1
|
Figueiredo MGF, Ribeiro LM, Mercadante-Simões MO. Ontogenesis of the anastomosed laticifers of Allamanda cathartica (Apocynaceae) and the chemical nature of the stem latex. PROTOPLASMA 2025; 262:353-363. [PMID: 39419829 DOI: 10.1007/s00709-024-01999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Laticifers are secretive structures with important roles in controlling abiotic and biotic stress through the external release of viscous and bioactive latex emulsions composed of alkaloids, terpenes, flavonoids, proteins, and mucilage. Allamanda cathartica is an attractive ornamental neotropical shrub that produces abundant latex with medicinal potential. The laticifers of this species, their origins, structural types, and distribution in the primary and secondary structures of the stem were investigated, and the chemical nature of latex was determined. Anatomical, histochemical, and ultrastructural evaluations of the stem apex were performed through light and electronic microscopy. Laticifers are abundant in the primary structure, being distributed in the cortex, outer primary phloem, and pith. Their branching, anastomosing structural type develops by the dissolution of the transverse and lateral walls of precursor meristematic cells, followed by protoplast fusion. The laticifers in the secondary structure are distributed amid the axial parenchyma cells of the phloem. The latex of A. cathartica is an emulsion composed mainly of mucilage and terpenes, and it is the first time that this laticifer system has been described.
Collapse
Affiliation(s)
| | - Leonardo Monteiro Ribeiro
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, 39401-089, Brazil
| | | |
Collapse
|
2
|
Uzaki M, Mori T, Sato M, Wakazaki M, Takeda-Kamiya N, Yamamoto K, Murakami A, Guerrero DAS, Shichijo C, Ohnishi M, Ishizaki K, Fukaki H, O'Connor SE, Toyooka K, Mimura T, Hirai MY. Integration of cell differentiation and initiation of monoterpenoid indole alkaloid metabolism in seed germination of Catharanthus roseus. THE NEW PHYTOLOGIST 2024; 242:1156-1171. [PMID: 38513692 DOI: 10.1111/nph.19662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.
Collapse
Affiliation(s)
- Mai Uzaki
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Noriko Takeda-Kamiya
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Kotaro Yamamoto
- School of Science, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Akio Murakami
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Delia Ayled Serna Guerrero
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Chizuko Shichijo
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Miwa Ohnishi
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Hidehiro Fukaki
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuro Mimura
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
- College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
- The Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 188-0002, Japan
- Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, 621-8555, Japan
| | - Masami Yokota Hirai
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
3
|
Guedes JG, Ribeiro R, Carqueijeiro I, Guimarães AL, Bispo C, Archer J, Azevedo H, Fonseca NA, Sottomayor M. The leaf idioblastome of the medicinal plant Catharanthus roseus is associated with stress resistance and alkaloid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:274-299. [PMID: 37804484 PMCID: PMC10735432 DOI: 10.1093/jxb/erad374] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell type localizations, and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialized idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterized. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast to surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the key to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.
Collapse
Affiliation(s)
- Joana G Guedes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Rogério Ribeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Inês Carqueijeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Ana Luísa Guimarães
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Cláudia Bispo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - John Archer
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Nuno A Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Mariana Sottomayor
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Syahruni R, Umar AH, Todingbua D, Semba Y, Irmawati D, Ratnadewi D. Morphology, anatomy, and histochemistry of three species of Jatropha: a contribution to plant recognition and selection. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1009-1021. [PMID: 37615257 DOI: 10.1111/plb.13567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
Jatropha, a traditional medicinal plant known for its anti-inflammatory, antimicrobial, anticancer, antiviral, antidiabetic, and anticoagulant properties, was the subject of our study. We examined the morphology and chemical composition of three Jatropha species using cross- and longitudinal sections of fresh samples, observed with light microscopy. Histochemical analysis was conducted using various reagents to reveal the metabolites present. Anatomically, the distinguishing feature among the three Jatropha species was the presence of secretory cavities. These structures were identified in the petiole and stem bark of J. multifida, while in J. gossypiifolia and J. curcas they were present in roots. The stem bark cells of J. gossypiifolia were roundish in shape, whereas the others were rectangular. Laticifers were detected in the leaves, petioles, and stem bark of all three Jatropha species, while idioblasts were present in almost all organs. Histochemical tests revealed that excretory idioblasts and laticifers in Jatropha species contained alkaloids, phenolics, lipophilic compounds, and terpenoids. The cuticle of non-glandular trichomes contained terpenoids, while phenolic compounds were found within the secretory cavities. These findings contribute to the identification of Jatropha species and provide valuable insights for the selection and collection of specific plant organs containing bioactive compounds.
