1
|
Delfan N, Abbasi F, Emamzadeh N, Bahri A, Parvaresh Rizi M, Motamedi A, Moshiri B, Iranmehr A. Advancing Intracranial Aneurysm Detection: A Comprehensive Systematic Review and Meta-analysis of Deep Learning Models Performance, Clinical Integration, and Future Directions. J Clin Neurosci 2025; 136:111243. [PMID: 40306254 DOI: 10.1016/j.jocn.2025.111243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/16/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Cerebral aneurysms pose a significant risk to patient safety, particularly when ruptured, emphasizing the need for early detection and accurate prediction. Traditional diagnostic methods, reliant on clinician-based evaluations, face challenges in sensitivity and consistency, prompting the exploration of deep learning (DL) systems for improved performance. METHODS This systematic review and meta-analysis assessed the performance of DL models in detecting and predicting intracranial aneurysms compared to clinician-based evaluations. Imaging modalities included CT angiography (CTA), digital subtraction angiography (DSA), and time-of-flight MR angiography (TOF-MRA). Data on lesion-wise sensitivity, specificity, and the impact of DL assistance on clinician performance were analyzed. Subgroup analyses evaluated DL sensitivity by aneurysm size and location, and interrater agreement was measured using Fleiss' κ. RESULTS DL systems achieved an overall lesion-wise sensitivity of 90 % and specificity of 94 %, outperforming human diagnostics. Clinician specificity improved significantly with DL assistance, increasing from 83 % to 85 % in the patient-wise scenario and from 93 % to 95 % in the lesion-wise scenario. Similarly, clinician sensitivity also showed notable improvement with DL assistance, rising from 82 % to 96 % in the patient-wise scenario and from 82 % to 88 % in the lesion-wise scenario. Subgroup analysis showed DL sensitivity varied with aneurysm size and location, reaching 100 % for aneurysms larger than 10 mm. Additionally, DL assistance improved interrater agreement among clinicians, with Fleiss' κ increasing from 0.668 to 0.862. CONCLUSIONS DL models demonstrate transformative potential in managing cerebral aneurysms by enhancing diagnostic accuracy, reducing missed cases, and supporting clinical decision-making. However, further validation in diverse clinical settings and seamless integration into standard workflows are necessary to fully realize the benefits of DL-driven diagnostics.
Collapse
Affiliation(s)
- Niloufar Delfan
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Neuraitex Research Center, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Abbasi
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Negar Emamzadeh
- Doctor of Medicine (MD), Iran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Bahri
- Student Research Committee, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mansour Parvaresh Rizi
- Department of Neurosurgery, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Motamedi
- Student Research Committee, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Moshiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Electrical and Computer Engineering University of Waterloo, Waterloo, Canada.
| | - Arad Iranmehr
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran; Gammaknife Center, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Cao R, Zhang D, Wei P, Ding Y, Zheng C, Tan D, Zhou C. PMMNet: A Dual Branch Fusion Network of Point Cloud and Multi-View for Intracranial Aneurysm Classification and Segmentation. IEEE J Biomed Health Inform 2025; 29:3137-3147. [PMID: 38512745 DOI: 10.1109/jbhi.2024.3380054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Intracranial aneurysm (IA) is a vascular disease of the brain arteries caused by pathological vascular dilation, which can result in subarachnoid hemorrhage if ruptured. Automatically classification and segmentation of intracranial aneurysms are essential for their diagnosis and treatment. However, the majority of current research is focused on two-dimensional images, ignoring the 3D spatial information that is also critical. In this work, we propose a novel dual-branch fusion network called the Point Cloud and Multi-View Medical Neural Network (PMMNet) for IA classification and segmentation. Specifically, one branch based on 3D point clouds serves the purpose of extracting spatial features, whereas the other branch based on multi-view images acquires 2D pixel features. Ultimately, the two types of features are fused for IA classification and segmentation. To extract both local and global features from 3D point clouds, Multilayer Perceptron (MLP) and the attention mechanism are used in parallel. In addition, a SPSA module is proposed for multi-view image feature learning, which extracts more exquisite channel and spatial multi-scale features from 2D images. Experiments conducted on the IntrA dataset outperform other state-of-the-art methods, demonstrating that the proposed PMMNet exhibits strong superiority on the medical 3D dataset. We also obtain competitive results on public datasets, including ModelNet40, ModelNet10, and ShapeNetPart, which further validate the robustness and generality of the PMMNet.
Collapse
|
3
|
Yang Q, Chen F, Li L, Zeng R, Li J, Xu J, Huang C, Feng J, Li C. Automatic diagnosis and measurement of intracranial aneurysms using deep learning in MRA raw images. Front Neurol 2025; 16:1544571. [PMID: 40406704 PMCID: PMC12096847 DOI: 10.3389/fneur.2025.1544571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/31/2025] [Indexed: 05/26/2025] Open
Abstract
Background The traditional procedure of intracranial aneurysm (IA) diagnosis and evaluation in MRA is manually operated, which is time-consuming and labor-intensive. In this study, a deep learning model was established to diagnose and measure IA automatically based on the original MR images. Methods A total of 1,014 IAs (from 852 patients) from hospital 1 were included and randomly divided into training, testing, and internal validation sets in a 7:2:1 ratio. Additionally, 315 patients (179 cases with IA and 136 cases without IA) from hospital 2 were used for independent validation. A deep learning model of MR 3DUnet was established for IA diagnosis and size measurement. The true positive (TP), false positive (FP), false negative (FN), recall, sensitivity, and specificity indices were used to evaluate the diagnosis performance of MR 3DUnet. The two-sample t-test was used to compare the size measurement results of MR 3DUnet and two radiologists. A p-value of < 0.05 was considered statistically significant. Results The fully automatic model processed the original MRA data in 13.6 s and provided real-time results, including IA diagnosis and size measurement. For the IA diagnosis, in the training, testing, and internal validation sets, the recall rates were 0.80, 0.75, and 0.79, and the sensitivities were 0.82, 0.75, and 0.75, respectively. In the independent validation set, the recall rate, sensitivity, specificity, and AUC were 0.71, 0.74, 0.77, and 0.75, respectively. Subgroup analysis showed a recall rate of 0.74 for IA diagnosis based on DSA. For IA size measurement, no significant difference was found between our MR 3DUnet and the manual measurements of DSA or MRA. Conclusion In this study, a one-click, fully automatic deep learning model was developed for automatic IA diagnosis and size measurement based on 2D original images. It has the potential to significantly improve doctors' work efficiency and reduce patients' examination time, making it highly valuable in clinical practice.
Collapse
Affiliation(s)
- Qingning Yang
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China; Medical Imaging Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Fengxi Chen
- Department of Radiology, 7T Magnetic Resonance Translational Medicine Research Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Li
- Pathology Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Rong Zeng
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaqing Li
- Department of Information, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jingxu Xu
- Department of Research Collaboration, R&D Center, Beijing Deepwise and League of PHD Technology Co., Ltd., Beijing, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise and League of PHD Technology Co., Ltd., Beijing, China
| | - Junbang Feng
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China; Medical Imaging Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chuanming Li
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China; Medical Imaging Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Hsu WC, Meuschke M, Frangi AF, Preim B, Lawonn K. A survey of intracranial aneurysm detection and segmentation. Med Image Anal 2025; 101:103493. [PMID: 39970529 DOI: 10.1016/j.media.2025.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
Intracranial aneurysms (IAs) are a critical public health concern: they are asymptomatic and can lead to fatal subarachnoid hemorrhage in case of rupture. Neuroradiologists rely on advanced imaging techniques to identify aneurysms in a patient and consider the characteristics of IAs along with several other patient-related factors for rupture risk assessment and treatment decision-making. The process of diagnostic image reading is time-intensive and prone to inter- and intra-individual variations, so researchers have proposed many computer-aided diagnosis (CAD) systems for aneurysm detection and segmentation. This paper provides a comprehensive literature survey of semi-automated and automated approaches for IA detection and segmentation and proposes a taxonomy to classify the approaches. We also discuss the current issues and give some insight into the future direction of CAD systems for IA detection and segmentation.
Collapse
Affiliation(s)
- Wei-Chan Hsu
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, Ernst-Abbe-Platz 2, Jena, 07743, Thuringia, Germany.
| | - Monique Meuschke
- Otto von Guericke University Magdeburg, Department of Simulation and Graphics, Universitätsplatz 2, Magdeburg, 39106, Saxony-Anhalt, Germany
| | - Alejandro F Frangi
- University of Manchester, Christabel Pankhurst Institute, Schools of Engineering and Health Sciences, Oxford Rd, Manchester, M13 9PL, Greater Manchester, United Kingdom
| | - Bernhard Preim
- Otto von Guericke University Magdeburg, Department of Simulation and Graphics, Universitätsplatz 2, Magdeburg, 39106, Saxony-Anhalt, Germany
| | - Kai Lawonn
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, Ernst-Abbe-Platz 2, Jena, 07743, Thuringia, Germany
| |
Collapse
|
5
|
Hou L, Zhang J, Zhao L, Meng K, Feng X. CTA image segmentation method for intracranial aneurysms based on MGLIA net. Sci Rep 2025; 15:10593. [PMID: 40148442 PMCID: PMC11950224 DOI: 10.1038/s41598-025-95143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Accurately segmenting the aneurysm area from CTA data can reconstruct the three-dimensional morphology of the aneurysm, effectively evaluating the type, size, and risk of rupture of the aneurysm. However, accurate separation of the aneurysm is limited by the accuracy of image segmentation algorithms. Currently, the segmentation methods for intracranial aneurysms using CTA big data and deep learning lack universality. When faced with a new hospital acquired imaging modality, it is usually necessary to redesign and train the segmentation network. In response to this issue, this article proposes a more universal segmentation model and develops the GLIA Net algorithm (MGLIA Net model) based on MoblieNet, which can perform adaptive target segmentation on aneurysm images collected under different conditions. To verify the effectiveness of the algorithm in intracranial aneurysm segmentation, performance tests were conducted on an open-source dataset. The results showed that the proposed algorithm achieved segmentation accuracy of 55.9% and 73.1% on two datasets, respectively, significantly better than the original GLIA-Net algorithm.
Collapse
Affiliation(s)
- Lijie Hou
- School of Life Science and Technology, Changchun University of Science and Technology, ChangChun City, 130000, China
| | - Jian Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, ChangChun City, 130000, China
| | - Lihui Zhao
- School of Life Science and Technology, Changchun University of Science and Technology, ChangChun City, 130000, China
| | - Ke Meng
- The Third Bethune Hospital of JiLin University, Neurosurgery, ChangChun City, 130000, China
| | - Xin Feng
- School of Life Science and Technology, Changchun University of Science and Technology, ChangChun City, 130000, China.
- School of Computer Science and Technology, ChangChun University of Science and Technology, 7089 Weiguang Street, ChangChun City, 130000, China.
| |
Collapse
|
6
|
Mata-Castillo M, Hernández-Villegas A, Gordillo-Castillo N, Díaz-Román J. Systematic review of artificial intelligence methods for detection and segmentation of unruptured intracranial aneurysms using medical imaging. Med Biol Eng Comput 2025:10.1007/s11517-025-03345-7. [PMID: 40095414 DOI: 10.1007/s11517-025-03345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Unruptured intracranial aneurysms are protuberances that appear in cerebral arteries, and their diagnostic evaluation can be a complex, time-consuming, and exhaustive task. In recent years, computer-aided systems have been developed to improve diagnostic processes. Although the proposed methods have already been reviewed to assess their suitability for clinical use, the segmentation methods have not been reviewed in detail, nor has there been a standardized way to compare segmentation and detection tasks. A systematic review was conducted to examine the technical and methodological factors contributing to this limitation. The analysis encompassed 49 studies conducted between 2019 and 2023 that utilized artificial intelligence methods and any medical imaging modality for the detection or segmentation of intracranial aneurysms. Most of the included studies focused exclusively on detection (57%), magnetic resonance angiography was the predominant imaging modality (47%), and the methodologies generally used 3D imaging as the input (71%). The reported sensitivities ranged from 0.68 to 0.90, specificities from 0.18 to 1.0, false positives per case from 0.18 to 13.8, and the Dice similarity coefficient from 0.53 to 0.98. Variations in aneurysm size were found to have a substantial impact on system performance. Studies were evaluated using a diagnostic accuracy study quality assessment tool, which revealed significant concerns regarding applicability. These concerns primarily stem from the poor reproducibility and inconsistent reporting of metrics. Recommendations for reporting outcomes were made to compare procedures across different types of imaging and tasks.
