1
|
Shah P, Shende P. Biotherapy using sperm cell-oriented transportation of therapeutics in female reproductive tract cancer. Curr Pharm Biotechnol 2022; 23:1359-1366. [PMID: 35049429 DOI: 10.2174/1389201023666220113111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
Female reproductive tract cancers like ovarian, cervical, vaginal, etc. have led to a serious concern for reproductive health as well as an increase in physical and psychological stresses amongst women. Various conventional techniques like surgery, radiation and chemotherapy are employed but possess limitations such as organ toxicity, infection, nausea, vomiting, etc. Also, several nanotechnology-based synthetic vehicle delivery systems like liposomes, nanoparticles, etc. are used but they lack targeting efficiency that results in poor propulsion and control. Therefore, there is a need for naturally-driven drug carriers to overcome such limitations. Sperm-based drug delivery is the new area for targeted delivery that offers self-propulsion to tumor sites, higher biocompatibility, longer lifespan and increased tissue penetration with enhanced localization. Drug-loaded sperm cells are harnessed with micro/nanomotor that will guide them to the intended target site. The critical analysis of the sperm-based drug delivery system was executed and summarized along with the current challenges. This article deals with the art of delivering the anticancer drug to female reproductive cancer sites with proof-of-concept-based research data and critical discussion on challenges in formulating the sperm-based delivery with a future perspective.
Collapse
Affiliation(s)
- Priyank Shah
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM' S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM' S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
2
|
Hansen JN, Rassmann S, Stüven B, Jurisch-Yaksi N, Wachten D. CiliaQ: a simple, open-source software for automated quantification of ciliary morphology and fluorescence in 2D, 3D, and 4D images. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:18. [PMID: 33683488 PMCID: PMC7940315 DOI: 10.1140/epje/s10189-021-00031-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/01/2021] [Indexed: 05/16/2023]
Abstract
Cilia are hair-like membrane protrusions that emanate from the surface of most vertebrate cells and are classified into motile and primary cilia. Motile cilia move fluid flow or propel cells, while also fulfill sensory functions. Primary cilia are immotile and act as a cellular antenna, translating environmental cues into cellular responses. Ciliary dysfunction leads to severe diseases, commonly termed ciliopathies. The molecular details underlying ciliopathies and ciliary function are, however, not well understood. Since cilia are small subcellular compartments, imaging-based approaches have been used to study them. However, tools to comprehensively analyze images are lacking. Automatic analysis approaches require commercial software and are limited to 2D analysis and only a few parameters. The widely used manual analysis approaches are time consuming, user-biased, and difficult to compare. Here, we present CiliaQ, a package of open-source, freely available, and easy-to-use ImageJ plugins. CiliaQ allows high-throughput analysis of 2D and 3D, static or time-lapse images from fluorescence microscopy of cilia in cell culture or tissues, and outputs a comprehensive list of parameters for ciliary morphology, length, bending, orientation, and fluorescence intensity, making it broadly applicable. We envision CiliaQ as a resource and platform for reproducible and comprehensive analysis of ciliary function in health and disease.
Collapse
Affiliation(s)
- Jan Niklas Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Sebastian Rassmann
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Birthe Stüven
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A, Ialy-Radio C, Leboucher S, Whitfield M, Ziyyat A, Touré A, Alvarez L, Pigino G, Janke C. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 2021; 371:371/6525/eabd4914. [PMID: 33414192 DOI: 10.1126/science.abd4914] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo-electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.
Collapse
Affiliation(s)
- Sudarshan Gadadhar
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France. .,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| | - Gonzalo Alvarez Viar
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Jan Niklas Hansen
- Institute of Innate Immunity, Medical Faculty, University of Bonn, D-53127 Bonn, Germany
| | - An Gong
- Center of Advanced European Studies and Research, D-53175 Bonn, Germany
| | - Aleksandr Kostarev
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | - Côme Ialy-Radio
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Sophie Leboucher
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France.,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| | - Marjorie Whitfield
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Ahmed Ziyyat
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France.,Service d'histologie, d'embryologie, Biologie de la reproduction, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, F-75014 Paris, France
| | - Aminata Touré
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Luis Alvarez
- Center of Advanced European Studies and Research, D-53175 Bonn, Germany.
