1
|
Luo J, Wang J, Chen Z, Yuan R, Cheng C, Xue G, Wang J, Wang K, Shi W, Xiao J, Sun K, Li M. Enhancing fog harvesting efficiency with a multi-object-coupled bio-inspired surface. J Colloid Interface Sci 2025; 693:137653. [PMID: 40267779 DOI: 10.1016/j.jcis.2025.137653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
The global freshwater crisis poses a substantial threat to sustainable development, driving urgent demand for advanced atmospheric water harvesting technologies. While bio-inspired fog collectors have shown potential, conventional single-scale architectures often exhibit suboptimal performance due to inadequate coordination between droplet nucleation and transport. Here we present a multi-object-coupled venation-shaped patterned surface (MVSS) fabricated through laser-etching of filter paper/polydimethylsiloxane composite films. By synergistically integrating three bio-inspired mechanisms: (i) heterogeneous wettability patterns mimicking desert beetle elytra, (ii) conical spine arrays inspired by Opuntia histophysiology, and (iii) hierarchical venation networks derived from plant leaf, we establish a multi-stage phase-transition process that enhances fog harvesting efficiency through coordinated surface energy gradients and Laplace pressure modulation. The wettability contrast enables selective droplet nucleation, while the conical geometry generates asymmetric contact line pinning that drives directional transport. The hierarchical branching network minimizes hydraulic resistance through optimized flow path partitioning, achieving rapid drainage while suppressing edge water accumulation. This multi-scale synergy yields a record water collection rate of 1033 ± 28.2 mg cm-2 h-1. Our findings elucidate the critical role of structure-property coordination in fog water collection, providing a generalized design paradigm for developing high-efficiency atmospheric water harvesters. The fabrication strategy combining scalable laser processing with bio-composite materials suggests promising pathways for arid region deployment.
Collapse
Affiliation(s)
- Jiaxin Luo
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jiacheng Wang
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Zhaoyu Chen
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ruduan Yuan
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Chong Cheng
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Guanfeng Xue
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jinshuai Wang
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Kaixin Wang
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Wanyuan Shi
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Juanxiu Xiao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Kuan Sun
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China
| | - Meng Li
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, Xuefeng Mountain Energy Equipment Safety National Observation and Research Station, MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, College of Energy & Power Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Zhuo L, Lin X, Huo W, Gao M, Liang Y, Shi X, Li H, Zhang D. Insights into the adaptive response of extremotolerant desert moss Syntrichia caninervis to extreme high temperature. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109848. [PMID: 40203556 DOI: 10.1016/j.plaphy.2025.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
Moss has remarkable abilities to survive harsh environmental conditions, making it a key species in habitat restoration following disturbances such as fire, exploring these abilities informs efforts to improve stress tolerance in other plants and enhances our understanding of the evolution of stress tolerance. Here, we report a new record of thermal tolerance for the dried moss Syntrichia caninervis. Dry moss cuttings survived 60 min at 120 °C, exceeding the previous record of 30 min at 120 °C. We also investigated the morphology and gene expression profile of the shoots from dried S. caninervis shoots exposed to 80, 100, 110, and 120 °C for 10, 20, 30, or 60 min, using 20 °C as the control temperature. Shoots were allowed to regenerate on native sand under recovery conditions, after which we examined them daily for 56 days. Over this period, our observations indicated that lethal time-temperature combinations abolished shoot regeneration potential, whereas sub-lethal combinations lengthened the emergence time of protonema and new shoots, and led to decreased protonema emergence area. In addition, we determined that the transcript levels of nine genes (ScHSP70-3, ScHSP70-12, ScHSP70-15, ScELIP1, ScELIP2, ScABA1, ScABA3, ScNCED, and ScDREB) were induced upon temperature stress, as assessed following 120 °C 30 min of heat stress exposure. Few extant desert mosses encounter temperatures this high in nature, suggesting that the observed tolerance is unlikely to be the result of adaptation to current or recent climate conditions. We hope that the results of this study will help us understand the mechanisms by which organisms such as mosses survive thermal stress and how these mechanisms evolved.
Collapse
Affiliation(s)
- Lu Zhuo
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xiaohua Lin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Wenting Huo
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Mengyu Gao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yuqing Liang
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China
| | - Xiang Shi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Daoyuan Zhang
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China.
| |
Collapse
|
3
|
Lu Y, Chen D, Deng M, Guo G, Wu Y, Zhang H, Li X. Phenotypic plasticity of Eurohypnum leptothallum in degraded karst ecosystems: Adaptative mechanisms and ecological functions driven by warming temperatures. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109745. [PMID: 40058239 DOI: 10.1016/j.plaphy.2025.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
Phenotypic plasticity is a critical mechanism for plants to adapt to rapid climate change and other global change drivers. Eurohypnum leptothallum is widely distributed in fragile subtropical karst ecosystems, exhibiting strong drought tolerance, water retention, and soil stabilization capabilities, playing a vital ecological role in nutrient cycling and ecological restoration. Our study investigated the specific manifestations of phenotypic plasticity in epilithic E. leptothallum within degraded karst ecosystems. Results showed that E. leptothallum exhibited high phenotypic plasticity in the heterogeneous environments of degraded karst ecosystems. In the temperature range of 21.5 °C-59.5 °C, E. leptothallum developed a set of adaptive mechanisms in response to warming temperatures through the trade-offs and combinations in most morphological traits (increasing in shoot height, stem cortical ratio and leaf middle cell lumen area, decreasing in stem diameter and stem central strand ratio, making leaf shape, cell shape and lumen shape tend to ellipse) and physiological traits (increasing in C, Ca, C:N, C:P, N:P, Fv/Fm and Y(NO), decreasing in qP). Furthermore, these phenotypic variations may confer certain ecological benefits to the degraded karst ecosystems and are expected to contribute to the maintenance and sustainable development of structural stability and species diversity in degraded karst ecosystems and even global ecosystems in the early stages of global warming. The findings provide a new perspective for exploring the response of bryophytes to environmental changes, a theoretical basis for predicting the adaptive strategies of E. leptothallum and its potential ecological functions to degraded karst ecosystems under global warming.
