form a paraphyletic group in the plastome tree because of the inclusion of related genera such as Actinodaphne, Laurus, Litsea and Neolitsea. A former member of tribe Laureae, Sassafras, forms a clade with the tribe Cinnamomeae. The SIs do not affect the phylogenetic relationship of Laureae. This result indicated that ancient plastome captures may have contribute to the mixed intergeneric relationship of Laureae. Alternatively, the result may indicate that the morphological characters defined the genera of Lauraceae originated for several times.
Collapse
Affiliation(s)
- Sangjin Jo
- School of Life Sciences, Korea University, Seoul, Korea
| | - Young-Kee Kim
- School of Life Sciences, Korea University, Seoul, Korea
| | - Se-Hwan Cheon
- School of Life Sciences, Korea University, Seoul, Korea
| | - Qiang Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
11
|
Tian X, Ye J, Song Y. Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae. PeerJ 2019; 7:e7662. [PMID: 31608166 PMCID: PMC6786250 DOI: 10.7717/peerj.7662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/12/2019] [Indexed: 01/02/2023] Open
Abstract
Lindera is a genus (c. 100 spp.) of trees belonging to the “core Laureae” group in the family Lauraceae. It is often confused with Litsea, and the systematics of the genus is unclear. Here, total 10 complete plastomes from nine trinerved Lindera species and another species Lindera obtusiloba (sect. Palminerviae Meissn.) were sequenced. Nine highly variable regions, trnH-GUG/psbA, psbM/trnD-GUC, petA/psbL, ndhF, trnL-UAG/ndhD, and ycf1, were identified among the 10 Lindera species. In addition, a total of 1,836 mutation events including six micro-inversions, 156 indels, and 1,674 substitutions, were also summarized. Comparing our sequences with other available plastomes in the “core Laureae,” we put forward that six hypervariable loci, trnH-GUG/psbA, ndhF, ndhF/rpl32, trl32/trnL-UAG, ndhD, and ycf1, could potentially be used as plastid barcode candidates for species identification. Further phylogenetic analyses were conducted using 49 complete Lauraceae plastomes. The results supported a close relationship among trinerved Lindera species and suggested an improved trinerved group comprising species of trinerved Lindera species and Iteadaphne caudate.
Collapse
Affiliation(s)
- Xiangyu Tian
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Junwei Ye
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| |
Collapse
|
12
|
Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae). Sci Rep 2018; 8:8844. [PMID: 29891996 PMCID: PMC5995902 DOI: 10.1038/s41598-018-27090-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
Lindera, a core genus of the Lauraceae family, has important economic uses in eastern Asia and North America. However, its historical diversification has not been clarified. In this study, we report nine newly sequenced Lindera plastomes. The plastomes of these nine Lindera species range from 152,211 (L. nacusua) to 152,968 bp (L. metcalfiana) in length, similar to that of another Lauraceae species, Litsea glutinosa (152,618 bp). The length variation of these plastomes derived from the length variation in the loci ycf1, ycf2, ψycf1, and ndhF-ψycf1. Comparing our sequences with other available plastomes in the Lauraceae indicated that eight hypervariable loci, ihbA-trnG, ndhA, ndhF-rpl32, petA-psbJ, psbK-psbI, rps16, trnS-trnG, and ycf1, could serve as DNA barcodes for species delineation, and that the inverted repeats (IRs) showed contraction/expansion. Further phylogenetic analyses were performed using 32 complete plastomes of Lauraceae and seven barcodes from 14 additional species of Lindera and related species in the core Lauraceae. The results showed that these Lindera species grouped into two or four sub-clades, and that two Litsea species and Laurus nobilis were located in the same sub-clade as five Lindera species. These data support a close relationship between the genera Laurus, Lindera, and Litsea, and suggest that Lindera is polyphyletic.