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany. .,Human Technopole, I-20157 Milan, Italy
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, F-91400 Orsay, France. .,Université Paris-Saclay, CNRS UMR3348, F-91400 Orsay, France
| |
Collapse
|
4
|
Hook KA, Fisher HS. Methodological considerations for examining the relationship between sperm morphology and motility. Mol Reprod Dev 2020; 87:633-649. [PMID: 32415812 PMCID: PMC7329573 DOI: 10.1002/mrd.23346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Sperm cells of all taxa share a common goal to reach and fertilize an ovum, yet sperm are one of the most diverse cell types in nature. While the structural diversity of these cells is well recognized, the functional significance of variation in sperm design remains elusive. An important function of spermatozoa is a need to migrate toward the ova, often over long distances in a foreign environment, which may include a complex and hostile female reproductive tract. Several comparative and experimental studies have attempted to address the link between sperm morphology and motility, yet the conclusions drawn from these studies are often inconsistent, even within the same taxa. Much of what we know about the functional significance of sperm design in internally fertilizing species has been gleaned from in vitro studies, for which experimental parameters often vary among studies. We propose that discordant results from these studies are in part due to a lack of consistency of methods, conditions that do not replicate those of the female reproductive tract, and the overuse of simple linear measures of sperm shape. Within this review, we provide a toolkit for imaging, quantifying, and analyzing sperm morphology and movement patterns for in vitro studies and discuss emerging approaches. Results from studies linking morphology to motility enhance our understanding of the evolution of adaptive sperm traits and the mechanisms that regulate fertility, thus offering new insights into methods used in assisted reproductive technologies in animal science, conservation and public health.
Collapse
Affiliation(s)
- Kristin A. Hook
- Department of Biology, University of Maryland, College Park, U.S.A
| | - Heidi S. Fisher
- Department of Biology, University of Maryland, College Park, U.S.A
| |
Collapse
|
5
|
Gong A, Rode S, Kaupp UB, Gompper G, Elgeti J, Friedrich BM, Alvarez L. The steering gaits of sperm. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190149. [PMID: 31884910 PMCID: PMC7017342 DOI: 10.1098/rstb.2019.0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
Sperm are highly specialized cells, which have been subject to substantial evolutionary pressure. Whereas some sperm features are highly conserved, others have undergone major modifications. Some of these variations are driven by adaptation to mating behaviours or fitness at the organismic level. Others represent alternative solutions to the same task. Sperm must find the egg for fertilization. During this task, sperm rely on long slender appendages termed flagella that serve as sensory antennas, propellers and steering rudders. The beat of the flagellum is periodic. The resulting travelling wave generates the necessary thrust for propulsion in the fluid. Recent studies reveal that, for steering, different species rely on different fundamental features of the beat wave. Here, we discuss some examples of unity and diversity across sperm from different species with a particular emphasis on the steering mechanisms. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- A. Gong
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - S. Rode
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - U. B. Kaupp
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - G. Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - J. Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - B. M. Friedrich
- Biological Algorithms Group, TU Dresden, Biological Systems Path of the Center for Advancing Electronics Dresden (CFAED), Helmholtzstrasse 18, 01069 Dresden, Germany
| | - L. Alvarez
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
6
|
Coherent directed movement toward food modeled in Trichoplax, a ciliated animal lacking a nervous system. Proc Natl Acad Sci U S A 2019; 116:8901-8908. [PMID: 30979806 PMCID: PMC6500112 DOI: 10.1073/pnas.1815655116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trichoplax adhaerens is a small, ciliated marine animal that glides on surfaces grazing upon algae, which it digests externally. It has no muscles or nervous system and only six cell types, all but two of which are embedded in its epithelium. The epithelial cells are joined by apical adherens junctions; neither tight junctions nor gap junctions are present. Monociliated epithelial cells on the lower surface propel gliding. The cilia beat regularly, but asynchronously, and transiently contact the substrate with each stroke. The animal moves in random directions in the absence of food. We show here that it exhibits chemotaxis, moving preferentially toward algae embedded in a disk of agar. We present a mathematical model to explain how coherent, directional movements could arise from the collective actions of a set of ciliated epithelial cells, each independently sensing and responding to a chemoattractant gradient. The model incorporates realistic values for viscoelastic properties of cells and produces coordinated movements and changes in body shape that resemble the actual movements of the animal. The model demonstrates that an animal can move coherently in search of food without any need for chemical signaling between cells and introduces a different approach to modeling behavior in primitive multicellular organisms.