Collapse
Affiliation(s)
- Yan Lu
- School of Karst Science, Guizhou Normal University, Guiyang, 550025, China; State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China
| | - Dong Chen
- School of Karst Science, Guizhou Normal University, Guiyang, 550025, China; State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China
| | - Minghao Deng
- School of Karst Science, Guizhou Normal University, Guiyang, 550025, China; State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China
| | - Guanting Guo
- School of Karst Science, Guizhou Normal University, Guiyang, 550025, China; State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China
| | - Yifei Wu
- School of Karst Science, Guizhou Normal University, Guiyang, 550025, China; State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China
| | - Hengbin Zhang
- School of Karst Science, Guizhou Normal University, Guiyang, 550025, China; State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China; No. 4 Middle School of Qing Zhen, Guiyang, 550025, China
| | - Xiaona Li
- School of Karst Science, Guizhou Normal University, Guiyang, 550025, China; State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Slate ML, Antoninka A, Bailey L, Berdugo MB, Callaghan DA, Cárdenas M, Chmielewski MW, Fenton NJ, Holland-Moritz H, Hopkins S, Jean M, Kraichak BE, Lindo Z, Merced A, Oke T, Stanton D, Stuart J, Tucker D, Coe KK. Impact of changing climate on bryophyte contributions to terrestrial water, carbon, and nitrogen cycles. THE NEW PHYTOLOGIST 2024; 242:2411-2429. [PMID: 38659154 DOI: 10.1111/nph.19772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Bryophytes, including the lineages of mosses, liverworts, and hornworts, are the second-largest photoautotroph group on Earth. Recent work across terrestrial ecosystems has highlighted how bryophytes retain and control water, fix substantial amounts of carbon (C), and contribute to nitrogen (N) cycles in forests (boreal, temperate, and tropical), tundra, peatlands, grasslands, and deserts. Understanding how changing climate affects bryophyte contributions to global cycles in different ecosystems is of primary importance. However, because of their small physical size, bryophytes have been largely ignored in research on water, C, and N cycles at global scales. Here, we review the literature on how bryophytes influence global biogeochemical cycles, and we highlight that while some aspects of global change represent critical tipping points for survival, bryophytes may also buffer many ecosystems from change due to their capacity for water, C, and N uptake and storage. However, as the thresholds of resistance of bryophytes to temperature and precipitation regime changes are mostly unknown, it is challenging to predict how long this buffering capacity will remain functional. Furthermore, as ecosystems shift their global distribution in response to changing climate, the size of different bryophyte-influenced biomes will change, resulting in shifts in the magnitude of bryophyte impacts on global ecosystem functions.
Collapse
Affiliation(s)
- Mandy L Slate
- Department of Evolution, Ecology & Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Anita Antoninka
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86005, USA
| | - Lydia Bailey
- School of Forestry, Northern Arizona University, Flagstaff, AZ, 86005, USA
| | - Monica B Berdugo
- Plant Ecology and Geobotany, Department of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043, Marburg, Germany
| | - Des A Callaghan
- Bryophyte Surveys Ltd, Almondsbury, South Gloucestershire, BS32 4DU, UK
| | - Mariana Cárdenas
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | | | - Nicole J Fenton
- Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Hannah Holland-Moritz
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA
| | - Samantha Hopkins
- Department of Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Mélanie Jean
- Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Bier Ekaphan Kraichak
- Department of Botany, Faculty of Science, Kasetsart University in Bangkok, Bangkok, 10900, Thailand
| | - Zoë Lindo
- Department of Biology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Amelia Merced
- Department of Biology, University of Puerto Rico Río Piedras, San Juan, PR, 00925, USA
| | - Tobi Oke
- Wildlife Conservation Society & School of Environment & Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5C8, Canada
| | - Daniel Stanton
- Department of Ecology Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Julia Stuart
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
- Mountain Planning Service Group, US Forest Service, Lakewood, CO, 80401, USA
| | - Daniel Tucker
- School of Environmental Studies, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Kirsten K Coe
- Department of Biology, Middlebury College, Middlebury, VT, 05753, USA
| |
Collapse
|
5
|
Jauregui-Lazo J, Wilson M, Mishler BD. The dynamics of external water conduction in the dryland moss Syntrichia. AOB PLANTS 2023; 15:plad025. [PMID: 37292250 PMCID: PMC10244898 DOI: 10.1093/aobpla/plad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
Syntrichia relies on external water conduction for photosynthesis, survival, and reproduction, a condition referred to as ectohydry. Capillarity spaces are abundant in Syntrichia, but the link between function and morphology is complex. The aim of this study was to provide a better understanding of species-specific morphological traits underlying the functions of water conduction and storage. We used an environmental scanning electron microscope and confocal microscopy for observing anatomical characters in the leaves of Syntrichia species. We also measured hydration/dehydration curves to understand the rate of conduction and dehydration by experimental approaches. Syntrichia is an ectohydric moss that can externally transport and store water from the base of the stem using capillary action. We propose a new framework to study ectohydric capabilities, which incorporates three morphological scales and the timing of going from completely dehydrated to fully hydrated. Characters of interest in this model include cell anatomy (papillae development, hyaline basal cells and laminar cells), architecture of the stem (concavity and orientation) and whole clump characteristics (density of stems). We report significant variations in the speed of conduction, water holding capacity and hydration associated with each species studied (11 in total). All Syntrichia species are capable of external water conduction and storage, but the relevant traits differ among species. These results help to understand potential evolutionary and ecological trade-offs among speed of water conduction, water holding capacity, ontogeny, and differing habitat requirements. An integrative view of ectohydry in Syntrichia contributes to understanding the water relationships of mosses.