Collapse
Affiliation(s)
- Mario Mata-Castillo
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, Ciudad Juárez, México
| | - Andrea Hernández-Villegas
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, Ciudad Juárez, México
| | - Nelly Gordillo-Castillo
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, Ciudad Juárez, México
| | - José Díaz-Román
- Department of Electrical and Computer Engineering, Autonomous University of Ciudad Juarez, Ciudad Juárez, México.
| |
Collapse
|
7
|
Nader R, Autrusseau F, L'Allinec V, Bourcier R. Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1347-1358. [PMID: 39504285 DOI: 10.1109/tmi.2024.3492313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
We hereby present a full synthetic model, able to mimic the various constituents of the cerebral vascular tree, including the cerebral arteries, bifurcations and intracranial aneurysms. This model intends to provide a substantial dataset of brain arteries which could be used by a 3D convolutional neural network to efficiently detect Intra-Cranial Aneurysms. The cerebral aneurysms most often occur on a particular structure of the vascular tree named the Circle of Willis. Various studies have been conducted to detect and monitor the aneurysms and those based on Deep Learning achieve the best performance. Specifically, in this work, we propose a full synthetic 3D model able to mimic the brain vasculature as acquired by Magnetic Resonance Angiography, Time Of Flight principle. Among the various MRI modalities, this latter allows for a good rendering of the blood vessels and is non-invasive. Our model has been designed to simultaneously mimic the arteries' geometry, the aneurysm shape, and the background noise. The vascular tree geometry is modeled thanks to an interpolation with 3D Spline functions, and the statistical properties of the background noise is collected from angiography acquisitions and reproduced within the model. In this work, we thoroughly describe the synthetic vasculature model, we build up a neural network designed for aneurysm segmentation and detection, finally, we carry out an in-depth evaluation of the performance gap gained thanks to the synthetic model data augmentation.
Collapse
|
8
|
Owens M, Tenhoeve SA, Rawson C, Azab M, Karsy M. Systematic Review of Radiomics and Artificial Intelligence in Intracranial Aneurysm Management. J Neuroimaging 2025; 35:e70037. [PMID: 40095247 PMCID: PMC11912304 DOI: 10.1111/jon.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Intracranial aneurysms, with an annual incidence of 2%-3%, reflect a rare disease associated with significant mortality and morbidity risks when ruptured. Early detection, risk stratification of high-risk subgroups, and prediction of patient outcomes are important to treatment. Radiomics is an emerging field using the quantification of medical imaging to identify parameters beyond traditional radiology interpretation that may offer diagnostic or prognostic significance. The general radiomic workflow involves image normalization and segmentation, feature extraction, feature selection or dimensional reduction, training of a predictive model, and validation of the said model. Artificial intelligence (AI) techniques have shown increasing interest in applications toward vascular pathologies, with some commercially successful software including AiDoc, RapidAI, and Viz.AI, as well as the more recent Viz Aneurysm. We performed a systematic review of 684 articles and identified 84 articles exploring the applications of radiomics and AI in aneurysm treatment. Most studies were published between 2018 and 2024, with over half of articles in 2022 and 2023. Studies included categories such as aneurysm diagnosis (25.0%), rupture risk prediction (50.0%), growth rate prediction (4.8%), hemodynamic assessment (2.4%), clinical outcome prediction (11.9%), and occlusion or stenosis assessment (6.0%). Studies utilized molecular data (2.4%), radiologic data alone (51.2%), clinical data alone (28.6%), and combined radiologic and clinical data (17.9%). These results demonstrate the current status of this emerging and exciting field. An increased pace of innovation in this space is likely with the expansion of clinical applications of radiomics and AI in multiple vascular pathologies.
Collapse
Affiliation(s)
- Monica‐Rae Owens
- Spencer Fox Eccles School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Samuel A. Tenhoeve
- Spencer Fox Eccles School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Clayton Rawson
- College of Osteopathic MedicineNOORDA CollegeProvoUtahUSA
| | - Mohammed Azab
- Kasr Al Ainy School of MedicineCairo UniversityAl ManialEgypt
| | - Michael Karsy
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
9
|
Tian K, Chang Z, Yang Y, Liu P, Mossa-Basha M, Levitt MR, Zhai D, Liu D, Li H, Liu Y, Zhang J, Cao C, Zhu C, Jiang P, Liu Q, He H, Xia Y. CTA-based deep-learning integrated model for identifying irregular shape and aneurysm size of unruptured intracranial aneurysms. J Neurointerv Surg 2025:jnis-2024-022784. [PMID: 39978823 DOI: 10.1136/jnis-2024-022784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Artificial intelligence can help to identify irregular shapes and sizes, crucial for managing unruptured intracranial aneurysms (UIAs). However, existing artificial intelligence tools lack reliable classification of UIA shape irregularity and validation against gold-standard three-dimensional rotational angiography (3DRA). This study aimed to develop and validate a deep-learning model using computed tomography angiography (CTA) for classifying irregular shapes and measuring UIA size. METHODS CTA and 3DRA of UIA patients from a referral hospital were included as a derivation set, with images from multiple medical centers as an external test set. Senior investigators manually measured irregular shape and aneurysm size on 3DRA as the ground truth. Convolutional neural network (CNN) models were employed to develop the CTA-based model for irregular shape classification and size measurement. Model performance for UIA size and irregular shape classification was evaluated by intraclass correlation coefficient (ICC) and area under the curve (AUC), respectively. Junior clinicians' performance in irregular shape classification was compared before and after using the model. RESULTS The derivation set included CTA images from 307 patients with 365 UIAs. The test set included 305 patients with 350 UIAs. The AUC for irregular shape classification of this model in the test set was 0.87, and the ICC of aneurysm size measurement was 0.92, compared with 3DRA. With the model's help, junior clinicians' performance for irregular shape classification was significantly improved (AUC 0.86 before vs 0.97 after, P<0.001). CONCLUSION This study provided a deep-learning model based on CTA for irregular shape classification and size measurement of UIAs with high accuracy and external validity. The model can be used to improve reader performance.
Collapse
Affiliation(s)
- Ke Tian
- Beijing Institute of Technology School of Automation, Beijing, Beijing, China
| | - Zhenyao Chang
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Peng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing, China
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Michael R Levitt
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dihua Zhai
- Beijing Institute of Technology School of Automation, Beijing, Beijing, China
| | - Danyang Liu
- Beijing Institute of Technology School of Automation, Beijing, Beijing, China
| | - Hao Li
- Beijing Institute of Technology School of Automation, Beijing, Beijing, China
| | - Yang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jinhao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Cijian Cao
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing, China
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Peng Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing, China
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Hongwei He
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing, China
| | - Yuanqing Xia
- Beijing Institute of Technology School of Automation, Beijing, Beijing, China
| |
Collapse
|
10
|
Wang K, Zhang Y, Fang B. Intracranial Aneurysm Segmentation with a Dual-Path Fusion Network. Bioengineering (Basel) 2025; 12:185. [PMID: 40001704 PMCID: PMC11852351 DOI: 10.3390/bioengineering12020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Intracranial aneurysms (IAs), a significant medical concern due to their prevalence and life-threatening nature, pose challenges regarding diagnosis owing to their diminutive and variable morphology. There are currently challenges surrounding automating the segmentation of IAs, which is essential for diagnostic precision. Existing deep learning methods in IAs segmentation tend to emphasize semantic features at the expense of detailed information, potentially compromising segmentation quality. Our research introduces the innovative Dual-Path Fusion Network (DPF-Net), an advanced deep learning architecture crafted to refine IAs segmentation by adeptly incorporating detailed information. DPF-Net, with its unique resolution-preserving detail branch, ensures minimal loss of detail during feature extraction, while its cross-fusion module effectively promotes the connection of semantic information and finer detail features, enhancing segmentation precision. The network also integrates a detail aggregation module for effective fusion of multi-scale detail features. A view fusion strategy is employed to address spatial disruptions in patch generation, thereby improving feature extraction efficiency. Evaluated on the CADA dataset, DPF-Net achieves a remarkable mean Dice similarity coefficient (DSC) of 0.8967, highlighting its potential in automated IAs diagnosis in clinical settings. Furthermore, DPF-Net's outstanding performance on the BraTS 2020 MRI dataset for brain tumor segmentation with a mean DSC of 0.8535 further confirms its robustness and generalizability.
Collapse
Affiliation(s)
| | | | - Bin Fang
- College of Computer Science, Chongqing University, Chongqing 400038, China; (K.W.); (Y.Z.)
| |
Collapse
|
11
|
Schmidt CC, Stahl R, Mueller F, Fischer TD, Forbrig R, Brem C, Isik H, Seelos K, Thon N, Stoecklein S, Liebig T, Rueckel J. Evaluation of AI-Powered Routine Screening of Clinically Acquired cMRIs for Incidental Intracranial Aneurysms. Diagnostics (Basel) 2025; 15:254. [PMID: 39941184 PMCID: PMC11816387 DOI: 10.3390/diagnostics15030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Objectives: To quantify the clinical value of integrating a commercially available artificial intelligence (AI) algorithm for intracranial aneurysm detection in a screening setting that utilizes cranial magnetic resonance imaging (cMRI) scans acquired primarily for other clinical purposes. Methods: A total of 907 consecutive cMRI datasets, including time-of-flight-angiography (TOF-MRA), were retrospectively identified from patients unaware of intracranial aneurysms. cMRIs were analyzed by a commercial AI algorithm and reassessed by consultant-level neuroradiologists, who provided confidence scores and workup recommendations for suspicious findings. Patients with newly identified findings (relative to initial cMRI reports) were contacted for on-site consultations, including cMRI follow-up or catheter angiography. The number needed to screen (NNS) was defined as the cMRI quantity that must undergo AI screening to achieve various clinical endpoints. Results: The algorithm demonstrates high sensitivities (100% for findings >4 mm in diameter), a 17.8% MRA alert rate and positive predictive values of 11.5-43.8% (depending on whether inconclusive findings are considered or not). Initial cMRI reports missed 50 out of 59 suspicious findings, including 13 certain intradural aneurysms. The NNS for additionally identifying highly suspicious and therapeutically relevant (unruptured intracranial aneurysm treatment scores balanced or in favor of treatment) findings was 152. The NNS for recommending additional follow-/workup imaging (cMRI or catheter angiography) was 26, suggesting an additional up to 4% increase in imaging procedures resulting from a preceding AI screening. Conclusions: AI-powered routine screening of cMRIs clearly lowers the high risk of incidental aneurysm non-reporting but results in a substantial burden of additional imaging follow-up for minor or inconclusive findings.
Collapse
Affiliation(s)
| | - Robert Stahl
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany; (C.C.S.)
| | - Franziska Mueller
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Thomas David Fischer
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany; (C.C.S.)
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany; (C.C.S.)
| | - Christian Brem
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany; (C.C.S.)
| | - Hakan Isik
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany; (C.C.S.)
| | - Klaus Seelos
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany; (C.C.S.)
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Thomas Liebig
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany; (C.C.S.)
| | - Johannes Rueckel
- Institute of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany; (C.C.S.)
| |
Collapse
|
12
|
Yang Y, Chang Z, Nie X, Wu J, Chen J, Liu W, He H, Wang S, Zhu C, Liu Q. Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography. Radiol Artif Intell 2025; 7:e240017. [PMID: 39503602 DOI: 10.1148/ryai.240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Purpose To develop a deep learning model for the morphologic measurement of unruptured intracranial aneurysms (UIAs) based on CT angiography (CTA) data and validate its performance using a multicenter dataset. Materials and Methods In this retrospective study, patients with CTA examinations, including those with and without UIAs, in a tertiary referral hospital from February 2018 to February 2021 were included as the training dataset. Patients with UIAs who underwent CTA at multiple centers between April 2021 and December 2022 were included as the multicenter external testing set. An integrated deep learning (IDL) model was developed for UIA detection, segmentation, and morphologic measurement using an nnU-Net algorithm. Model performance was evaluated using the Dice similarity coefficient (DSC) and intraclass correlation coefficient (ICC), with measurements by senior radiologists serving as the reference standard. The ability of the IDL model to improve performance of junior radiologists in measuring morphologic UIA features was assessed. Results The study included 1182 patients with UIAs and 578 controls without UIAs as the training dataset (median age, 55 years [IQR, 47-62 years], 1012 [57.5%] female) and 535 patients with UIAs as the multicenter external testing set (median age, 57 years [IQR, 50-63 years], 353 [66.0%] female). The IDL model achieved 97% accuracy in detecting UIAs and achieved a DSC of 0.90 (95% CI: 0.88, 0.92) for UIA segmentation. Model-based morphologic measurements showed good agreement with reference standard measurements (all ICCs > 0.85). Within the multicenter external testing set, the IDL model also showed agreement with reference standard measurements (all ICCs > 0.80). Junior radiologists assisted by the IDL model showed significantly improved performance in measuring UIA size (ICC improved from 0.88 [95% CI: 0.80, 0.92] to 0.96 [95% CI: 0.92, 0.97], P < .001). Conclusion The developed integrated deep learning model using CTA data showed good performance in UIA detection, segmentation, and morphologic measurement and may be used to assist less experienced radiologists in morphologic analysis of UIAs. Keywords: Segmentation, CT Angiography, Head/Neck, Aneurysms, Comparative Studies Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Wang in this issue.