Collapse
|
7
|
Rennhack A, Schiffer C, Brenker C, Fridman D, Nitao ET, Cheng Y, Tamburrino L, Balbach M, Stölting G, Berger TK, Kierzek M, Alvarez L, Wachten D, Zeng X, Baldi E, Publicover SJ, Benjamin Kaupp U, Strünker T. A novel cross-species inhibitor to study the function of CatSper Ca 2+ channels in sperm. Br J Pharmacol 2018; 175:3144-3161. [PMID: 29723408 PMCID: PMC6031884 DOI: 10.1111/bph.14355] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Sperm from many species share the sperm-specific Ca2+ channel CatSper that controls the intracellular Ca2+ concentration and, thereby, the swimming behaviour. A growing body of evidence suggests that the mechanisms controlling the activity of CatSper and its role during fertilization differ among species. A lack of suitable pharmacological tools has hampered the elucidation of the function of CatSper. Known inhibitors of CatSper exhibit considerable side effects and also inhibit Slo3, the principal K+ channel of mammalian sperm. The compound RU1968 was reported to suppress Ca2+ signaling in human sperm by an unknown mechanism. Here, we examined the action of RU1968 on CatSper in sperm from humans, mice, and sea urchins. EXPERIMENTAL APPROACH We resynthesized RU1968 and studied its action on sperm from humans, mice, and the sea urchin Arbacia punctulata by Ca2+ fluorimetry, single-cell Ca2+ imaging, electrophysiology, opto-chemistry, and motility analysis. KEY RESULTS RU1968 inhibited CatSper in sperm from invertebrates and mammals. The compound lacked toxic side effects in human sperm, did not affect mouse Slo3, and inhibited human Slo3 with about 15-fold lower potency than CatSper. Moreover, in human sperm, RU1968 mimicked CatSper dysfunction and suppressed motility responses evoked by progesterone, an oviductal steroid known to activate CatSper. Finally, RU1968 abolished CatSper-mediated chemotactic navigation in sea urchin sperm. CONCLUSION AND IMPLICATIONS We propose RU1968 as a novel tool to elucidate the function of CatSper channels in sperm across species.
Collapse
Affiliation(s)
- Andreas Rennhack
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Christian Schiffer
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Christoph Brenker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Dmitry Fridman
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Elis T Nitao
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Yi‐Min Cheng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Lara Tamburrino
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | - Melanie Balbach
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Gabriel Stölting
- Institute of Complex Systems – Zelluläre Biophysik 4, Forschungszentrum JülichJülichGermany
| | - Thomas K Berger
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Michelina Kierzek
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| | - Luis Alvarez
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Dagmar Wachten
- Max‐Planck Research Group of Molecular Physiology, Center of Advanced European Studies and ResearchBonnGermany
- Institute of Innate ImmunityUniversity Hospital, University of BonnBonnGermany
| | - Xu‐Hui Zeng
- Institute of Life Science and School of Life ScienceNanchang UniversityNanchangJiangxiChina
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, Center of Excellence DENOTHEUniversity of FlorenceFlorenceItaly
| | | | - U Benjamin Kaupp
- Department of Molecular Sensory SystemsCenter of Advanced European Studies and Research (CAESAR)BonnGermany
| | - Timo Strünker
- University Hospital Münster, Centre of Reproductive Medicine and AndrologyMünsterGermany
| |
Collapse
|
8
|
Bente K, Codutti A, Bachmann F, Faivre D. Biohybrid and Bioinspired Magnetic Microswimmers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704374. [PMID: 29855143 DOI: 10.1002/smll.201704374] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Many motile microorganisms swim and navigate in chemically and mechanically complex environments. These organisms can be functionalized and directly used for applications (biohybrid approach), but also inspire designs for fully synthetic microbots. The most promising designs of biohybrids and bioinspired microswimmers include one or several magnetic components, which lead to sustainable propulsion mechanisms and external controllability. This Review addresses such magnetic microswimmers, which are often studied in view of certain applications, mostly in the biomedical area, but also in the environmental field. First, propulsion systems at the microscale are reviewed and the magnetism of microswimmers is introduced. The review of the magnetic biohybrids and bioinspired microswimmers is structured gradually from mostly biological systems toward purely synthetic approaches. Finally, currently less explored parts of this field ranging from in situ imaging to swarm control are discussed.
Collapse
Affiliation(s)
- Klaas Bente
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Agnese Codutti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
- Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Felix Bachmann
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
- Laboratoire de Bioénergétique Cellulaire, UMR7265 Institut de Biosciences et Biotechnologies, CEA/CNRS/Aix-Marseille Université, 13108, Saint Paul lez Durance, France
| |
Collapse
|
9
|
Lüpold S, Pitnick S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 2018; 155:R229-R243. [DOI: 10.1530/rep-17-0536] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Sperm morphological variation has attracted considerable interest and generated a wealth of predominantly descriptive studies over the past three centuries. Yet, apart from biophysical studies linking sperm morphology to swimming velocity, surprisingly little is known about the adaptive significance of sperm form and the selective processes underlying its tremendous diversification throughout the animal kingdom. Here, we first discuss the challenges of examining sperm morphology in an evolutionary context and why our understanding of it is far from complete. Then, we review empirical evidence for how sexual selection theory applies to the evolution of sperm form and function, including putative secondary sexual traits borne by sperm.