Collapse
Affiliation(s)
| | - Marielle Wilson
- Department of Integrative Biology, and University and Jepson Herbaria, 1001 Valley Life Sciences Building, University of California, Berkeley, CA 94720-2465, USA
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Brent D Mishler
- Department of Integrative Biology, and University and Jepson Herbaria, 1001 Valley Life Sciences Building, University of California, Berkeley, CA 94720-2465, USA
| |
Collapse
|
6
|
Wang QH, Zhang J, Liu Y, Jia Y, Jiao YN, Xu B, Chen ZD. Diversity, phylogeny, and adaptation of bryophytes: insights from genomic and transcriptomic data. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4306-4322. [PMID: 35437589 DOI: 10.1093/jxb/erac127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Bryophytes including mosses, liverworts, and hornworts are among the earliest land plants, and occupy a crucial phylogenetic position to aid in the understanding of plant terrestrialization. Despite their small size and simple structure, bryophytes are the second largest group of extant land plants. They live ubiquitously in various habitats and are highly diversified, with adaptive strategies to modern ecosystems on Earth. More and more genomes and transcriptomes have been assembled to address fundamental questions in plant biology. Here, we review recent advances in bryophytes associated with diversity, phylogeny, and ecological adaptation. Phylogenomic studies have provided increasing supports for the monophyly of bryophytes, with hornworts sister to the Setaphyta clade including liverworts and mosses. Further comparative genomic analyses revealed that multiple whole-genome duplications might have contributed to the species richness and morphological diversity in mosses. We highlight that the biological changes through gene gain or neofunctionalization that primarily evolved in bryophytes have facilitated the adaptation to early land environments; among the strategies to adapt to modern ecosystems in bryophytes, desiccation tolerance is the most remarkable. More genomic information for bryophytes would shed light on key mechanisms for the ecological success of these 'dwarfs' in the plant kingdom.
Collapse
Affiliation(s)
- Qing-Hua Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Nian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Ladrón de Guevara M, Maestre FT. Ecology and responses to climate change of biocrust-forming mosses in drylands. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4380-4395. [PMID: 35553672 PMCID: PMC9291340 DOI: 10.1093/jxb/erac183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Interest in understanding the role of biocrusts as ecosystem engineers in drylands has substantially increased during the past two decades. Mosses are a major component of biocrusts and dominate their late successional stages. In general, their impacts on most ecosystem functions are greater than those of early-stage biocrust constituents. However, it is common to find contradictory results regarding how moss interactions with different biotic and abiotic factors affect ecosystem processes. This review aims to (i) describe the adaptations and environmental constraints of biocrust-forming mosses in drylands, (ii) identify their primary ecological roles in these ecosystems, and (iii) synthesize their responses to climate change. We emphasize the importance of interactions between specific functional traits of mosses (e.g. height, radiation reflectance, morphology, and shoot densities) and both the environment (e.g. climate, topography, and soil properties) and other organisms to understand their ecological roles and responses to climate change. We also highlight key areas that should be researched in the future to fill essential gaps in our understanding of the ecology and the responses to ongoing climate change of biocrust-forming mosses. These include a better understanding of intra- and interspecific interactions and mechanisms driving mosses' carbon balance during desiccation-rehydration cycles.
Collapse
|
8
|
Brennan DL, Kollar LM, Kiel S, Deakova T, Laguerre A, McDaniel SF, Eppley SM, Gall ET, Rosenstiel TN. Measuring volatile emissions from moss gametophytes: A review of methodologies and new applications. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11468. [PMID: 35495197 PMCID: PMC9039793 DOI: 10.1002/aps3.11468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mosses inhabit nearly all terrestrial ecosystems and engage in important interactions with nitrogen-fixing microbes, sperm-dispersing arthropods, and other plants. It is hypothesized that these interactions could be mediated by biogenic volatile organic compounds (BVOCs). Moss BVOCs may play fundamental roles in influencing local ecologies, such as biosphere-atmosphere-hydrosphere communications, physiological and evolutionary dynamics, plant-microbe interactions, and gametophyte stress physiology. Further progress in quantifying the composition, magnitude, and variability of moss BVOC emissions, and their response to environmental drivers and metabolic requirements, is limited by methodological and analytical challenges. We review several sampling techniques with various analytical approaches and describe best practices in generating moss gametophyte BVOC measures. We emphasize the importance of characterizing the composition and magnitude of moss BVOC emissions across a variety of species to better inform and stimulate important cross-disciplinary studies. We conclude by highlighting how current methods could be employed, as well as best practices for choosing methodologies.
Collapse
Affiliation(s)
- Danlyn L. Brennan
- Maseeh College of Engineering and Computer SciencePortland State UniversityPortlandOregonUSA
| | - Leslie M. Kollar
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Scott Kiel
- Center for Life in Extreme EnvironmentsPortland State UniversityPortlandOregonUSA
| | - Timea Deakova
- Center for Life in Extreme EnvironmentsPortland State UniversityPortlandOregonUSA
| | - Aurélie Laguerre
- Maseeh College of Engineering and Computer SciencePortland State UniversityPortlandOregonUSA
| | | | - Sarah M. Eppley
- Center for Life in Extreme EnvironmentsPortland State UniversityPortlandOregonUSA
| | - Elliott T. Gall
- Maseeh College of Engineering and Computer SciencePortland State UniversityPortlandOregonUSA
| | - Todd N. Rosenstiel
- Center for Life in Extreme EnvironmentsPortland State UniversityPortlandOregonUSA
| |
Collapse
|
9
|
Li X, Hui R, Tan H, Zhao Y, Liu R, Song N. Biocrust Research in China: Recent Progress and Application in Land Degradation Control. FRONTIERS IN PLANT SCIENCE 2021; 12:751521. [PMID: 34899777 PMCID: PMC8656959 DOI: 10.3389/fpls.2021.751521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Desert ecosystems are generally considered lifeless habitats characterised by extreme environmental conditions, yet they are successfully colonised by various biocrust nonvascular communities. A biocrust is not only an important ecosystem engineer and a bioindicator of desert ecological restoration but also plays a vital role in linking surficial abiotic and biotic factors. Thus, extensive research has been conducted on biocrusts in critical dryland zones. However, few studies have been conducted in the vast temperate deserts of China prior to the beginning of this century. We reviewed the research on biocrusts conducted in China since 2000, which firstly focused on the eco-physiological responses of biocrusts to species composition, abiotic stresses, and anthropological disturbances. Further, research on the spatial distributions of biocrusts as well as their succession at different spatial scales, and relationships with vascular plants and soil biomes (especially underlying mechanisms of seed retention, germination, establishment and survival of vascular plants during biocrust succession, and creation of suitable niches and food webs for soil animals and microorganisms) was analysed. Additionally, studies emphasising on the contribution of biocrusts to ecological and hydrological processes in deserts as well as their applications in the cultivation and inoculation of nonvascular plants for land degradation control and ecological restoration were assessed. Finally, recent research on biocrusts was evaluated to propose future emerging research themes and new frontiers.