Collapse
Affiliation(s)
- Yi Yang
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.)
| | - Zhenyao Chang
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.)
| | - Xin Nie
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.)
| | - Jun Wu
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.)
| | - Jingang Chen
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.)
| | - Weiqi Liu
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.)
| | - Hongwei He
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.)
| | - Shuo Wang
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.)
| | - Chengcheng Zhu
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.)
| | - Qingyuan Liu
- From the Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China (Y.Y., Z.C., X.N., J.W., H.H., S.W., Q.L.); China National Clinical Research Center for Neurologic Diseases, Beijing, China (Y.Y., Z.C., X.N., J.W., S.W., Q.L.); Unimed Technology (Beijing), Tsinghua Tongfang Science and Technology Mansion, Beijing, China (J.C., W.L.); Beijing Neurosurgical Institution, Capital Medical University, Beijing, China (Z.C., H.H.); and Department of Radiology, University of Washington, Seattle, Wash (C.Z.)
| |
Collapse
|
13
|
Rezaeitaleshmahalleh M, Mu N, Lyu Z, Gemmete J, Pandey A, Jiang J. Developing a nearly automated open-source pipeline for conducting computational fluid dynamics simulations in anterior brain vasculature: a feasibility study. Sci Rep 2024; 14:30181. [PMID: 39632927 PMCID: PMC11618461 DOI: 10.1038/s41598-024-80891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Intracranial aneurysms (IA) pose significant health risks and are often challenging to manage. Computational fluid dynamics (CFD) simulation has emerged as a powerful tool for understanding lesion-specific hemodynamics in and around IAs, aiding in the clinical management of patients with an IA. However, the current workflow of CFD simulations is time-consuming, complex, and labor-intensive and, thus, does not fit the clinical environment. To address these challenges, we have developed a semi-automated pipeline integrating multiple open-source software packages to streamline the CFD simulation process. Specifically, the study utilized medical angiography data from 18 patients. An in-house open-source DL image segmentation model (ARU-Net) was employed to generate 3D computer models of the anterior circulation. The segmented intracranial vasculature models, including IAs, were further refined using the Vascular Modeling Toolkit (VMTK), an open-source Python package. This step involved smoothing the surface of the models and extending the inlet and outlet regions to ensure a realistic representation of the vascular geometry. The refined vascular models were then converted into computational meshes using an open-source mesh generator known as TetGen. This process was nearly automated and required minimal user interaction(s). Blood flow simulations of the cerebral vascular models were performed using established SimVascular solvers (an open-source finite element platform for vascular applications) through an application programming interface (API). The CFD simulation process was also conducted using the manual workflow for comparative purposes. The initial assessment compared the geometries derived from manual and DL-based segmentation. The DL-based segmentation demonstrated reliable performance, closely aligning with manually segmented results, evidenced by excellent Pearson correlation coefficient (PCC) values and low relative difference (RD) values ranging from 3% to 10% between the computed geometrical variables derived from both methods. The statistical analysis of the computed hemodynamic variables, including velocity informatics and WSS-related variables, indicated good to excellent reliability for most parameters (e.g., ICC of 0.85-0.95). Given the data investigated, the proposed automated workflow streamlines the process of conducting CFD simulations. It generates results consistent with the current standard manual CFD protocol while minimizing dependence on user input.
Collapse
Affiliation(s)
- Mostafa Rezaeitaleshmahalleh
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA
- Center for Biocomputing and Digital Health, Institute of Computing and Cybernetics and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA
| | - Nan Mu
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA
- Center for Biocomputing and Digital Health, Institute of Computing and Cybernetics and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA
- Sichuan Normal University, Chengdu, Sichuan, China
| | - Zonghan Lyu
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA
- Center for Biocomputing and Digital Health, Institute of Computing and Cybernetics and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA
| | - Joseph Gemmete
- Department of Radiology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Aditya Pandey
- Department of Radiology, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Neurosurgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA.
- Center for Biocomputing and Digital Health, Institute of Computing and Cybernetics and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA.
| |
Collapse
|
14
|
Adamchic I, Kantelhardt SR, Wagner HJ, Burbelko M. Artificial intelligence can help detecting incidental intracranial aneurysm on routine brain MRI using TOF MRA data sets and improve the time required for analysis of these images. Neuroradiology 2024:10.1007/s00234-024-03460-6. [PMID: 39230716 DOI: 10.1007/s00234-024-03460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE The aim of our study was to assess the diagnostic performance of commercially available AI software for intracranial aneurysm detection and to determine if the AI system enhances the radiologist's accuracy in identifying aneurysms and reduces image analysis time. METHODS TOF-MRA clinical brain examinations were analyzed using commercially available software and by an consultant neuroradiologist for the presence of intracranial aneurysms. The results were compared with the reference standard, to measure the sensitivity and specificity of the software and the consultant neuroradiologist. Furthermore, we examined the time required for the neuroradiologist to analyze the TOF-MRA image set, both with and without use of the AI software. RESULTS In 500 TOF-MRI brain studies, 106 aneurysms were detected in 85 examinations by combining AI software with neuroradiologist readings. The neuroradiologist identified 98 aneurysms (92.5% sensitivity), while AI detected 77 aneurysms (72.6% sensitivity). Specificity and sensitivity were calculated from the combined effort as reference. Combining AI and neuroradiologist readings significantly improves detection reliability. Additionally, AI integration reduced TOF-MRA analysis time by 19 s (23% reduction). CONCLUSIONS Our findings indicate that the AI-based software can support neuroradiologists in interpreting brain TOF-MRA. A combined reading of the AI-based software and the neuroradiologist demonstrated higher reliability in identifying intracranial aneurysms as compared to reading by either neuroradiologist or software, thus improving diagnostic accuracy of the neuroradiologist. Simultaneously, reading time for the neuroradiologist was reduced by approximately one quarter.
Collapse
Affiliation(s)
- Ilya Adamchic
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany.
| | - Sven R Kantelhardt
- Department of Neurosurgery, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
| | - Hans-Joachim Wagner
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
| | - Michael Burbelko
- Department of Radiology, Vivantes Hospital im Friedrichshain, Landsberger Allee 49, 10249, Berlin, Germany
- Department of Radiology, Philipps University of Marburg, 35043, Baldingerstraße, Marburg, Germany
| |
Collapse
|
15
|
Assis Y, Liao L, Pierre F, Anxionnat R, Kerrien E. Intracranial aneurysm detection: an object detection perspective. Int J Comput Assist Radiol Surg 2024; 19:1667-1675. [PMID: 38632166 DOI: 10.1007/s11548-024-03132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Intracranial aneurysm detection from 3D Time-Of-Flight Magnetic Resonance Angiography images is a problem of increasing clinical importance. Recently, a streak of methods have shown promising performance by using segmentation neural networks. However, these methods may be less relevant in a clinical settings where diagnostic decisions rely on detecting objects rather than their segmentation. METHODS We introduce a 3D single-stage object detection method tailored for small object detection such as aneurysms. Our anchor-free method incorporates fast data annotation, adapted data sampling and generation to address class imbalance problem, and spherical representations for improved detection. RESULTS A comprehensive evaluation was conducted, comparing our method with the state-of-the-art SCPM-Net, nnDetection and nnUNet baselines, using two datasets comprising 402 subjects. The evaluation used adapted object detection metrics. Our method exhibited comparable or superior performance, with an average precision of 78.96%, sensitivity of 86.78%, and 0.53 false positives per case. CONCLUSION Our method significantly reduces the detection complexity compared to existing methods and highlights the advantages of object detection over segmentation-based approaches for aneurysm detection. It also holds potential for application to other small object detection problems.
Collapse
Affiliation(s)
- Youssef Assis
- Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France.
| | - Liang Liao
- Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France
- Department of Diagnostic and Therapeutic Interventional Neuroradiology, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
- Université de Lorraine, Inserm, IADI, 54000, Nancy, France
| | - Fabien Pierre
- Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France
| | - René Anxionnat
- Department of Diagnostic and Therapeutic Interventional Neuroradiology, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
- Université de Lorraine, Inserm, IADI, 54000, Nancy, France
| | - Erwan Kerrien
- Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France
| |
Collapse
|
16
|
Li Y, Zhang H, Sun Y, Fan Q, Wang L, Ji C, HuiGu, Chen B, Zhao S, Wang D, Yu P, Li J, Yang S, Zhang C, Wang X. Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study. Int J Med Inform 2024; 188:105487. [PMID: 38761459 DOI: 10.1016/j.ijmedinf.2024.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE To evaluate the diagnostic efficacy of a developed artificial intelligence (AI) platform incorporating deep learning algorithms for the automated detection of intracranial aneurysms in time-of-flight (TOF) magnetic resonance angiography (MRA). METHOD This retrospective study encompassed 3D TOF MRA images acquired between January 2023 and June 2023, aiming to validate the presence of intracranial aneurysms via our developed AI platform. The manual segmentation results by experienced neuroradiologists served as the "gold standard". Following annotation of MRA images by neuroradiologists using InferScholar software, the AI platform conducted automatic segmentation of intracranial aneurysms. Various metrics including accuracy (ACC), balanced ACC, area under the curve (AUC), sensitivity (SE), specificity (SP), F1 score, Brier Score, and Net Benefit were utilized to evaluate the generalization of AI platform. Comparison of intracranial aneurysm identification performance was conducted between the AI platform and six radiologists with experience ranging from 3 to 12 years in interpreting MR images. Additionally, a comparative analysis was carried out between radiologists' detection performance based on independent visual diagnosis and AI-assisted diagnosis. Subgroup analyses were also performed based on the size and location of the aneurysms to explore factors impacting aneurysm detectability. RESULTS 510 patients were enrolled including 215 patients (42.16 %) with intracranial aneurysms and 295 patients (57.84 %) without aneurysms. Compared with six radiologists, the AI platform showed competitive discrimination power (AUC, 0.96), acceptable calibration (Brier Score loss, 0.08), and clinical utility (Net Benefit, 86.96 %). The AI platform demonstrated superior performance in detecting aneurysms with an overall SE, SP, ACC, balanced ACC, and F1 score of 91.63 %, 92.20 %, 91.96 %, 91.92 %, and 90.57 % respectively, outperforming the detectability of the two resident radiologists. For subgroup analysis based on aneurysm size and location, we observed that the SE of the AI platform for identifying tiny (diameter<3mm), small (3 mm ≤ diameter<5mm), medium (5 mm ≤ diameter<7mm) and large aneurysms (diameter ≥ 7 mm) was 87.80 %, 93.14 %, 95.45 %, and 100 %, respectively. Furthermore, the SE for detecting aneurysms in the anterior circulation was higher than that in the posterior circulation. Utilizing the AI assistance, six radiologists (i.e., two residents, two attendings and two professors) achieved statistically significant improvements in mean SE (residents: 71.40 % vs. 88.37 %; attendings: 82.79 % vs. 93.26 %; professors: 90.07 % vs. 97.44 %; P < 0.05) and ACC (residents: 85.29 % vs. 94.12 %; attendings: 91.76 % vs. 97.06 %; professors: 95.29 % vs. 98.82 %; P < 0.05) while no statistically significant change was observed in SP. Overall, radiologists' mean SE increased by 11.40 %, mean SP increased by 1.86 %, and mean ACC increased by 5.88 %, mean balanced ACC promoted by 6.63 %, mean F1 score grew by 7.89 %, and Net Benefit rose by 12.52 %, with a concurrent decrease in mean Brier score declined by 0.06. CONCLUSIONS The deep learning algorithms implemented in the AI platform effectively detected intracranial aneurysms on TOF-MRA and notably enhanced the diagnostic capabilities of radiologists. This indicates that the AI-based auxiliary diagnosis model can provide dependable and precise prediction to improve the diagnostic capacity of radiologists.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Huiling Zhang
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Yun Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Qianrui Fan
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Long Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Congshan Ji
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - HuiGu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Baojin Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Shuo Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Dawei Wang
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Pengxin Yu
- Institute of Research, Infervision Medical Technology Co., Ltd, China
| | - Junchen Li
- Department of Radiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Shifeng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China.