Collapse
|
13
|
Liu ZF, Ci XQ, Li L, Li HW, Conran JG, Li J. DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PLoS One 2017; 12:e0175788. [PMID: 28414813 PMCID: PMC5393608 DOI: 10.1371/journal.pone.0175788] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/01/2017] [Indexed: 11/18/2022] Open
Abstract
Lauraceae are an important component of tropical and subtropical forests and have major ecological and economic significance. Owing to lack of clear-cut morphological differences between genera and species, this family is an ideal case for testing the efficacy of DNA barcoding in the identification and discrimination of species and genera. In this study, we evaluated five widely recommended plant DNA barcode loci matK, rbcL, trnH–psbA, ITS2 and the entire ITS region for 409 individuals representing 133 species, 12 genera from China. We tested the ability of DNA barcoding to distinguish species and as an alternative tool for correcting species misidentification. We also used the rbcL+matK+trnH–psbA+ITS loci to investigate the phylogenetic relationships of the species examined. Among the gene regions and their combinations, ITS was the most efficient for identifying species (57.5%) and genera (70%). DNA barcoding also had a positive role for correcting species misidentification (10.8%). Furthermore, based on the results of the phylogenetic analyses, Chinese Lauraceae species formed three supported monophyletic clades, with the Cryptocarya group strongly supported (PP = 1.00, BS = 100%) and the clade including the Persea group, Laureae and Cinnamomum also receiving strong support (PP = 1.00, BS = 98%), whereas the Caryodaphnopsis–Neocinnamomum received only moderate support (PP = 1.00 and BS = 85%). This study indicates that molecular barcoding can assist in screening difficult to identify families like Lauraceae, detecting errors of species identification, as well as helping to reconstruct phylogenetic relationships. DNA barcoding can thus help with large-scale biodiversity inventories and rare species conservation by improving accuracy, as well as reducing time and costs associated with species identification.
Collapse
Affiliation(s)
- Zhi-Fang Liu
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiu-Qin Ci
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lang Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
| | - Hsi-Wen Li
- Herbarium (KUN), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
| | - John G. Conran
- Australian Centre for Evolutionary Biology and Biodiversity & Sprigg Geobiology Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- * E-mail:
| |
Collapse
|
14
|
Wang YS, Wen ZQ, Li BT, Zhang HB, Yang JH. Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: An update. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:66-107. [PMID: 26812679 DOI: 10.1016/j.jep.2016.01.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Litsea is one of the most diverse genera of evergreen trees or shrubs belong to Lauraceae, and comprises roughly 400 species of tree that are distributed abundantly throughout tropical and subtropical Asia, North and South America. Litsea species have been used globally in traditional medicine for the treatment of various diseases including influenza, stomach aches, diarrhea, diabetes, vomiting, bone pain, inflammation, illness related to the central nervous system and other ailments. The purpose of this review is to provide updated, comprehensive and categorized information on the ethnobotany, phytochemistry and pharmacological research of Litsea species in order to explore their therapeutic potential and evaluate future research opportunities. MATERIALS AND METHODS All the available information on Litsea species was actualised by systematically searching the scientific literatures including Chinese, Korean, Japanese, Indian, and South American herbal classics, library catalogs and scientific databases (PubMed, SciFinder, Web of Science, Google Scholar, VIP and Wanfang). The Plant List, International Plant Name index and Scientific Database of China Plant Species were used to validate scientific names. RESULTS 407 secondary metabolites have been reported from Litsea species. Litsea Species are sources of secondary metabolites with interesting chemical structures (alkaloids, lactones, sesquiterpenes, flavonoids, lignans, and essential oils) and significant bioactivities. Crude extracts, fractions and phytochemical constituents isolated from Litsea show a wide spectrum of in vitro and in vivo pharmacological activities including anticancer, anti-inflammatory, antimicrobial, antioxidant, antidiabetic, anti-HIV, insecticidal, etc. CONCLUSIONS From data collected in this review, the genus Litsea comprises a wide range of therapeutically promising and valuable plants, and has attracted much attention owing to its multiple functions. Many traditional uses of Litsea species have now been validated by modern pharmacology research. Deep and systematic phytochemical investigation of the genus Litsea and the pharmacological properties, especially its mechanism of action and toxicology, to illustrate its ethnomedicinal use, explore the therapeutic potential and support further health-care product development will undoubtedly be the focus of further research. Therefore, detailed and extensive studies and clinical evaluation of Litsea species should be carried out in future for the safety approval of therapeutic applications.