Collapse
Affiliation(s)
- Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Rong Hui
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Huijuan Tan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yang Zhao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Rentao Liu
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| | - Naiping Song
- Breeding Base for Key Laboratory Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, China
| |
Collapse
|
10
|
Yin B, Li J, Zhang Q, Wu N, Zhang J, Rong X, Tao Y, Zang Y, Li Y, Zhou X, Zhang Y. Freeze-thaw cycles change the physiological sensitivity of Syntrichia caninervis to snow cover. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153528. [PMID: 34563792 DOI: 10.1016/j.jplph.2021.153528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Spring, especially the freeze-thaw season, is considered the key period for the growth and carbon sequestration of desert mosses. It is not clear how the change in environment water and temperature affects the physiological characteristics of desert mosses in freeze-thaw season. In this study, the effects of water and freeze-thaw cycles on the physiological characteristics of Syntrichia caninervis were assessed by manipulating the increase or removal of 65% snow and changes in the freeze-thaw cycles. The results showed that the changes in snow depth, freeze-thaw cycles, and their interaction significantly affected the plant water content, osmoregulatory substances content, antioxidant substance, and antioxidant enzyme activities. The contents of free proline, soluble sugar, ascorbic acid (AsA), reduced glutathione (GSH), and malondialdehyde (MDA), and superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities increased significantly with the decrease in snow depth and freeze-thaw cycles. POD and free proline were the most sensitive to the snow depth and freeze-thaw cycles, while SOD and CAT were the least sensitive. Therefore, compared with the increase in freeze-thaw cycles, the reduction in freeze-thaw cycles weakened the physiological sensitivity of S. caninervis to snow depth changes.
Collapse
Affiliation(s)
- Benfeng Yin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
| | - Jiwen Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China; College of Life Science and Technology, Xinjiang University, Urumqi, 830064, China
| | - Qing Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China; Geography Science College, Shanxi Normal University, Linfen, Shanxi Province, 041000, China
| | - Nan Wu
- Yantai Key Laboratory of Coastal Hydrological Processes and Environmental Security, Ludong University, Yantai, Shandong, 264025, China
| | - Jing Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
| | - Xiaoying Rong
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
| | - Ye Tao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
| | - Yongxin Zang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
| | - Yonggang Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China.
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China.
| |
Collapse
|
11
|
Liu C, Sun Y, Huanng J, Guo Z, Liu W. External-field-induced directional droplet transport: A review. Adv Colloid Interface Sci 2021; 295:102502. [PMID: 34390884 DOI: 10.1016/j.cis.2021.102502] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Directional transport of fluids is crucial for vital activities of organisms and numerous industrial applications. This process has garnered widespread research attention due to the wide breadth of flexible applications such as medical diagnostics, drug delivery, and digital microfluidics. The rational design of functional surfaces that can achieve the subtle control of liquid behavior. Previous studies were mainly dependent on the special asymmetric structures, which inevitably have the problem of slow transport speed and short distance. To improve controllability, researchers have attempted to use external fields, such as thermal, light, electric fields, and magnetic fields, to achieve controllable droplet transport. On the fundamental side, much of their widespread applicably is due to the degree of control over droplet transport. This review provides an overview of recent progress in the last three years toward the transport of droplets with different mechanisms induced by various external stimuli, including light, electric, thermal, and magnetic field. First, the relevant basic theory and typical induced gradient for directional liquid transport are illustrated. We will then review the latest advances in the external-field-induced directional transport. Moreover, the most emerging applications such as digital microfluidics, harvesting of energy and water, heat transfer, and oil/water separation are also presented. Finally, we will outline possible future perspectives to attract more researchers interest and promote the development of this field.
Collapse
|
12
|
Song X, Fang W, Chi X, Shao X, Wang Q. Geographic Pattern of Bryophyte Species Richness in China: The Influence of Environment and Evolutionary History. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.680318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
How contemporary environment interacts with macroevolutionary processes to generate the geographic pattern of bryophyte species is still unresolved. China is very rich in bryophytes, with more than 3,000 bryophytes covering 70% of the families in the world. In this study, we assessed the effects of the contemporary environment (average temperature of the coldest season TCQ, precipitation of the warmest season PWQ, and elevational range) and the recent diversification rates (estimated as mean species number per genus, MSG) on the geographical pattern of species richness for bryophytes and two groups (i.e., liverworts and mosses) in China. We compiled the provincial level distribution of bryophyte species and estimated the geographic pattern of the recent diversification rate by MSG for species in China. Univariate, multivariate regressions and path model analyses were used to assess the relationships between species richness, MSG, and their potential environmental drivers. Species richness of all bryophytes and liverworts significantly increased with the increase of MSG, either in regressions or path analyses, indicating that provinces with high bryophyte richness were mainly inhabited by species (especially liverworts) from lineages with particularly high MSG. In contrast, the species richness of mosses was insignificantly decreased with MSG in univariate regression or insignificantly increased with MSG in path analysis. Both species richness and MSG of all bryophytes and liverworts increased with the increase in energy and water availability. In contrast, for mosses, the species richness significantly increased with the increase of energy and water availability, while MSG decreased with the increase of energy and water availability. The MSG of liverworts increase with the increase of elevational range but the MSG of mosses decrease with the increase of elevational range. Our study suggests that the humid tropical and subtropical mountains in China are not only diversity hotspots for bryophytes, but also cradles for high recent diversification of liverworts, and refuges for mosses to hold many monotypic and oligotypic genera.