Collapse
Affiliation(s)
- R Syahruni
- Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Makassar, South Sulawesi, Indonesia
| | - A H Umar
- Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Makassar, South Sulawesi, Indonesia
| | - D Todingbua
- Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Makassar, South Sulawesi, Indonesia
| | - Y Semba
- Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Makassar, South Sulawesi, Indonesia
| | - D Irmawati
- Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Makassar, South Sulawesi, Indonesia
| | - D Ratnadewi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, West Java, Indonesia
| |
Collapse
|
5
|
Marques HKO, Figueiredo MGF, de Souza Pio WS, Ribeiro LM, de Azevedo IFP, Duarte LP, de Sousa GF, de Aguilar MG, Mercadante-Simões MO. Laticifer ontogenesis and the chemical constituents of Marsdenia zehntneri (Apocynaceae) latex in a semiarid environment. PLANTA 2022; 257:19. [PMID: 36538159 DOI: 10.1007/s00425-022-04050-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Anastomosed laticifers with intrusive growth produce latex containing methyl comate and betulin with economic and ecological value in arid environments. Climatic factors influence laticifer development in the apical meristem and vascular cambium. Latex is a complex emulsion with high medicinal as well as ecological value related to plant survival. Marsdenia zehntneri is a shrubby plant that grows on limestone outcrops in the semiarid regions of Brazil. We sought to characterize the ontogenesis of the laticifers of this species and to relate that process to climatic seasonality and phenology through anatomical, ultrastructural, and micro-morphometric evaluations of the apical meristem and vascular cambium. The histochemistry of the secretory structure was investigated and the chemical composition of the latex was analyzed. Phenological assessments were performed by monitoring phenological events for 1 year. The laticifers network of M. zehntneri permeates the entire primary and secondary body of the plant, providing a wide distribution system of defensive compounds. Its laticifers, of a distinct mixed type (anastomosed, with intrusive growth), are numerous and voluminous in the apical meristem but scarce and minute in the secondary phloem. Latex secretion involves the participation of oleoplasts, polysomes, and dictyosomes. Methyl 2,3-dihydroxy-ursan-23-oate, methyl 3-hydroxy-ursan-23-oate, and betulin are encountered in high proportions in the latex and have ecological and medicinal functions. The development of primary laticifers is related to the resumption of apical meristem activity with increasing day length at the end of the austral winter. The development of secondary laticifers is related to high summer temperatures and rainfall that favor vascular cambium activity. The wide distribution of laticifers, their seasonal pattern of secretion, and their latex composition contribute to the adaptation of M. zehntneri to its natural environment.
Collapse
Affiliation(s)
- Hellen Karla Oliveira Marques
- General Biology Department, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, CEP 39401-089, Brazil
| | - Maria Gabriela Ferreira Figueiredo
- General Biology Department, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, CEP 39401-089, Brazil
| | - Willian Samuel de Souza Pio
- General Biology Department, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, CEP 39401-089, Brazil
| | - Leonardo Monteiro Ribeiro
- General Biology Department, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, CEP 39401-089, Brazil
| | - Islaine Franciely Pinheiro de Azevedo
- General Biology Department, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, CEP 39401-089, Brazil
| | - Lucienir Pains Duarte
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Grasiely Faria de Sousa
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Mariana Guerra de Aguilar
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Maria Olívia Mercadante-Simões
- General Biology Department, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, CEP 39401-089, Brazil.
| |
Collapse
|
6
|
Yamamoto K, Takahashi K, O'Connor SE, Mimura T. Imaging MS Analysis in Catharanthus roseus. Methods Mol Biol 2022; 2505:33-43. [PMID: 35732934 DOI: 10.1007/978-1-0716-2349-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To understand how the plant regulates metabolism, it is important to determine where metabolites localize in the tissues and cells. Single-cell level omics approaches in plants have shown remarkable development over the last several years, and this data has been instrumental in gene discovery efforts for enzymes and transporters involved in metabolism. For metabolomics, Imaging Mass Spectrometry (IMS) is a powerful tool to map the spatial distribution of molecules in the tissue. Here, we describe the methods which we used to reveal where secondary metabolites, primarily alkaloids, localize in Catharanthus roseus stem and leaf tissues.
Collapse
Affiliation(s)
- Kotaro Yamamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan.
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Katsutoshi Takahashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.
- The Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.
- College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|