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China.
| |
Collapse
|
17
|
Lehnen NC, Schievelkamp AH, Gronemann C, Haase R, Krause I, Gansen M, Fleckenstein T, Dorn F, Radbruch A, Paech D. Impact of an AI software on the diagnostic performance and reading time for the detection of cerebral aneurysms on time of flight MR-angiography. Neuroradiology 2024; 66:1153-1160. [PMID: 38619571 DOI: 10.1007/s00234-024-03351-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE To evaluate the impact of an AI-based software trained to detect cerebral aneurysms on TOF-MRA on the diagnostic performance and reading times across readers with varying experience levels. METHODS One hundred eighty-six MRI studies were reviewed by six readers to detect cerebral aneurysms. Initially, readings were assisted by the CNN-based software mdbrain. After 6 weeks, a second reading was conducted without software assistance. The results were compared to the consensus reading of two neuroradiological specialists and sensitivity (lesion and patient level), specificity (patient level), and false positives per case were calculated for the group of all readers, for the subgroup of physicians, and for each individual reader. Also, reading times for each reader were measured. RESULTS The dataset contained 54 aneurysms. The readers had no experience (three medical students), 2 years experience (resident in neuroradiology), 6 years experience (radiologist), and 12 years (neuroradiologist). Significant improvements of overall specificity and the overall number of false positives per case were observed in the reading with AI support. For the physicians, we found significant improvements of sensitivity on lesion and patient level and false positives per case. Four readers experienced reduced reading times with the software, while two encountered increased times. CONCLUSION In the reading with the AI-based software, we observed significant improvements in terms of specificity and false positives per case for the group of all readers and significant improvements of sensitivity and false positives per case for the physicians. Further studies are needed to investigate the effects of the AI-based software in a prospective setting.
Collapse
Affiliation(s)
- Nils C Lehnen
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.
- Research Group Clinical Neuroimaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Arndt-Hendrik Schievelkamp
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Christian Gronemann
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Robert Haase
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Inga Krause
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Max Gansen
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Tobias Fleckenstein
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Franziska Dorn
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
- Research Group Clinical Neuroimaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniel Paech
- Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| |
Collapse
|
18
|
白 培, 宋 雪, 刘 庆, 刘 佳, 成 锦, 修 晓, 任 延, 王 成. [Automatic detection method of intracranial aneurysms on maximum intensity projection images based on SE-CaraNet]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:228-236. [PMID: 38686402 PMCID: PMC11058495 DOI: 10.7507/1001-5515.202301008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/13/2024] [Indexed: 05/02/2024]
Abstract
Conventional maximum intensity projection (MIP) images tend to ignore some morphological features in the detection of intracranial aneurysms, resulting in missed detection and misdetection. To solve this problem, a new method for intracranial aneurysm detection based on omni-directional MIP image is proposed in this paper. Firstly, the three-dimensional magnetic resonance angiography (MRA) images were projected with the maximum density in all directions to obtain the MIP images. Then, the region of intracranial aneurysm was prepositioned by matching filter. Finally, the Squeeze and Excitation (SE) module was used to improve the CaraNet model. Excitation and the improved model were used to detect the predetermined location in the omni-directional MIP image to determine whether there was intracranial aneurysm. In this paper, 245 cases of images were collected to test the proposed method. The results showed that the accuracy and specificity of the proposed method could reach 93.75% and 93.86%, respectively, significantly improved the detection performance of intracranial aneurysms in MIP images.
Collapse
Affiliation(s)
- 培瑞 白
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 雪峰 宋
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 庆一 刘
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 佳慧 刘
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 锦 成
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 晓娜 修
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 延德 任
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - 成健 王
- 山东科技大学 电子信息工程学院(山东青岛 266590)School of Electronic Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| |
Collapse
|
19
|
Nishi H, Cancelliere NM, Rustici A, Charbonnier G, Chan V, Spears J, Marotta TR, Mendes Pereira V. Deep learning-based cerebral aneurysm segmentation and morphological analysis with three-dimensional rotational angiography. J Neurointerv Surg 2024; 16:197-203. [PMID: 37192786 DOI: 10.1136/jnis-2023-020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND The morphological assessment of cerebral aneurysms based on cerebral angiography is an essential step when planning strategy and device selection in endovascular treatment, but manual evaluation by human raters only has moderate interrater/intrarater reliability. METHODS We collected data for 889 cerebral angiograms from consecutive patients with suspected cerebral aneurysms at our institution from January 2017 to October 2021. The automatic morphological analysis model was developed on the derivation cohort dataset consisting of 388 scans with 437 aneurysms, and the performance of the model was tested on the validation cohort dataset consisting of 96 scans with 124 aneurysms. Five clinically important parameters were automatically calculated by the model: aneurysm volume, maximum aneurysm size, neck size, aneurysm height, and aspect ratio. RESULTS On the validation cohort dataset the average aneurysm size was 7.9±4.6 mm. The proposed model displayed high segmentation accuracy with a mean Dice similarity index of 0.87 (median 0.93). All the morphological parameters were significantly correlated with the reference standard (all P<0.0001; Pearson correlation analysis). The difference in the maximum aneurysm size between the model prediction and reference standard was 0.5±0.7 mm (mean±SD). The difference in neck size between the model prediction and reference standard was 0.8±1.7 mm (mean±SD). CONCLUSION The automatic aneurysm analysis model based on angiography data exhibited high accuracy for evaluating the morphological characteristics of cerebral aneurysms.
Collapse
Affiliation(s)
- Hidehisa Nishi
- Department of Surgery, Division of Neurosurgery, St Michael's Hospital, Toronto, Ontario, Canada
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Nicole M Cancelliere
- Department of Surgery, Division of Neurosurgery, St Michael's Hospital, Toronto, Ontario, Canada
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Ariana Rustici
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Guillaume Charbonnier
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Vanessa Chan
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Julian Spears
- Department of Surgery, Division of Neurosurgery, St Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas R Marotta
- Department of Medical Imaging, St Michael's Hospital, Toronto, Ontario, Canada
| | - Vitor Mendes Pereira
- Department of Surgery, Division of Neurosurgery, St Michael's Hospital, Toronto, Ontario, Canada
- RADIS Lab, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Abdollahifard S, Farrokhi A, Kheshti F, Jalali M, Mowla A. Application of convolutional network models in detection of intracranial aneurysms: A systematic review and meta-analysis. Interv Neuroradiol 2023; 29:738-747. [PMID: 35549574 PMCID: PMC10680951 DOI: 10.1177/15910199221097475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Intracranial aneurysms have a high prevalence in human population. It also has a heavy burden of disease and high mortality rate in the case of rupture. Convolutional neural network(CNN) is a type of deep learning architecture which has been proven powerful to detect intracranial aneurysms. METHODS Four databases were searched using artificial intelligence, intracranial aneurysms, and synonyms to find eligible studies. Articles which had applied CNN for detection of intracranial aneurisms were included in this review. Sensitivity and specificity of the models and human readers regarding modality, size, and location of aneurysms were sought to be extracted. Random model was the preferred model for analyses using CMA 2 to determine pooled sensitivity and specificity. RESULTS Overall, 20 studies were used in this review. Deep learning models could detect intracranial aneurysms with a sensitivity of 90/6% (CI: 87/2-93/2%) and specificity of 94/6% (CI: 0/914-0/966). CTA was the most sensitive modality (92.0%(CI:85/2-95/8%)). Overall sensitivity of the models for aneurysms more than 3 mm was above 98% (98%-100%) and 74.6 for aneurysms less than 3 mm. With the aid of AI, the clinicians' sensitivity increased to 12/8% and interrater agreement to 0/193. CONCLUSION CNN models had an acceptable sensitivity for detection of intracranial aneurysms, surpassing human readers in some fields. The logical approach for application of deep learning models would be its use as a highly capable assistant. In essence, deep learning models are a groundbreaking technology that can assist clinicians and allow them to diagnose intracranial aneurysms more accurately.
Collapse
Affiliation(s)
- Saeed Abdollahifard
- Research center for neuromodulation and pain, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirmohammad Farrokhi
- Research center for neuromodulation and pain, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Kheshti
- Research center for neuromodulation and pain, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahtab Jalali
- Research center for neuromodulation and pain, Shiraz, Iran
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Mowla
- Division of Stroke and Endovascular Neurosurgery, Department of Neurological Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| |
Collapse
|
21
|
Gilotra K, Swarna S, Mani R, Basem J, Dashti R. Role of artificial intelligence and machine learning in the diagnosis of cerebrovascular disease. Front Hum Neurosci 2023; 17:1254417. [PMID: 37746051 PMCID: PMC10516608 DOI: 10.3389/fnhum.2023.1254417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Cerebrovascular diseases are known to cause significant morbidity and mortality to the general population. In patients with cerebrovascular disease, prompt clinical evaluation and radiographic interpretation are both essential in optimizing clinical management and in triaging patients for critical and potentially life-saving neurosurgical interventions. With recent advancements in the domains of artificial intelligence (AI) and machine learning (ML), many AI and ML algorithms have been developed to further optimize the diagnosis and subsequent management of cerebrovascular disease. Despite such advances, further studies are needed to substantively evaluate both the diagnostic accuracy and feasibility of these techniques for their application in clinical practice. This review aims to analyze the current use of AI and MI algorithms in the diagnosis of, and clinical decision making for cerebrovascular disease, and to discuss both the feasibility and future applications of utilizing such algorithms. Methods We review the use of AI and ML algorithms to assist clinicians in the diagnosis and management of ischemic stroke, hemorrhagic stroke, intracranial aneurysms, and arteriovenous malformations (AVMs). After identifying the most widely used algorithms, we provide a detailed analysis of the accuracy and effectiveness of these algorithms in practice. Results The incorporation of AI and ML algorithms for cerebrovascular patients has demonstrated improvements in time to detection of intracranial pathologies such as intracerebral hemorrhage (ICH) and infarcts. For ischemic and hemorrhagic strokes, commercial AI software platforms such as RapidAI and Viz.AI have bene implemented into routine clinical practice at many stroke centers to expedite the detection of infarcts and ICH, respectively. Such algorithms and neural networks have also been analyzed for use in prognostication for such cerebrovascular pathologies. These include predicting outcomes for ischemic stroke patients, hematoma expansion, risk of aneurysm rupture, bleeding of AVMs, and in predicting outcomes following interventions such as risk of occlusion for various endovascular devices. Preliminary analyses have yielded promising sensitivities when AI and ML are used in concert with imaging modalities and a multidisciplinary team of health care providers. Conclusion The implementation of AI and ML algorithms to supplement clinical practice has conferred a high degree of accuracy, efficiency, and expedited detection in the clinical and radiographic evaluation and management of ischemic and hemorrhagic strokes, AVMs, and aneurysms. Such algorithms have been explored for further purposes of prognostication for these conditions, with promising preliminary results. Further studies should evaluate the longitudinal implementation of such techniques into hospital networks and residency programs to supplement clinical practice, and the extent to which these techniques improve patient care and clinical outcomes in the long-term.