Collapse
|
13
|
Fortuna L, González AG, Tretiach M, Pokrovsky OS. Influence of secondary metabolites on surface chemistry and metal adsorption of a devitalized lichen biomonitor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116500. [PMID: 33493767 DOI: 10.1016/j.envpol.2021.116500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Despite the broad use of lichens as biomonitors of airborne trace elements, the surface chemistry and metal adsorption parameters of these organisms are still poorly known. The current investigation is aimed at (i) quantifying the acid-base surface properties and the first-order physical-chemical parameters of Cu2+ and Zn2+ adsorption of devitalized Pseudevernia furfuracea, a lichen commonly used in biomonitoring of airborne trace elements, and (ii) comparing the results with those available for moss biomonitors. Equilibrium constants and metal-binding site concentrations were calculated with a thermodynamic model by taking into account the presence/absence of ancillary extracellular cell wall compounds, namely melanin and acetone-soluble lichen substances. An acid-base titration experiment performed in the pH range of 3-10 showed that melanised and non-melanised P. furfuracea samples have lower pHPZC (3.53-3.99) and higher metal-binding site concentrations (0.96-1.20 mmol g-1) compared to that of the mosses investigated so far at the same experimental conditions. Melanin biosynthesis increased the content of carboxyl and phosphoryl groups and reduces that of amine/polyphenols. Cu2+ and Zn2+ adsorption was unaffected by the degree of melanisation while the removal of extracellular lichen substances slightly decreased Zn2+ adsorption. Although Cu2+ and Zn2+ adsorption parameters related to P. furfuracea surfaces were 3 times lower than in the mosses, lichen samples adsorbed the same amount of Cu2+ and 30% more Zn2+. The present study contributes in understanding the role of ancillary cell wall compounds in Cu2+ and Zn2+ adsorption in a model lichen. It also provides a first comparison between the surface physico-chemical characteristics of lichens and mosses frequently used as biomonitors of trace elements.
Collapse
Affiliation(s)
- Lorenzo Fortuna
- Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri, 1, I-34127, Trieste, Italy.
| | - Aridane G González
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Unidad Asociada ULPGC-CSIC, Parque Científico Tecnológico Marino de Taliarte S/n, E-35214, Telde, Las Palmas, Spain
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 10, I-34127, Trieste, Italy
| | - Oleg S Pokrovsky
- Geosciences Environment Toulouse (GET), CNRS, UMR 5563, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, F-31400, Toulouse, France; N. Laverov Federal Center for Arctic Research, URoRAS, 23 Naberezhnaja Sev. Dviny, 163000, Arkhangelsk, Russia; BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina Prs 36, Tomsk, Russia
| |
Collapse
|
14
|
Xiao B, Bowker MA. Moss-biocrusts strongly decrease soil surface albedo, altering land-surface energy balance in a dryland ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140425. [PMID: 32615433 DOI: 10.1016/j.scitotenv.2020.140425] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Land surface albedo measures the degree to which the sun's radiation is absorbed or reflected, and thus can be highly influential in global climate trends, local weather phenomena, and biological processes. As an extensive living cover in drylands, biocrusts cover substantial land surface but their potential influences on surface albedo and energy balance are underdocumented, and its temporal dynamic is virtually unknown. We continuously measured the surface albedo, land-surface energy balance, temperature and moisture of moss-biocrust covered soil and bare soil for two years, and measured the surface color and roughness of the two land cover types. Our results showed that the surface albedo of the biocrusts was 43.4% lower than that of the bare soil, due to the increased darkness (43.7%) and roughness (90.4%) together with increased moisture (20.7%) of the biocrust layer. Through time, the albedo of the biocrusts were negatively and linearly related with surface soil temperature or moisture, which resulted in lower albedo in summer and higher albedo in other seasons. As a result of decreased albedo, biocrusts decreased outgoing short-wave radiation by 44.8% in comparison to the bare soil, and consequently they increased net short-wave radiation by 11.4% and net all-wave solar radiation by 22.9% However, the increased energy absorption by the biocrusts did not consistently increase soil temperature; instead, soil temperature increased by up to 9.3 °C under dry conditions but decreased by as much as 11.4 °C under wet conditions, resulting in a net cooling. This indicates that the temperature regimes of the biocrust-covered soil were not determined only by albedo, but also by modification of soil thermal properties by biocrusts. Because biocrusts are highly responsive to land use, it appears that altered albedo and energy balance may be one of the ways in which human activity can impact climate and weather.
Collapse
Affiliation(s)
- Bo Xiao
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, Beijing 100193, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China.
| | - Matthew A Bowker
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
15
|
Hugonnot V, Guillet A, Porley RD. Ecology, demography and conservation of Coscinodon horridus (J. Muñoz & H. Hespanhol) Hugonnot, R. D. Porley & Ignatov in France. LINDBERGIA 2020. [DOI: 10.25227/linbg.01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
16
|
Eldridge DJ, Reed S, Travers SK, Bowker MA, Maestre FT, Ding J, Havrilla C, Rodriguez-Caballero E, Barger N, Weber B, Antoninka A, Belnap J, Chaudhary B, Faist A, Ferrenberg S, Huber-Sannwald E, Malam Issa O, Zhao Y. The pervasive and multifaceted influence of biocrusts on water in the world's drylands. GLOBAL CHANGE BIOLOGY 2020; 26:6003-6014. [PMID: 32729653 DOI: 10.1111/gcb.15232] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important because they regulate the delivery and retention of water. Yet despite their hydrological significance, a global synthesis of their effects on hydrology is lacking. We synthesized 2,997 observations from 109 publications to explore how biocrusts affected five hydrological processes (times to ponding and runoff, early [sorptivity] and final [infiltration] stages of water flow into soil, and the rate or volume of runoff) and two hydrological outcomes (moisture storage, sediment production). We found that increasing biocrust cover reduced the time for water to pond on the surface (-40%) and commence runoff (-33%), and reduced infiltration (-34%) and sediment production (-68%). Greater biocrust cover had no significant effect on sorptivity or runoff rate/amount, but increased moisture storage (+14%). Infiltration declined most (-56%) at fine scales, and moisture storage was greatest (+36%) at large scales. Effects of biocrust type (cyanobacteria, lichen, moss, mixed), soil texture (sand, loam, clay), and climatic zone (arid, semiarid, dry subhumid) were nuanced. Our synthesis provides novel insights into the magnitude, processes, and contexts of biocrust effects in drylands. This information is critical to improve our capacity to manage dwindling dryland water supplies as Earth becomes hotter and drier.