Collapse
|
10
|
Mazer SJ, Hendrickson BT, Chellew JP, Kim LJ, Liu JW, Shu J, Sharma MV. Divergence in pollen performance between Clarkia sister species with contrasting mating systems supports predictions of sexual selection. Evolution 2018; 72:453-472. [PMID: 29359333 DOI: 10.1111/evo.13429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 12/22/2022]
Abstract
Animal taxa that differ in the intensity of sperm competition often differ in sperm production or swimming speed, arguably due to sexual selection on postcopulatory male traits affecting siring success. In plants, closely related self- and cross-pollinated taxa similarly differ in the opportunity for sexual selection among male gametophytes after pollination, so traits such as the proportion of pollen on the stigma that rapidly enters the style and mean pollen tube growth rate (PTGR) are predicted to diverge between them. To date, no studies have tested this prediction in multiple plant populations under uniform conditions. We tested for differences in pollen performance in greenhouse-raised populations of two Clarkia sister species: the predominantly outcrossing C. unguiculata and the facultatively self-pollinating C. exilis. Within populations of each taxon, groups of individuals were reciprocally pollinated (n = 1153 pollinations) and their styles examined four hours later. We tested for the effects of species, population, pollen type (self vs. outcross), the number of competing pollen grains, and temperature on pollen performance. Clarkia unguiculata exhibited higher mean PTGR than C. exilis; pollen type had no effect on performance in either taxon. The difference between these species in PTGR is consistent with predictions of sexual selection theory.
Collapse
Affiliation(s)
- Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Brandon T Hendrickson
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Joseph P Chellew
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Lynn J Kim
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Jasen W Liu
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Jasper Shu
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Manju V Sharma
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| |
Collapse
|
11
|
Saggiorato G, Alvarez L, Jikeli JF, Kaupp UB, Gompper G, Elgeti J. Human sperm steer with second harmonics of the flagellar beat. Nat Commun 2017; 8:1415. [PMID: 29123094 PMCID: PMC5680276 DOI: 10.1038/s41467-017-01462-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.
Collapse
Affiliation(s)
- Guglielmo Saggiorato
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (CAESAR), 53175, Bonn, Germany
| | - Luis Alvarez
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (CAESAR), 53175, Bonn, Germany.
| | - Jan F Jikeli
- Laboratoire de Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
- Biophysical Imaging, Institute of Innate Immunity, University Hospital Bonn, 53127, Bonn, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (CAESAR), 53175, Bonn, Germany
| | - Gerhard Gompper
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jens Elgeti
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
12
|
Iida T, Iwata Y, Mohri T, Baba SA, Hirohashi N. A coordinated sequence of distinct flagellar waveforms enables a sharp flagellar turn mediated by squid sperm pH-taxis. Sci Rep 2017; 7:12938. [PMID: 29021593 PMCID: PMC5636881 DOI: 10.1038/s41598-017-13406-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022] Open
Abstract
Animal spermatozoa navigate by sensing ambient chemicals to reach the site of fertilization. Generally, such chemicals derive from the female reproductive organs or cells. Exceptionally, squid spermatozoa mutually release and perceive carbon dioxide to form clusters after ejaculation. We previously identified the pH-taxis by which each spermatozoon can execute a sharp turn, but how flagellar dynamics enable this movement remains unknown. Here, we show that initiation of the turn motion requires a swim down a steep proton gradient (a theoretical estimation of ≥0.025 pH/s), crossing a threshold pH value of ~5.5. Time-resolved kinematic analysis revealed that the turn sequence results from the rhythmic exercise of two flagellar motions: a stereotypical flagellar ‘bent-cane’ shape followed by asymmetric wave propagation, which enables a sharp turn in the realm of low Reynolds numbers. This turning episode is terminated by an ‘overshoot’ trajectory that differs from either straight-line motility or turning. As with bidirectional pH-taxes in some bacteria, squid spermatozoa also showed repulsion from strong acid conditions with similar flagellar kinematics as in positive pH-taxis. These findings indicate that squid spermatozoa might have a unique reorientation mechanism, which could be dissimilar to that of classical egg-guided sperm chemotaxis in other marine invertebrates.
Collapse
Affiliation(s)
- Tomohiro Iida
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane, 685-0024, Japan
| | - Yoko Iwata
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Tatsuma Mohri
- Section of Individual Researches, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho Okazaki, 444-8787, Japan
| | - Shoji A Baba
- Ochanomizu University, 2-2-1 Otsuka, Tokyo, 112-8610, Japan
| | - Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane, 685-0024, Japan.
| |
Collapse
|
13
|
Yamato KT, Kuchitsu K. "Fusion" in fertilization: interdisciplinary collaboration among plant and animal scientists. JOURNAL OF PLANT RESEARCH 2017; 130:419-421. [PMID: 28396963 DOI: 10.1007/s10265-017-0937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan.
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
14
|
Hikosaka K. Greetings from the new Editor-in-Chief. JOURNAL OF PLANT RESEARCH 2017; 130:417-418. [PMID: 28389924 DOI: 10.1007/s10265-017-0939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.
| |
Collapse
|