Collapse
Affiliation(s)
| | | | | | | | - Reza Dashti
- Dashti Lab, Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, United States
| |
Collapse
|
22
|
Irfan M, Malik KM, Ahmad J, Malik G. StrokeNet: An automated approach for segmentation and rupture risk prediction of intracranial aneurysm. Comput Med Imaging Graph 2023; 108:102271. [PMID: 37556901 DOI: 10.1016/j.compmedimag.2023.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
Intracranial Aneurysms (IA) present a complex challenge for neurosurgeons as the risks associated with surgical intervention, such as Subarachnoid Hemorrhage (SAH) mortality and morbidity, may outweigh the benefits of aneurysmal occlusion in some cases. Hence, there is a critical need for developing techniques that assist physicians in assessing the risk of aneurysm rupture to determine which aneurysms require treatment. However, a reliable IA rupture risk prediction technique is currently unavailable. To address this issue, this study proposes a novel approach for aneurysm segmentation and multidisciplinary rupture prediction using 2D Digital Subtraction Angiography (DSA) images. The proposed method involves training a fully connected convolutional neural network (CNN) to segment aneurysm regions in DSA images, followed by extracting and fusing different features using a multidisciplinary approach, including deep features, geometrical features, Fourier descriptor, and shear pressure on the aneurysm wall. The proposed method also adopts a fast correlation-based filter approach to drop highly correlated features from the set of fused features. Finally, the selected fused features are passed through a Decision Tree classifier to predict the rupture severity of the associated aneurysm into four classes: Mild, Moderate, Severe, and Critical. The proposed method is evaluated on a newly developed DSA image dataset and on public datasets to assess its generalizability. The system's performance is also evaluated on DSA images annotated by expert neurosurgeons for the rupture risk assessment of the segmented aneurysm. The proposed system outperforms existing state-of-the-art segmentation methods, achieving an 85 % accuracy against annotated DSA images for the risk assessment of aneurysmal rupture.
Collapse
Affiliation(s)
- Muhammad Irfan
- SMILES LAB, Department of Computer Science and Engineering, Oakland University, Rochester, MI, 48309, USA
| | - Khalid Mahmood Malik
- SMILES LAB, Department of Computer Science and Engineering, Oakland University, Rochester, MI, 48309, USA.
| | - Jamil Ahmad
- Department of Computer Vision, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, United Arab Emirates
| | - Ghaus Malik
- Executive Vice-Chair at Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
23
|
Ham S, Seo J, Yun J, Bae YJ, Kim T, Sunwoo L, Yoo S, Jung SC, Kim JW, Kim N. Automated detection of intracranial aneurysms using skeleton-based 3D patches, semantic segmentation, and auxiliary classification for overcoming data imbalance in brain TOF-MRA. Sci Rep 2023; 13:12018. [PMID: 37491504 PMCID: PMC10368697 DOI: 10.1038/s41598-023-38586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
Accurate and reliable detection of intracranial aneurysms is vital for subsequent treatment to prevent bleeding. However, the detection of intracranial aneurysms can be time-consuming and even challenging, and there is great variability among experts, especially in the case of small aneurysms. This study aimed to detect intracranial aneurysms accurately using a convolutional neural network (CNN) with 3D time-of-flight magnetic resonance angiography (TOF-MRA). A total of 154 3D TOF-MRA datasets with intracranial aneurysms were acquired, and the gold standards were manually drawn by neuroradiologists. We also obtained 113 subjects from a public dataset for external validation. These angiograms were pre-processed by using skull-stripping, signal intensity normalization, and N4 bias correction. The 3D patches along the vessel skeleton from MRA were extracted. Values of the ratio between the aneurysmal and the normal patches ranged from 1:1 to 1:5. The semantic segmentation on intracranial aneurysms was trained using a 3D U-Net with an auxiliary classifier to overcome the imbalance in patches. The proposed method achieved an accuracy of 0.910 in internal validation and external validation accuracy of 0.883 with a 2:1 ratio of normal to aneurysmal patches. This multi-task learning method showed that the aneurysm segmentation performance was sufficient to be helpful in an actual clinical setting.
Collapse
Affiliation(s)
- Sungwon Ham
- Healthcare Readiness Institute for Unified Korea, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan City, Gyeonggi-do, 15355, Republic of Korea
| | - Jiyeon Seo
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jihye Yun
- Department of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Tackeun Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sooyoung Yoo
- Healthcare ICT Research Center, Office of eHealth Research and Businesses, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seung Chai Jung
- Department of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea
| | - Jeong-Whun Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Namkug Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
- Department of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Improving the diagnostic performance of computed tomography angiography for intracranial large arterial stenosis by a novel super-resolution algorithm based on multi-scale residual denoising generative adversarial network. Clin Imaging 2023; 96:1-8. [PMID: 36731372 DOI: 10.1016/j.clinimag.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Computed tomography angiography (CTA) is very popular because it is characterized by rapidity and accessibility. However, CTA is inferior to digital subtraction angiography (DSA) in the diagnosis of intracranial artery stenosis or occlusion. DSA is an invasive examination, so we optimized the quality of cephalic CTA images. METHODS We used 5000 CTA images to train multi-scale residual denoising generative adversarial network (MRDGAN). And then 71 CTA images with intracranial large arterial stenosis were treated by Super-Resolution based on Generative Adversarial Network (SRGAN), Enhanced Super-Resolution based on Generative Adversarial Network (ESRGAN) and post-trained MRDGAN, respectively. Peak signal-to-noise ratio (PSNR) and structural similarity index measurement (SSIM) of the SRGAN, ESRGAN, MRDGAN and original CTA images were measured respectively. The qualities of MRDGAN and original images were visually assessed using a 4-point scale. The diagnostic coherence of digital subtraction angiography (DSA) with MRDGAN and original images was analyzed. RESULTS The PSNR was significantly higher in the MRDGAN CTA images (35.96 ± 1.51) than in the original (31.51 ± 1.43), SRGAN (25.75 ± 1.18) and ESRGAN (30.36 ± 1.05) CTA images (all P < 0.001). The SSIM was significantly higher in the MRDGAN CTA images (0.95 ± 0.02) than in the SRGAN (0.88 ± 0.03) and ESRGAN (0.90 ± 0.02) CTA images (all P < 0.01). The visual assessment was significantly higher in the MRDGAN CTA images (3.52 ± 0.58) than in the original CTA images (2.39 ± 0.69) (P < 0.05). The diagnostic coherence between MRDGAN and DSA (κ = 0.89) was superior to that between original images and DSA (κ = 0.62). CONCLUSION Our MRDGAN can effectively optimize original CTA images and improve its clinical diagnostic value for intracranial large artery stenosis.
Collapse
|
25
|
Din M, Agarwal S, Grzeda M, Wood DA, Modat M, Booth TC. Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis. J Neurointerv Surg 2023; 15:262-271. [PMID: 36375834 PMCID: PMC9985742 DOI: 10.1136/jnis-2022-019456] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage from cerebral aneurysm rupture is a major cause of morbidity and mortality. Early aneurysm identification, aided by automated systems, may improve patient outcomes. Therefore, a systematic review and meta-analysis of the diagnostic accuracy of artificial intelligence (AI) algorithms in detecting cerebral aneurysms using CT, MRI or DSA was performed. METHODS MEDLINE, Embase, Cochrane Library and Web of Science were searched until August 2021. Eligibility criteria included studies using fully automated algorithms to detect cerebral aneurysms using MRI, CT or DSA. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis: Diagnostic Test Accuracy (PRISMA-DTA), articles were assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Meta-analysis included a bivariate random-effect model to determine pooled sensitivity, specificity, and area under the receiver operator characteristic curve (ROC-AUC). PROSPERO CRD42021278454. RESULTS 43 studies were included, and 41/43 (95%) were retrospective. 34/43 (79%) used AI as a standalone tool, while 9/43 (21%) used AI assisting a reader. 23/43 (53%) used deep learning. Most studies had high bias risk and applicability concerns, limiting conclusions. Six studies in the standalone AI meta-analysis gave (pooled) 91.2% (95% CI 82.2% to 95.8%) sensitivity; 16.5% (95% CI 9.4% to 27.1%) false-positive rate (1-specificity); 0.936 ROC-AUC. Five reader-assistive AI studies gave (pooled) 90.3% (95% CI 88.0% - 92.2%) sensitivity; 7.9% (95% CI 3.5% to 16.8%) false-positive rate; 0.910 ROC-AUC. CONCLUSION AI has the potential to support clinicians in detecting cerebral aneurysms. Interpretation is limited due to high risk of bias and poor generalizability. Multicenter, prospective studies are required to assess AI in clinical practice.
Collapse
Affiliation(s)
- Munaib Din
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Siddharth Agarwal
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Mariusz Grzeda
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - David A Wood
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Choi D, Kim T, Jang J, Sunwoo L, Lee KJ. Intracranial steno-occlusive lesion detection on time-of-flight MR angiography using multi-task learning. Comput Med Imaging Graph 2023; 107:102220. [PMID: 37023509 DOI: 10.1016/j.compmedimag.2023.102220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/04/2023] [Accepted: 03/19/2023] [Indexed: 03/28/2023]
Abstract
Steno-occlusive lesions in intracranial arteries refer to segments of narrowed or occluded blood vessels that increase the risk of ischemic strokes. Steno-occlusive lesion detection is crucial in clinical settings; however, automatic detection methods have hardly been studied. Therefore, we propose a novel automatic method to detect steno-occlusive lesions in sequential transverse slices on time-of-flight magnetic resonance angiography. Our method simultaneously detects lesions while segmenting blood vessels based on end-to-end multi-task learning, reflecting that the lesions are closely related to the connectivity of blood vessels. We design classification and localization modules that can be attached to arbitrary segmentation network. As blood vessels are segmented, both modules simultaneously predict the presence and location of lesions for each transverse slice. By combining outputs from the two modules, we devise a simple operation that boosts the performance of lesion localization. Experimental results show that lesion prediction and localization performance is improved by incorporating blood vessel extraction. Our ablation study demonstrates that the proposed operation enhances lesion localization accuracy. We also verify the effectiveness of multi-task learning by comparing our approach with those that individually detect lesions with extracted blood vessels.
Collapse
|
27
|
Mu N, Lyu Z, Rezaeitaleshmahalleh M, Tang J, Jiang J. An attention residual u-net with differential preprocessing and geometric postprocessing: Learning how to segment vasculature including intracranial aneurysms. Med Image Anal 2023; 84:102697. [PMID: 36462374 PMCID: PMC9830590 DOI: 10.1016/j.media.2022.102697] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images. METHODS The proposed ARU-Net followed the classic U-Net framework with the following key enhancements. First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervision to help the network converge. Fourth, we devised a multiscale supervision strategy for independent prediction at different levels of the decoding path, integrating multiscale semantic information to facilitate the segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results. RESULTS Comprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quantitative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent computational hemodynamic studies (also known as "patient-specific" computational fluid dynamics [CFD] simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed. CONCLUSIONS The proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively high accuracy and potentially has significant value for clinical computational hemodynamic analysis.
Collapse
Affiliation(s)
- Nan Mu
- Biomedical Engineering, Michigan Technological University, Houghton, MI United States; Center for Biocomputing and Digital Health, Health Research Institute and Institute of Computing and Cybernetics, Michigan Technological University, Houghton, Michigan, United States
| | - Zonghan Lyu
- Biomedical Engineering, Michigan Technological University, Houghton, MI United States; Center for Biocomputing and Digital Health, Health Research Institute and Institute of Computing and Cybernetics, Michigan Technological University, Houghton, Michigan, United States
| | - Mostafa Rezaeitaleshmahalleh
- Biomedical Engineering, Michigan Technological University, Houghton, MI United States; Center for Biocomputing and Digital Health, Health Research Institute and Institute of Computing and Cybernetics, Michigan Technological University, Houghton, Michigan, United States
| | - Jinshan Tang
- Department of Health Administration and Policy, George Mason University, Fairfax, Virginia, United States
| | - Jingfeng Jiang
- Biomedical Engineering, Michigan Technological University, Houghton, MI United States; Center for Biocomputing and Digital Health, Health Research Institute and Institute of Computing and Cybernetics, Michigan Technological University, Houghton, Michigan, United States.
| |
Collapse
|
28
|
Chen G, Yifang B, Jiajun Z, Dongdong W, Zhiyong Z, Ruoyu D, Bin D, Sirong P, Daoying G, Meng C, Yakang D, Yuxin L. Automated unruptured cerebral aneurysms detection in TOF MR angiography images using dual-channel SE-3D UNet: a multi-center research. Eur Radiol 2023; 33:3532-3543. [PMID: 36725720 DOI: 10.1007/s00330-022-09385-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/29/2022] [Accepted: 12/18/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Time of flight magnetic resonance angiography (TOF-MRA) is the primary non-invasive screening method for cerebral aneurysms. We aimed to develop a computer-aided aneurysm detection method to improve the diagnostic efficiency and accuracy, especially decrease the false positive rate. METHODS This is a retrospective multicenter study. The dataset contained 1160 TOF-MRA examinations composed of unruptured aneurysms (n = 1096) and normal controls (n = 166) from six hospitals. A total of 1037 examinations acquired from 2013 to 2019 were used as training set; 123 examinations acquired from 2020 to 2021 were used as external test set. We proposed an equalized augmentation strategy based on aneurysm location and constructed a detection model based on dual channel SE-3D UNet. The model was trained with a 5-fold cross-validation in the training set, then tested on the external test set. RESULTS The proposed method achieved 82.46% sensitivity on patient-level, 73.85% sensitivity on lesion-level, and 0.88 false positives per case in the external test set. The performance did not show significant differences in subgroups according to the aneurysm site (except ACA), aneurysm size (except smaller than 3 mm), or MRI scanners. The performance preceded the basic SE-3D UNet by increasing 15.79% patient-level sensitivity and decreasing 4.19 FPs/case. CONCLUSIONS The proposed automated aneurysm detection method achieved acceptable sensitivity while controlling fairly low false positives per case. It might provide a useful auxiliary tool of cerebral aneurysms MRA screening. KEY POINTS • The need for automated cerebral aneurysms detecting is growing. • The strategy of equalized augmentation based on aneurysm location and dual-channel input could improve the model performance. • The retrospective multi-center study showed that the proposed automated cerebral aneurysms detection using dual-channel SE-3D UNet could achieve acceptable sensitivity while controlling a low false positive rate.