Collapse
Affiliation(s)
- David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sasha Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Samantha K Travers
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthew A Bowker
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Fernando T Maestre
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Alicante, Spain
| | - Jingyi Ding
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Caroline Havrilla
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
| | - Emilio Rodriguez-Caballero
- Centro de Investigación de Colecciones Científicas de la Universidad de Almería and Experimental de Zonas Áridas (EEZA), Consejo Superior de Investigaciones Científicas, Almería, Spain
| | - Nichole Barger
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Bettina Weber
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Institute of Plant Sciences, University of Graz, Graz, Austria
| | - Anita Antoninka
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Jayne Belnap
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Bala Chaudhary
- Department of Environmental Science and Studies, DePaul University, Chicago, IL, USA
| | - Akasha Faist
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Scott Ferrenberg
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Elisabeth Huber-Sannwald
- Division of Environmental Sciences, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosi, SLP, Mexico
| | - Oumarou Malam Issa
- UMR 242 (IRD, SU, CNRS, INRA, USPC, UPEC), IRD France-Nord, Bondy Cedex, France
| | - Yunge Zhao
- Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Song G, Li X, Hui R. Biological soil crusts increase stability and invasion resistance of desert revegetation communities in northern China. Ecosphere 2020. [DOI: 10.1002/ecs2.3043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Guang Song
- Shapotou Desert Research and Experimental Station Northwest Institute of Eco‐Environment and Resources Chinese Academy of Science Lanzhou 730000 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou 730000 China
| | - Xinrong Li
- Shapotou Desert Research and Experimental Station Northwest Institute of Eco‐Environment and Resources Chinese Academy of Science Lanzhou 730000 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou 730000 China
| | - Rong Hui
- Shapotou Desert Research and Experimental Station Northwest Institute of Eco‐Environment and Resources Chinese Academy of Science Lanzhou 730000 China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
18
|
Tourtit Y, Gilet T, Lambert P. Rupture of a Liquid Bridge between a Cone and a Plane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11979-11985. [PMID: 31497966 DOI: 10.1021/acs.langmuir.9b01295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a systematic experimental study of the rupture of an axially symmetric liquid bridge between a cone and a plane was performed, with focus on the volume distribution after break up. A model based on the Young-Laplace equation is presented, and its solutions are compared to experimental data. Cones and conical cavities with different aperture angles were used in our experiments. We found that this aperture influences the potential pinning of the contact line, the meniscus shape, and therefore the liquid transfer. For half aperture angles α < 70°, where no pinning was observed, the liquid bridge slips off from the cone and almost no transfer to the cone is observed. However, at α > 70°, contact line pinning on the cone induces a net liquid transfer to the cone at rupture. In the case of conical cavities, a maximum of liquid transfer is observed for at α = 110°. The distance at which the rupture of the liquid bridge occurs is also discussed. The model can fairly predict the transfer ratio and the rupture height of the liquid bridge.
Collapse
Affiliation(s)
- Youness Tourtit
- Transfers, Interfaces and Processes , Université Libre de Bruxelles , 50 Franklin D. Roosevelt , CP 165/67 B-1050 , Brussels , Belgium
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering , University of Liège , quartier Polytech 1, Allée de la Découverte 13A , B52 4000 Liège , Belgium
| | - Tristan Gilet
- Microfluidics Lab, Department of Aerospace and Mechanical Engineering , University of Liège , quartier Polytech 1, Allée de la Découverte 13A , B52 4000 Liège , Belgium
| | - Pierre Lambert
- Transfers, Interfaces and Processes , Université Libre de Bruxelles , 50 Franklin D. Roosevelt , CP 165/67 B-1050 , Brussels , Belgium
| |
Collapse
|
19
|
Yin BF, Zhang YM, Lou AR. Impacts of the removal of shrubs on the physiological and biochemical characteristics of Syntrichia caninervis Mitt: in a temperate desert. Sci Rep 2017; 7:45268. [PMID: 28374741 PMCID: PMC5379693 DOI: 10.1038/srep45268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Moss crusts play important roles in biological soil crusts biomass and soil surface stabilization. However, because of increasingly intensive human activities, especially grazing, the growth and survival of shrubs are seriously threatened. This study aimed to test whether the presence of shrubs affects the physiological state of the bryophyte Syntrichia caninervis Mitt. in this desert ecosystem. We simulated animal-grazed shrubs at three levels in the Gurbantunggut Desert and compared these simulations to exposed areas, measuring the indicators of growth and stress tolerance exhibited by bryophytes. The results showed that the removal of shrubs significantly decreased chlorophyll fluorescence activity and soluble protein content in S. caninervis, especially under the total shrub removal treatment. The ratio between the total removal of shrubs and other treatments in antioxidative enzymes and in osmotic adjustment substances of S. caninervis exhibited two types of responses. With the exception of malonyldialdehyde (MDA) and superoxide dismutase (SOD), the variables examined fitted as downward parabolic then upward parabolic temporal dynamics. The removal of shrubs is harmful to the survival of S.caninervis. In resource-constrained conditions, SOD is an important antioxidant enzyme that of peroxidase (POD), catalase (CAT) and osmotic adjustment substances, for S. caninervis survival.