Collapse
Affiliation(s)
- Yun-Song Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Zheng-Qi Wen
- First Affiliated Hospital of Kunming Medical University, Kunming 650031, PR China
| | - Bi-Tao Li
- First Affiliated Hospital of Kunming Medical University, Kunming 650031, PR China
| | - Hong-Bin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Jing-Hua Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
15
|
Huang JF, Li L, van der Werff H, Li HW, Rohwer JG, Crayn DM, Meng HH, van der Merwe M, Conran JG, Li J. Origins and evolution of cinnamon and camphor: A phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Mol Phylogenet Evol 2016; 96:33-44. [DOI: 10.1016/j.ympev.2015.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
|
16
|
Liu J, Yan HF, Newmaster SG, Pei N, Ragupathy S, Ge XJ. The use of DNA barcoding as a tool for the conservation biogeography of subtropical forests in China. DIVERS DISTRIB 2014. [DOI: 10.1111/ddi.12276] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Juan Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| | - Steven G. Newmaster
- Centre for Biodiversity Genomics; Biodiversity Institute of Ontario (BIO); University of Guelph; Guelph ON N1G 2W1 Canada
| | - Nancai Pei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| | - Subramanyam Ragupathy
- Centre for Biodiversity Genomics; Biodiversity Institute of Ontario (BIO); University of Guelph; Guelph ON N1G 2W1 Canada
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| |
Collapse
|
17
|
Forrest JRK. Plant Size, Sexual Selection, and the Evolution of Protandry in Dioecious Plants. Am Nat 2014; 184:338-51. [DOI: 10.1086/677295] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Liu B, Yang Y, Xie L, Zeng G, Ma K. Beilschmiedia turbinata: a newly recognized but dying species of Lauraceae from tropical Asia based on morphological and molecular data. PLoS One 2013; 8:e67636. [PMID: 23840756 PMCID: PMC3695919 DOI: 10.1371/journal.pone.0067636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/03/2013] [Indexed: 11/19/2022] Open
Abstract
China took great efforts to reforestation, even turned the long-term forest loss into a net gain, but this cannot hide the loss of species diversity due to destruction of primary forests, habitat loss, invasion of alien species, and over exploitation. Here we provide such a case by recording a dying tree species of Lauraceae from the evergreen forests of SE Yunnan of China and adjoining Vietnam. We made field collections and observations for four consecutive years from 2009 to 2012. Phylogenetic analyses were conducted based on a combined dataset from nrITS and plastid trnL-trnF region, rpl16 intron, and psbA-trnH spacer. The results indicate that the Asiatic Beilschmiedia and Syndiclis are reciprocally monophyletic with Endiandra as a sister group, and both morphology and molecular phylogeny clearly suggest that the new species belongs to Beilschmiedia. Thus Beilschmiedia turbinata Bing Liu et Y. Yang is illustrated and described as new to science, color plates, line drawings, distribution map and comparison with related species are provided. This new species is similar to B. yunnanensis in the small and ferruginous-brown tomentose terminal buds, elliptic to oblong-lanceolate and alternate or subopposite leaves bearing the fine veinlet reticulation, but differs from the latter by the smaller flowers, the eglandular stamens of the third whorl, and the large turbinate furfuraceous fruits.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| | - Lei Xie
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Gang Zeng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Baker WJ, Norup MV, Clarkson JJ, Couvreur TLP, Dowe JL, Lewis CE, Pintaud JC, Savolainen V, Wilmot T, Chase MW. Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae). ANNALS OF BOTANY 2011; 108:1417-32. [PMID: 21325340 PMCID: PMC3219489 DOI: 10.1093/aob/mcr020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/08/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS The Arecoideae is the largest and most diverse of the five subfamilies of palms (Arecaceae/Palmae), containing >50 % of the species in the family. Despite its importance, phylogenetic relationships among Arecoideae are poorly understood. Here the most densely sampled phylogenetic analysis of Arecoideae available to date is presented. The results are used to test the current classification of the subfamily and to identify priority areas for future research. METHODS DNA sequence data for the low-copy nuclear genes PRK and RPB2 were collected from 190 palm species, covering 103 (96 %) genera of Arecoideae. The data were analysed using the parsimony ratchet, maximum likelihood, and both likelihood and parsimony bootstrapping. KEY RESULTS AND CONCLUSIONS Despite the recovery of paralogues and pseudogenes in a small number of taxa, PRK and RPB2 were both highly informative, producing well-resolved phylogenetic trees with many nodes well supported by bootstrap analyses. Simultaneous analyses of the combined data sets provided additional resolution and support. Two areas of incongruence between PRK and RPB2 were strongly supported by the bootstrap relating to the placement of tribes Chamaedoreeae, Iriarteeae and Reinhardtieae; the causes of this incongruence remain uncertain. The current classification within Arecoideae was strongly supported by the present data. Of the 14 tribes and 14 sub-tribes in the classification, only five sub-tribes from tribe Areceae (Basseliniinae, Linospadicinae, Oncospermatinae, Rhopalostylidinae and Verschaffeltiinae) failed to receive support. Three major higher level clades were strongly supported: (1) the RRC clade (Roystoneeae, Reinhardtieae and Cocoseae), (2) the POS clade (Podococceae, Oranieae and Sclerospermeae) and (3) the core arecoid clade (Areceae, Euterpeae, Geonomateae, Leopoldinieae, Manicarieae and Pelagodoxeae). However, new data sources are required to elucidate ambiguities that remain in phylogenetic relationships among and within the major groups of Arecoideae, as well as within the Areceae, the largest tribe in the palm family.
Collapse
|