Collapse
Affiliation(s)
- Geng Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Jinan Guoke Medical Technology Development Co. Ltd., Jinan, China
| | - Bao Yifang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Zhang Jiajun
- School of Electronic & Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Wang Dongdong
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Zhou Zhiyong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Di Ruoyu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dai Bin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Piao Sirong
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Geng Daoying
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Chen Meng
- School of Biomedical Engineering, Xuzhou Medical University, Xuzhou, China
| | - Dai Yakang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
- Jinan Guoke Medical Technology Development Co. Ltd., Jinan, China.
| | - Li Yuxin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Detection of intracranial aneurysms using deep learning-based CAD system: usefulness of the scores of CNN's final layer for distinguishing between aneurysm and infundibular dilatation. Jpn J Radiol 2023; 41:131-141. [PMID: 36173510 PMCID: PMC9889446 DOI: 10.1007/s11604-022-01341-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE We evaluated the diagnostic performance of a clinically available deep learning-based computer-assisted diagnosis software for detecting unruptured aneurysms (UANs) using magnetic resonance angiography and assessed the functionality of the convolutional neural network (CNN) final layer score for distinguishing between UAN and infundibular dilatation (ID). MATERIALS AND METHODS EIRL brain aneurysm (EIRL_BA) was used in this study. The subjects were 117 UAN and/or ID cases including 100 UAN lesions (average sizes of 2.56 ± 1.45 mm) and 40 ID lesions (average sizes of 1.75 ± 0.41 mm) in any of internal carotid artery, middle cerebral artery, and anterior communicating artery, and 123 normal controls. The sensitivity, specificity, and accuracy of EIRL_BA were determined for UAN and ID or UAN only. Furthermore, the relationship between the lesion category and score was examined using a linear regression analysis model, and the receiver operating characteristic (ROC) analysis was used to assess whether the scores represent UAN-like characteristics. RESULTS EIRL_BA showed a total of 203 candidates (an average of 1.73/case) in UAN and/or ID cases and 98 candidates (an average of 0.80/case) in normal controls. For diagnosing either UAN/ID, EIRL_BA showed an overall sensitivity of 80%, specificity of 84.2%, and accuracy of 83.7%, resulting in the positive likelihood ratio of 5.0. For diagnosing UAN only, the overall sensitivity of 89.0, specificity of 82.6%, and accuracy of 83.2% resulting in the positive likelihood ratio of 5.1. In a linear regression analysis, the scores significantly increased in the candidates' first and second ranks in UAN (p < 0.05) but not in ID. An ROC analysis using the score for diagnosing UAN showed an area under the curve of 0.836. CONCLUSION EIRL_BA is applicable for detecting small UAN, and the CNN's final layer scores may be an effective index for discriminating UAN and ID and representing the likelihood of UAN.
Collapse
|
30
|
Towards Automated Brain Aneurysm Detection in TOF-MRA: Open Data, Weak Labels, and Anatomical Knowledge. Neuroinformatics 2023; 21:21-34. [PMID: 35982364 PMCID: PMC9931814 DOI: 10.1007/s12021-022-09597-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Brain aneurysm detection in Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) has undergone drastic improvements with the advent of Deep Learning (DL). However, performances of supervised DL models heavily rely on the quantity of labeled samples, which are extremely costly to obtain. Here, we present a DL model for aneurysm detection that overcomes the issue with "weak" labels: oversized annotations which are considerably faster to create. Our weak labels resulted to be four times faster to generate than their voxel-wise counterparts. In addition, our model leverages prior anatomical knowledge by focusing only on plausible locations for aneurysm occurrence. We first train and evaluate our model through cross-validation on an in-house TOF-MRA dataset comprising 284 subjects (170 females / 127 healthy controls / 157 patients with 198 aneurysms). On this dataset, our best model achieved a sensitivity of 83%, with False Positive (FP) rate of 0.8 per patient. To assess model generalizability, we then participated in a challenge for aneurysm detection with TOF-MRA data (93 patients, 20 controls, 125 aneurysms). On the public challenge, sensitivity was 68% (FP rate = 2.5), ranking 4th/18 on the open leaderboard. We found no significant difference in sensitivity between aneurysm risk-of-rupture groups (p = 0.75), locations (p = 0.72), or sizes (p = 0.15). Data, code and model weights are released under permissive licenses. We demonstrate that weak labels and anatomical knowledge can alleviate the necessity for prohibitively expensive voxel-wise annotations.
Collapse
|
31
|
Lehnen NC, Haase R, Schmeel FC, Vatter H, Dorn F, Radbruch A, Paech D. Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study. AJNR Am J Neuroradiol 2022; 43:1700-1705. [PMID: 36357154 DOI: 10.3174/ajnr.a7695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral aneurysms yield the risk of rupture, severe disability and death. Thus, early detection of cerebral aneurysms is crucial to ensure timely treatment, if necessary. AI-based software tools are expected to enhance radiologists' performance in detecting pathologies like cerebral aneurysms in the future. Our aim was to evaluate the diagnostic performance of an artificial intelligence-based software designed to detect intracranial aneurysms on TOF-MRA. MATERIALS AND METHODS One hundred ninety-one MR imaging data sets were analyzed using the software mdbrain for the presence of intracranial aneurysms on TOF-MRA obtained using two 3T MR imaging scanners or a 1.5T MR imaging scanner according to our clinical standard protocol. The results were compared with the reading of an experienced radiologist as a criterion standard to measure the sensitivity, specificity, positive and negative predictive values, and accuracy of the software. Additionally, detection rates depending on size, morphology, and location of the aneurysms were evaluated. RESULTS Fifty-four aneurysms were detected by the expert reader. The overall sensitivity of the software for the detection of cerebral aneurysms was 72.6%, the specificity was 87.2%, and the accuracy was 82.6%. The positive predictive value was 67.9%, and the negative predictive value was 88.5%. We observed a sensitivity of 100% for saccular aneurysms of >5 mm without signs of thrombosis and low detection rates for fusiform or thrombosed aneurysms of 33.3% and 16.7%, respectively. Of 8 aneurysms that were not included in the initial written reports but were detected by the expert reader, retrospectively, 4 were detected by the software. CONCLUSIONS Our data suggest that the software can assist radiologists in reporting TOF-MRA. The software was highly reliable in detecting saccular aneurysms, while for fusiform or thrombosed aneurysms, further improvements are needed. Further studies are necessary to investigate the impact of the software on detection rates, interrater reliability, and reading times.
Collapse
Affiliation(s)
- N C Lehnen
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - R Haase
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - F C Schmeel
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - H Vatter
- Neurosurgery (H.V.), University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - F Dorn
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - A Radbruch
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| | - D Paech
- From the Departments of Neuroradiology (N.C.L., R.H., F.C.S., F.D., A.R., D.P.)
| |
Collapse
|
32
|
Lin Y, Shi M, Xiang D, Zeng P, Gong Z, Liu H, Liu Q, Chen Z, Xia J, Chen Z. Construction of an end-to-end regression neural network for the determination of a quantitative index sagittal root inclination. J Periodontol 2022; 93:1951-1960. [PMID: 35150132 DOI: 10.1002/jper.21-0492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/18/2021] [Accepted: 02/01/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Immediate implant placement in the esthetic area requires comprehensive assessments with nearly 30 quantitative indexes. Most artificial intelligence (AI)-driven measurements of quantitative indexes depend on segmentation or landmark detection, which require extra labeling of images and contain possible intraclass errors. METHODS For the initial attempt, the method was tested on sagittal root inclination measurement. This study had developed an accurate and efficient end-to-end model incorporating a convolutional neural network (CNN) based on unlabeled cone-beam computed tomography (CBCT) images for immediate implant placement diagnosis and treatment. The model took pretrained ResNeXt101 as the backbone and was constructed based on 2,920 CBCT images with corresponding angles of the tooth axis and bone axis. The performance of our CNN model was evaluated on a separate test set. RESULTS Our model exhibited high prediction accuracy in sagittal root inclination measurements, as evidenced by the low mean average error of 2.16°, the high correlation coefficient of 0.915 to manual measurement, and the narrow 95% confidence interval shown by Bland-Altman plots. The intraclass correlation coefficient further confirmed the measurement accuracy of our model was comparable with that of junior clinicians. The model took merely 0.001 seconds for each CBCT image, making it highly efficient. To better understand the model's quality, we visualized our end-to-end CNN model through Guided Backpropagation, Grad-CAM, and Guided Grad-CAM, and confirmed its effectiveness in region recognition. CONCLUSIONS We succeeded in taking the first step in constructing the end-to-end immediate implant placement AI tool through sagittal root inclination measurements without intermediate steps and extra labeling on images.
Collapse
Affiliation(s)
- Yixiong Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China
| | - Mengru Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China
| | - Dawei Xiang
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Peisheng Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China
| | - Zhuohong Gong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China
| | - Haiwen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China
| | - Quan Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, China
| |
Collapse
|
33
|
Zhang L, Shi Z, Chen M, Chen Y, Cheng J, Fan L, Hong N, Jia W, Jiang G, Ju S, Li X, Li X, Liang C, Liao W, Liu S, Lu Z, Ma L, Ren K, Rong P, Song B, Sun G, Wang R, Wen Z, Xu H, Xu K, Yan F, Yu Y, Zha Y, Zhang F, Zheng M, Zhou Z, Zhu W, Lu G, Jin Z. Study design of deep learning based automatic detection of cerebrovascular diseases on medical imaging: a position paper from Chinese Association of Radiologists. INTELLIGENT MEDICINE 2022; 2:221-229. [DOI: 10.1016/j.imed.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
|
34
|
Ou C, Qian Y, Chong W, Hou X, Zhang M, Zhang X, Si W, Duan CZ. A deep learning-based automatic system for intracranial aneurysms diagnosis on three-dimensional digital subtraction angiographic images. Med Phys 2022; 49:7038-7053. [PMID: 35792717 DOI: 10.1002/mp.15846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Intracranial aneurysms (IAs) are a life-threatening disease. Their rupture can lead to hemorrhagic stroke. Most studies applying deep learning for the detection of aneurysms are based on angiographic images. However, critical diagnostic information such as morphology and aneurysm location are not captured by deep learning algorithms and still require manual assessments. PURPOSE Digital subtraction angiography (DSA) is the gold standard for aneurysm diagnosis. To facilitate the fully automatic diagnosis of aneurysms, we proposed a comprehensive system for the detection, morphology measurement, and location classification of aneurysms on three-dimensional DSA images, allowing automatic diagnosis without further human input. METHODS The system comprised three neural networks: a network for aneurysm detection, a network for morphology measurement, and a network for aneurysm location identification. A cross-scale dual-path transformer module was proposed to effectively fuse local and global information to capture aneurysms of varying sizes. A multitask learning approach was also proposed to allow an accurate localization of aneurysm neck for morphology measurement. RESULTS The cross-scale dual-path transformer module was shown to outperform other state-of-the-art network architectures, improving segmentation, and classification accuracy. The detection network in our system achieved an F2 score of 0.946 (recall 93%, precision 100%), better than the winning team in the Cerebral Aneurysm Detection and Analysis challenge. The measurement network achieved a relative error of less than 10% for morphology measurement, at the same level as human operators. Perfect accuracy (100%) was achieved on aneurysm location classification. CONCLUSIONS We have demonstrated that a comprehensive system can automatically detect, measure morphology and report the aneurysm location of aneurysms without human intervention. This can be a potential tool for the diagnosis of IAs, improving radiologists' performance and reducing their workload.