Collapse
Affiliation(s)
- Ben-feng Yin
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Life Sciences of Beijing Normal University, Beijing 100875, China
- Xinjiang Institute of Ecology and Geography, Key Laboratory of Biogeography and Bioresources in Arid Land, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuan-ming Zhang
- Xinjiang Institute of Ecology and Geography, Key Laboratory of Biogeography and Bioresources in Arid Land, Chinese Academy of Sciences, Urumqi 830011, China
| | - An-ru Lou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Life Sciences of Beijing Normal University, Beijing 100875, China
| |
Collapse
|
20
|
Li X, Zhang D, Gao B, Liang Y, Yang H, Wang Y, Wood AJ. Transcriptome-Wide Identification, Classification, and Characterization of AP2/ERF Family Genes in the Desert Moss Syntrichia caninervis. FRONTIERS IN PLANT SCIENCE 2017; 8:262. [PMID: 28289426 PMCID: PMC5326779 DOI: 10.3389/fpls.2017.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/13/2017] [Indexed: 05/21/2023]
Abstract
APETALA2/Ethylene Responsive Factor (AP2/ERF) is a large family of plant transcription factors which play important roles in the control of plant metabolism and development as well as responses to various biotic and abiotic stresses. The desert moss Syntrichia caninervis, due to its robust and comprehensive stress tolerance, is a promising organism for the identification of stress-related genes. Using S. caninervis transcriptome data, 80 AP2/ERF unigenes were identified by HMM modeling and BLASTP searching. Based on the number of AP2 domains, multiple sequence alignment, motif analysis, and gene tree construction, ScAP2/ERF genes were classified into three main subfamilies (including 5 AP2 gene members, 72 ERF gene members, and 1 RAV member) and two Soloist members. We found that the ratio for each subfamily was constant between S. caninervis and the model moss Physcomitrella patens, however, as compared to the angiosperm Arabidopsis, the percentage of ERF subfamily members in both moss species were greatly expanded, while the members of the AP2 and RAV subfamilies were reduced accordingly. The amino acid composition of the AP2 domain of ScAP2/ERFs was conserved as compared with Arabidopsis. Interestingly, most of the identified DREB genes in S. caninervis belonged to the A-5 group which play important roles in stress responses and are rarely reported in the literature. Expression profile analysis of ScDREB genes showed different gene expression patterns under dehydration and rehydration; the majority of ScDREB genes demonstrated a stronger response to dehydration relative to rehydration indicating that ScDREB may play an important role in dehydrated moss tissues. To our knowledge, this is the first study to detail the identification and characterization of the AP2/ERF gene family in a desert moss. Further, this study will lay the foundation for further functional analysis of these genes, provide greater insight to the stress tolerance mechanisms in S. caninervis and provide a reference for AP2/ERF gene family classification in other moss species.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Daoyuan Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Bei Gao
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Yuqing Liang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
- University of Chinese Academy of SciencesBeijing, China
| | - Honglan Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Andrew J. Wood
- Department of Plant Biology, Southern Illinois University, CarbondaleIL, USA
| |
Collapse
|
21
|
Pan Z, Pitt WG, Zhang Y, Wu N, Tao Y, Truscott TT. The upside-down water collection system of Syntrichia caninervis. NATURE PLANTS 2016; 2:16076. [PMID: 27302768 DOI: 10.1038/nplants.2016.76] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/20/2016] [Indexed: 05/24/2023]
Abstract
Desert plants possess highly evolved water conservation and transport systems, from the root structures that maximize absorption of scarce ground water(1-5), to the minimization of leaf surface area(6) to enhance water retention. Recent attention has focused on leaf structures that are adapted to collect water and promote nucleation from humid air(7-9). Syntrichia caninervis Mitt. (Pottiaceae) is one of the most abundant desert mosses in the world and thrives in an extreme environment with multiple but limited water resources (such as dew, fog, snow and rain), yet the mechanisms for water collection and transport have never been completely revealed. S. caninervis has a unique adaptation: it uses a tiny hair (awn) on the end of each leaf to collect water, in addition to that collected by the leaves themselves. Here we show that the unique multiscale structures of the hair are equipped to collect and transport water in four modes: nucleation of water droplets and films on the leaf hair from humid atmospheres; collection of fog droplets on leaf hairs; collection of splash water from raindrops; and transportation of the acquired water to the leaf itself. Fluid nucleation is accomplished in nanostructures, whereas fog droplets are gathered in areas where a high density of small barbs are present and then quickly transported to the leaf at the base of the hair. Our observations reveal nature's optimization of water collection by coupling relevant multiscale physical plant structures with multiscale sources of water.
Collapse
Affiliation(s)
- Zhao Pan
- Department of Mechanical Engineering, Brigham Young University, 435 CTB, Provo, Utah 84602, USA
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Clyde Building, Room 350, Provo, Utah 84602, USA
| | - Yuanming Zhang
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Nan Wu
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Ye Tao
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Tadd T Truscott
- Department of Mechanical and Aerospace Engineering, Utah State University, 419J 4130 Old Main Road, Logan, Utah 84322, USA
| |
Collapse
|
22
|
Chamizo S, Belnap J, Eldridge DJ, Cantón Y, Malam Issa O. The Role of Biocrusts in Arid Land Hydrology. BIOLOGICAL SOIL CRUSTS: AN ORGANIZING PRINCIPLE IN DRYLANDS 2016. [DOI: 10.1007/978-3-319-30214-0_17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Morphological and physiological adaptation of the mosses Funaria hygrometrica and Brachythecium glareosum (Bryophyta) to periodic desiccation. UKRAINIAN BOTANICAL JOURNAL 2015. [DOI: 10.15407/ukrbotj72.06.559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Li X, Zhang D, Li H, Gao B, Yang H, Zhang Y, Wood AJ. Characterization of reference genes for RT-qPCR in the desert moss Syntrichia caninervis in response to abiotic stress and desiccation/rehydration. FRONTIERS IN PLANT SCIENCE 2015; 6:38. [PMID: 25699066 PMCID: PMC4318276 DOI: 10.3389/fpls.2015.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/15/2015] [Indexed: 05/18/2023]
Abstract
Syntrichia caninervis is the dominant bryophyte of the biological soil crusts found in the Gurbantunggut desert. The extreme desert environment is characterized by prolonged drought, temperature extremes, high radiation and frequent cycles of hydration and dehydration. S. caninervis is an ideal organism for the identification and characterization of genes related to abiotic stress tolerance. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) expression analysis is a powerful analytical technique that requires the use of stable reference genes. Using available S. caninervis transcriptome data, we selected 15 candidate reference genes and analyzed their relative expression stabilities in S. caninervis gametophores exposed to a range of abiotic stresses or a hydration-desiccation-rehydration cycle. The programs geNorm, NormFinder, and RefFinder were used to assess and rank the expression stability of the 15 candidate genes. The stability ranking results of reference genes under each specific experimental condition showed high consistency using different algorithms. For abiotic stress treatments, the combination of two genes (α-TUB2 and CDPK) were sufficient for accurate normalization. For the hydration-desiccation-rehydration process, the combination of two genes (α-TUB1 and CDPK) were sufficient for accurate normalization. 18S was among the least stable genes in all of the experimental sets and was unsuitable as reference gene in S. caninervis. This is the first systematic investigation and comparison of reference gene selection for RT-qPCR work in S. caninervis. This research will facilitate gene expression studies in S. caninervis, related moss species from the Syntrichia complex and other mosses.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography - Chinese Academy of Sciences Ürümqi, China
| | - Daoyuan Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography - Chinese Academy of Sciences Ürümqi, China
| | - Haiyan Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography - Chinese Academy of Sciences Ürümqi, China
| | - Bei Gao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography - Chinese Academy of Sciences Ürümqi, China
| | - Honglan Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography - Chinese Academy of Sciences Ürümqi, China
| | - Yuanming Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography - Chinese Academy of Sciences Ürümqi, China
| | - Andrew J Wood
- Department of Plant Biology, Southern Illinois University Carbondale, IL, USA
| |
Collapse
|
25
|
Wu N, Zhang YM, Downing A, Aanderud ZT, Tao Y, Williams S. Rapid adjustment of leaf angle explains how the desert moss, Syntrichia caninervis, copes with multiple resource limitations during rehydration. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:168-177. [PMID: 32480976 DOI: 10.1071/fp13054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/24/2013] [Indexed: 06/11/2023]
Abstract
Although the desert moss Syntrichia caninervis Mitt. is extremely desiccation tolerant, it still requires water and photosynthates for growth. The ecological significance of the leaf angle in maintaining a balance between water and light availability is critical to its survival. Active leaf repositioning balances water and light availability following rehydration. S. caninervis can adjust leaf angles from a steep (84-69°) to a stable level at 30° within 7s after rehydration, obtaining maximum net photosynthetic gain at a shoot relative water content of ~60%. Leaf morphological characters, (leaf hair points, surface papillae and costal anatomy) and ultrastructural changes (chloroplast reordering and loss of lipid reserves as shown by changes in osmiophilic globules) were linked to rapid leaf spreading, water gain and sunlight reflectivity of leaves during rehydration. The high 377.20±91.69 (cm2g-1) surface area to mass ratio was a major factor in facilitating the rapid response to rewetting. Hyaline cells of the leaf base absorbed water, swelled and forced the leaf away from the stem as soon as rehydration commenced. Loss of leaf hair points retards leaf angle adjustment during rehydration.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuan-Ming Zhang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Alison Downing
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Zachary T Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Ye Tao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Steven Williams
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
26
|
Diurnal variations of chlorophyll fluorescence and CO2 exchange of biological soil crusts in different successional stages in the Gurbantunggut Desert of northwestern China. Ecol Res 2014. [DOI: 10.1007/s11284-013-1122-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Stark LR, Greenwood JL, Brinda JC, Oliver MJ. The desert moss Pterygoneurum lamellatum (Pottiaceae) exhibits an inducible ecological strategy of desiccation tolerance: effects of rate of drying on shoot damage and regeneration. AMERICAN JOURNAL OF BOTANY 2013; 100:1522-31. [PMID: 23876454 DOI: 10.3732/ajb.1200648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
PREMISE OF THE STUDY Bryophytes include clades that incorporate constitutive desiccation tolerance, especially terrestrial species. Here we test the hypothesis that the opposing ecological strategy of desiccation tolerance, inducibility, is present in a desert moss, and address this hypothesis by varying rates of drying in a laboratory study. Desiccation tolerance is arguably the most important evolutionary innovation relevant to the colonization of land by plants; increased understanding of the ecological drivers of this trait will eventually illuminate the responsible mechanisms and ultimately open doors to the potential for the application of this trait in cultivated plants. METHODS Plants were cloned, grown in continuous culture (dehardened) for several months, and subjected to rates of drying (drying times) ranging from 30 min to 53 h, rehydrated and tested for recovery using chlorophyll fluorescence, leaf damage, and regeneration of protonema and shoots. KEY RESULTS Rate of drying significantly affected all recovery responses, with very rapid drying rates severely damaging the entire shoot except the shoot apex and resulting in slower growth rates, fewer regenerative shoots produced, and a compromised photosynthetic system as inferred from fluorescence parameters. CONCLUSIONS For the first time, a desert moss is shown to exhibit an ecological strategy of desiccation tolerance that is inducible, challenging the assumption that arid-land bryophytes rely exclusively on constitutive protection. Results indicate that previous considerations defining a slow-dry event in bryophytes need reevaluation, and that the ecological strategy of inducible desiccation tolerance is probably more common than currently understood among terrestrial bryophytes.
Collapse
Affiliation(s)
- Lloyd R Stark
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Nevada 89154-4004, USA.
| | | | | | | |
Collapse
|