Collapse
Affiliation(s)
- Chubin Ou
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yi Qian
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | - Xiaoxi Hou
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Mingzi Zhang
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Xin Zhang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weixin Si
- Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuan-Zhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Chen G, Meng C, Ruoyu D, Dongdong W, Liqin Y, Wei X, Yuxin L, Daoying G. An automatic detection method of cerebral aneurysms in time-of-flight magnetic resonance angiography images based on attention 3D U-Net. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:106998. [PMID: 35939977 DOI: 10.1016/j.cmpb.2022.106998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/23/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Subarachnoid hemorrhage caused by ruptured cerebral aneurysm often leads to fatal consequences. However, if the aneurysm can be found and treated during asymptomatic periods, the probability of rupture can be greatly reduced. At present, time-of-flight magnetic resonance angiography is one of the most commonly used non-invasive screening techniques for cerebral aneurysm, and the application of deep learning technology in aneurysm detection can effectively improve the screening effect of aneurysm. Existing studies have found that three-dimensional features play an important role in aneurysm detection, but they require a large amount of training data and have problems such as a high number of FPs per case. METHODS This paper proposed a novel method for aneurysm detection. First, a fully automatic cerebral artery segmentation algorithm without training data was used to extract the volume of interest, and then the 3D U-Net was improved by the 3D SENet module to establish an aneurysm detection model. Eventually a set of fully automated, end-to-end aneurysm detection methods have been formed. RESULTS A total of 231 magnetic resonance angiography image data were used in this study, among which 132 were training sets, 34 were internal test sets and 65 were external test sets. The presented method obtained 97.89±0.88% sensitivity in the five-fold cross-validation and obtained 90.8% sensitivity with 2.47 FPs/case in the detection of the external test sets. CONCLUSIONS Compared with the results of our previous studies and other studies, the method in this paper achieves the best sensitivity while maintaining low number of FPs per case. This result proves the feasibility, superiority, and further improvement potential of the improved method combining 3D U-Net and channel attention in the task of aneurysm detection.
Collapse
Affiliation(s)
- Geng Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163, China; Academy for Engineering and Technology, Fudan University, 20 Handan Road, Shanghai, 200433, China
| | - Chen Meng
- Biomedical Engineering, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Di Ruoyu
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Wang Dongdong
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Yang Liqin
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Xia Wei
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163, China; Academy for Engineering and Technology, Fudan University, 20 Handan Road, Shanghai, 200433, China
| | - Li Yuxin
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| | - Geng Daoying
- Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| |
Collapse
|
36
|
Chen X, Lei Y, Su J, Yang H, Ni W, Yu J, Gu Y, Mao Y. A Review of Artificial Intelligence in Cerebrovascular Disease Imaging: Applications and Challenges. Curr Neuropharmacol 2022; 20:1359-1382. [PMID: 34749621 PMCID: PMC9881077 DOI: 10.2174/1570159x19666211108141446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND A variety of emerging medical imaging technologies based on artificial intelligence have been widely applied in many diseases, but they are still limitedly used in the cerebrovascular field even though the diseases can lead to catastrophic consequences. OBJECTIVE This work aims to discuss the current challenges and future directions of artificial intelligence technology in cerebrovascular diseases through reviewing the existing literature related to applications in terms of computer-aided detection, prediction and treatment of cerebrovascular diseases. METHODS Based on artificial intelligence applications in four representative cerebrovascular diseases including intracranial aneurysm, arteriovenous malformation, arteriosclerosis and moyamoya disease, this paper systematically reviews studies published between 2006 and 2021 in five databases: National Center for Biotechnology Information, Elsevier Science Direct, IEEE Xplore Digital Library, Web of Science and Springer Link. And three refinement steps were further conducted after identifying relevant literature from these databases. RESULTS For the popular research topic, most of the included publications involved computer-aided detection and prediction of aneurysms, while studies about arteriovenous malformation, arteriosclerosis and moyamoya disease showed an upward trend in recent years. Both conventional machine learning and deep learning algorithms were utilized in these publications, but machine learning techniques accounted for a larger proportion. CONCLUSION Algorithms related to artificial intelligence, especially deep learning, are promising tools for medical imaging analysis and will enhance the performance of computer-aided detection, prediction and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Xi Chen
- School of Information Science and Technology, Fudan University, Shanghai, China; ,These authors contributed equally to this work
| | - Yu Lei
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China,These authors contributed equally to this work
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China; ,Address correspondence to these authors at the School of Information Science and Technology, Fudan University, Shanghai 200433, China; Tel: +86 021 65643202; Fax: +86 021 65643202; E-mail: Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China; Tel: +86 021 52889999; Fax: +86 021 62489191; E-mail:
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China,Address correspondence to these authors at the School of Information Science and Technology, Fudan University, Shanghai 200433, China; Tel: +86 021 65643202; Fax: +86 021 65643202; E-mail: Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China; Tel: +86 021 52889999; Fax: +86 021 62489191; E-mail:
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Gu F, Wu X, Wu W, Wang Z, Yang X, Chen Z, Wang Z, Chen G. Performance of deep learning in the detection of intracranial aneurysm: a systematic review and meta-analysis. Eur J Radiol 2022; 155:110457. [DOI: 10.1016/j.ejrad.2022.110457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
|
38
|
Salimi Ashkezari SF, Mut F, Slawski M, Jimenez CM, Robertson AM, Cebral JR. Identification of Small, Regularly Shaped Cerebral Aneurysms Prone to Rupture. AJNR Am J Neuroradiol 2022; 43:547-553. [PMID: 35332023 PMCID: PMC8993208 DOI: 10.3174/ajnr.a7470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/20/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Many small, regularly shaped cerebral aneurysms rupture; however, they usually receive a low score based on current risk-assessment methods. Our goal was to identify patient and aneurysm characteristics associated with rupture of small, regularly shaped aneurysms and to develop and validate predictive models of rupture in this aneurysm subpopulation. MATERIALS AND METHODS Cross-sectional data from 1079 aneurysms smaller than 7 mm with regular shapes (without blebs) were used to train predictive models for aneurysm rupture using machine learning methods. These models were based on the patient population, aneurysm location, and hemodynamic and geometric characteristics derived from image-based computational fluid dynamics models. An independent data set with 102 small, regularly shaped aneurysms was used for validation. RESULTS Adverse hemodynamic environments characterized by strong, concentrated inflow jets, high speed, complex and unstable flow patterns, and concentrated, oscillatory, and heterogeneous wall shear stress patterns were associated with rupture in small, regularly shaped aneurysms. Additionally, ruptured aneurysms were larger and more elongated than unruptured aneurysms in this subset. A total of 5 hemodynamic and 6 geometric parameters along with aneurysm location, multiplicity, and morphology, were used as predictive variables. The best machine learning rupture prediction-model achieved a good performance with an area under the curve of 0.84 on the external validation data set. CONCLUSIONS This study demonstrated the potential of using predictive machine learning models based on aneurysm-specific hemodynamic, geometric, and anatomic characteristics for identifying small, regularly shaped aneurysms prone to rupture.
Collapse
Affiliation(s)
| | - F Mut
- From the Departments of Bioengineering (S.F.S.A., F.M., J.R.C.)
| | | | - C M Jimenez
- Neurosurgery Department (C.M.J.), University of Antioquia, Medellin, Colombia
| | - A M Robertson
- Departments of Mechanical Engineering and Material Science (A.M.R.)
- Bioengineering (A.M.R.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J R Cebral
- From the Departments of Bioengineering (S.F.S.A., F.M., J.R.C.)
- Mechanical Engineering (J.R.C.), George Mason University, Fairfax, Virginia
| |
Collapse
|
39
|
Ivantsits M, Goubergrits L, Kuhnigk JM, Huellebrand M, Bruening J, Kossen T, Pfahringer B, Schaller J, Spuler A, Kuehne T, Jia Y, Li X, Shit S, Menze B, Su Z, Ma J, Nie Z, Jain K, Liu Y, Lin Y, Hennemuth A. Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge. Med Image Anal 2022; 77:102333. [PMID: 34998111 DOI: 10.1016/j.media.2021.102333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023]
Abstract
The Cerebral Aneurysm Detection and Analysis (CADA) challenge was organized to support the development and benchmarking of algorithms for detecting, analyzing, and risk assessment of cerebral aneurysms in X-ray rotational angiography (3DRA) images. 109 anonymized 3DRA datasets were provided for training, and 22 additional datasets were used to test the algorithmic solutions. Cerebral aneurysm detection was assessed using the F2 score based on recall and precision, and the fit of the delivered bounding box was assessed using the distance to the aneurysm. The segmentation quality was measured using the Jaccard index and a combination of different surface distance measures. Systematic errors were analyzed using volume correlation and bias. Rupture risk assessment was evaluated using the F2 score. 158 participants from 22 countries registered for the CADA challenge. The U-Net-based detection solutions presented by the community show similar accuracy compared to experts (F2 score 0.92), with a small number of missed aneurysms with diameters smaller than 3.5 mm. In addition, the delineation of these structures, based on U-Net variations, is excellent, with a Jaccard score of 0.92. The rupture risk estimation methods achieved an F2 score of 0.71. The performance of the detection and segmentation solutions is equivalent to that of human experts. The best results are obtained in rupture risk estimation by combining different image-based, morphological, and computational fluid dynamic parameters using machine learning methods. Furthermore, we evaluated the best methods pipeline, from detecting and delineating the vessel dilations to estimating the risk of rupture. The chain of these methods achieves an F2-score of 0.70, which is comparable to applying the risk prediction to the ground-truth delineation (0.71).
Collapse
Affiliation(s)
- Matthias Ivantsits
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany.
| | - Leonid Goubergrits
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; Einstein Center Digital Future, Wilhelmstrae 67, Berlin 10117, Germany
| | | | - Markus Huellebrand
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; Fraunhofer MEVIS, Am Fallturm 1, Bremen 28359, Germany
| | - Jan Bruening
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Tabea Kossen
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Boris Pfahringer
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Jens Schaller
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany
| | - Andreas Spuler
- Helios Hospital Berlin-Buch, Schwanebecker Chaussee 50, Berlin 13125, Germany
| | - Titus Kuehne
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; German Heart Centre Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Yizhuan Jia
- Mediclouds Medical Technology, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Suprosanna Shit
- Departments of Informatics, Technical University Munich, Germany; TranslaTUM Center for Translational Cancer Research, Munich, Germany
| | - Bjoern Menze
- Departments of Informatics, Technical University Munich, Germany; TranslaTUM Center for Translational Cancer Research, Munich, Germany; Department of Quantitative Biomedicine of UZH, Zurich, Switzerland
| | - Ziyu Su
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Jun Ma
- Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China
| | - Ziwei Nie
- Department of Mathematics, Nanjing University, Nanjing, China
| | - Kartik Jain
- Faculty of Engineering Technology, University of Twente, P.O. Box 217, Enschede 7500, AE, the Netherlands
| | - Yanfei Liu
- Jarvis Lab, Tencent, Shenzhen, China; Shenzhen United Imaging Research Institute of Innovative Medical Equipment Innovation Research, Shenzhen, China
| | - Yi Lin
- Jarvis Lab, Tencent, Shenzhen, China
| | - Anja Hennemuth
- Charit Universittsmedizin Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; Fraunhofer MEVIS, Am Fallturm 1, Bremen 28359, Germany; German Heart Centre Berlin, Augustenburger Pl. 1, Berlin 13353, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
40
|
Liao J, Liu L, Duan H, Huang Y, Zhou L, Chen L, Wang C. Using a Convolutional Neural Network and Convolutional Long Short-term Memory to Automatically Detect Aneurysms on 2D Digital Subtraction Angiography Images: Framework Development and Validation. JMIR Med Inform 2022; 10:e28880. [PMID: 35294371 PMCID: PMC8968557 DOI: 10.2196/28880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/27/2021] [Accepted: 01/16/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND It is hard to distinguish cerebral aneurysms from overlapping vessels in 2D digital subtraction angiography (DSA) images due to these images' lack of spatial information. OBJECTIVE The aims of this study were to (1) construct a deep learning diagnostic system to improve the ability to detect posterior communicating artery aneurysms on 2D DSA images and (2) validate the efficiency of the deep learning diagnostic system in 2D DSA aneurysm detection. METHODS We proposed a 2-stage detection system. First, we established the region localization stage to automatically locate specific detection regions of raw 2D DSA sequences. Second, in the intracranial aneurysm detection stage, we constructed a bi-input+RetinaNet+convolutional long short-term memory (C-LSTM) framework to compare its performance for aneurysm detection with that of 3 existing frameworks. Each of the frameworks had a 5-fold cross-validation scheme. The receiver operating characteristic curve, the area under the curve (AUC) value, mean average precision, sensitivity, specificity, and accuracy were used to assess the abilities of different frameworks. RESULTS A total of 255 patients with posterior communicating artery aneurysms and 20 patients without aneurysms were included in this study. The best AUC values of the RetinaNet, RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM frameworks were 0.95, 0.96, 0.92, and 0.97, respectively. The mean sensitivities of the RetinaNet, RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM frameworks and human experts were 89% (range 67.02%-98.43%), 88% (range 65.76%-98.06%), 87% (range 64.53%-97.66%), 89% (range 67.02%-98.43%), and 90% (range 68.30%-98.77%), respectively. The mean specificities of the RetinaNet, RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM frameworks and human experts were 80% (range 56.34%-94.27%), 89% (range 67.02%-98.43%), 86% (range 63.31%-97.24%), 93% (range 72.30%-99.56%), and 90% (range 68.30%-98.77%), respectively. The mean accuracies of the RetinaNet, RetinaNet+C-LSTM, bi-input+RetinaNet, and bi-input+RetinaNet+C-LSTM frameworks and human experts were 84.50% (range 69.57%-93.97%), 88.50% (range 74.44%-96.39%), 86.50% (range 71.97%-95.22%), 91% (range 77.63%-97.72%), and 90% (range 76.34%-97.21%), respectively. CONCLUSIONS According to our results, more spatial and temporal information can help improve the performance of the frameworks. Therefore, the bi-input+RetinaNet+C-LSTM framework had the best performance when compared to that of the other frameworks. Our study demonstrates that our system can assist physicians in detecting intracranial aneurysms on 2D DSA images.
Collapse
Affiliation(s)
- JunHua Liao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- College of Computer Science, Sichuan University, Chengdu, China
| | - LunXin Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - HaiHan Duan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - YunZhi Huang
- School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
| | - LiangXue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - LiangYin Chen
- College of Computer Science, Sichuan University, Chengdu, China
| | - ChaoHua Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Alwalid O, Long X, Xie M, Han P. Artificial Intelligence Applications in Intracranial Aneurysm: Achievements, Challenges and Opportunities. Acad Radiol 2022; 29 Suppl 3:S201-S214. [PMID: 34376335 DOI: 10.1016/j.acra.2021.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023]
Abstract
Intracranial aneurysms present in about 3% of the general population and the number of detected aneurysms is continuously rising with the advances in imaging techniques. Intracranial aneurysm rupture carries a high risk of death or permanent disabilities; therefore assessment of the intracranial aneurysm along the entire course is of great clinical importance. Given the outstanding performance of artificial intelligence (AI) in image-based tasks, many AI-based applications have emerged in recent years for the assessment of intracranial aneurysms. In this review we will summarize the state-of-the-art of AI applications in intracranial aneurysms, emphasizing the achievements, and exploring the challenges. We will also discuss the future prospects and potential opportunities. This article provides an updated view of the AI applications in intracranial aneurysms and may act as a basis for guiding the related future works.
Collapse
Affiliation(s)
- Osamah Alwalid
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xi Long
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mingfei Xie
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
42
|
Ou C, Li C, Qian Y, Duan CZ, Si W, Zhang X, Li X, Morgan M, Dou Q, Heng PA. Morphology-aware multi-source fusion-based intracranial aneurysms rupture prediction. Eur Radiol 2022; 32:5633-5641. [PMID: 35182202 DOI: 10.1007/s00330-022-08608-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/29/2021] [Accepted: 01/23/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES We proposed a new approach to train deep learning model for aneurysm rupture prediction which only uses a limited amount of labeled data. METHOD Using segmented aneurysm mask as input, a backbone model was pretrained using a self-supervised method to learn deep embeddings of aneurysm morphology from 947 unlabeled cases of angiographic images. Subsequently, the backbone model was finetuned using 120 labeled cases with known rupture status. Clinical information was integrated with deep embeddings to further improve prediction performance. The proposed model was compared with radiomics and conventional morphology models in prediction performance. An assistive diagnosis system was also developed based on the model and was tested with five neurosurgeons. RESULT Our method achieved an area under the receiver operating characteristic curve (AUC) of 0.823, outperforming deep learning model trained from scratch (0.787). By integrating with clinical information, the proposed model's performance was further improved to AUC = 0.853, making the results significantly better than model based on radiomics (AUC = 0.805, p = 0.007) or model based on conventional morphology parameters (AUC = 0.766, p = 0.001). Our model also achieved the highest sensitivity, PPV, NPV, and accuracy among the others. Neurosurgeons' prediction performance was improved from AUC=0.877 to 0.945 (p = 0.037) with the assistive diagnosis system. CONCLUSION Our proposed method could develop competitive deep learning model for rupture prediction using only a limited amount of data. The assistive diagnosis system could be useful for neurosurgeons to predict rupture. KEY POINTS • A self-supervised learning method was proposed to mitigate the data-hungry issue of deep learning, enabling training deep neural network with a limited amount of data. • Using the proposed method, deep embeddings were extracted to represent intracranial aneurysm morphology. Prediction model based on deep embeddings was significantly better than conventional morphology model and radiomics model. • An assistive diagnosis system was developed using deep embeddings for case-based reasoning, which was shown to significantly improve neurosurgeons' performance to predict rupture.
Collapse
Affiliation(s)
- Chubin Ou
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Caizi Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Qian
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuan-Zhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Weixin Si
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xin Zhang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Michael Morgan
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Qi Dou
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Pheng-Ann Heng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
43
|
Mensah E, Pringle C, Roberts G, Gurusinghe N, Golash A, Alalade AF. Deep Learning in the Management of Intracranial Aneurysms and Cerebrovascular Diseases: A Review of the Current Literature. World Neurosurg 2022; 161:39-45. [DOI: 10.1016/j.wneu.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
|
44
|
Terasaki Y, Yokota H, Tashiro K, Maejima T, Takeuchi T, Kurosawa R, Yamauchi S, Takada A, Mukai H, Ohira K, Ota J, Horikoshi T, Mori Y, Uno T, Suyari H. Multidimensional Deep Learning Reduces False-Positives in the Automated Detection of Cerebral Aneurysms on Time-Of-Flight Magnetic Resonance Angiography: A Multi-Center Study. Front Neurol 2022; 12:742126. [PMID: 35115991 PMCID: PMC8805516 DOI: 10.3389/fneur.2021.742126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Current deep learning-based cerebral aneurysm detection demonstrates high sensitivity, but produces numerous false-positives (FPs), which hampers clinical application of automated detection systems for time-of-flight magnetic resonance angiography. To reduce FPs while maintaining high sensitivity, we developed a multidimensional convolutional neural network (MD-CNN) designed to unite planar and stereoscopic information about aneurysms. This retrospective study enrolled time-of-flight magnetic resonance angiography images of cerebral aneurysms from three institutions from June 2006 to April 2019. In the internal test, 80% of the entire data set was used for model training and 20% for the test, while for the external tests, data from different pairs of the three institutions were used for training and the remaining one for testing. Images containing aneurysms > 15 mm and images without aneurysms were excluded. Three deep learning models [planar information-only (2D-CNN), stereoscopic information-only (3D-CNN), and multidimensional information (MD-CNN)] were trained to classify whether the voxels contained aneurysms, and they were evaluated on each test. The performance of each model was assessed using free-response operating characteristic curves. In total, 732 aneurysms (5.9 ± 2.5 mm) of 559 cases (327, 120, and 112 from institutes A, B, and C; 469 and 263 for 1.5T and 3.0T MRI) were included in this study. In the internal test, the highest sensitivities were 80.4, 87.4, and 82.5%, and the FPs were 6.1, 7.1, and 5.0 FPs/case at a fixed sensitivity of 80% for the 2D-CNN, 3D-CNN, and MD-CNN, respectively. In the external test, the highest sensitivities were 82.1, 86.5, and 89.1%, and 5.9, 7.4, and 4.2 FPs/cases for them, respectively. MD-CNN was a new approach to maintain sensitivity and reduce the FPs simultaneously.
Collapse
Affiliation(s)
- Yuki Terasaki
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
- Department of EC Platform, ZOZO Technologies, Inc., Tokyo, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
- *Correspondence: Hajime Yokota
| | - Kohei Tashiro
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
- Kohei Tashiro
| | - Takuma Maejima
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Takashi Takeuchi
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Ryuna Kurosawa
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Shoma Yamauchi
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Akiyo Takada
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Hiroki Mukai
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Kenji Ohira
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Joji Ota
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Takuro Horikoshi
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Yasukuni Mori
- Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroki Suyari
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
45
|
Endo H, Mori N, Mugikura S, Niizuma K, Omodaka S, Takase K, Tominaga T. Quantitative assessment of microstructural evolution of intracranial aneurysm wall by vessel wall imaging. Neuroradiology 2022; 64:1343-1350. [PMID: 34997283 DOI: 10.1007/s00234-021-02877-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to evaluate new quantitative parameters of aneurysm wall enhancement (AWE) on magnetic resonance vessel wall imaging (VWI) in differentiating between the stable and evolving unruptured intracranial aneurysms (UIAs). METHODS Thirty-eight consecutive patients with UIAs (27 stable and 11 evolving) underwent VWI with contrast-enhanced 3D T1 volume isotropic turbo spin echo acquisition. The voxel-based enhancement maps were created using pre- and post-contrast images. The aneurysmal lumen with signal suppression by black-blood method was segmented. Then, one voxel outer and inner layers of the lumen contour were automatically segmented. The shape features of the aneurysms and AWE of the two layers were compared between stable and evolving groups. RESULTS The shape features, including aneurysm volume, surface, and compacity were significantly different between the stable and evolving groups (P = 0.024, 0.028, and 0.033, respectively). Stable and evolving groups also differed significantly in the AWE at the union of outer and inner layers of the aneurysm wall (P = 0.0082) but not in that of the outer or inner layer alone. Multivariate logistic regression analysis revealed significant differences in aneurysm volume, surface, and AWE at the union of outer and inner layers between the two groups (P = 0.0029, 0.0092, and 0.0033, respectively). Receiver operating characteristics curve analysis revealed that the area under the curve of the logistic regression model was 0.89. CONCLUSION Quantitative combined analysis of aneurysm shape features and AWE of the union of outer and inner layers were effective for differentiating between stable and evolving UIAs.
Collapse
Affiliation(s)
- Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
| | - Naoko Mori
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.,Division of Image Statistics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunsuke Omodaka
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
46
|
Foundations of Lesion Detection Using Machine Learning in Clinical Neuroimaging. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 134:171-182. [PMID: 34862541 DOI: 10.1007/978-3-030-85292-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This chapter describes technical considerations and current and future clinical applications of lesion detection using machine learning in the clinical setting. Lesion detection is central to neuroradiology and precedes all further processes which include but are not limited to lesion characterization, quantification, longitudinal disease assessment, prognosis, and prediction of treatment response. A number of machine learning algorithms focusing on lesion detection have been developed or are currently under development which may either support or extend the imaging process. Examples include machine learning applications in stroke, aneurysms, multiple sclerosis, neuro-oncology, neurodegeneration, and epilepsy.
Collapse
|
47
|
Joo B, Choi HS, Ahn SS, Cha J, Won SY, Sohn B, Kim H, Han K, Kim HP, Choi JM, Lee SM, Kim TG, Lee SK. A Deep Learning Model with High Standalone Performance for Diagnosis of Unruptured Intracranial Aneurysm. Yonsei Med J 2021; 62:1052-1061. [PMID: 34672139 PMCID: PMC8542476 DOI: 10.3349/ymj.2021.62.11.1052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This study aimed to investigate whether a deep learning model for automated detection of unruptured intracranial aneurysms on time-of-flight (TOF) magnetic resonance angiography (MRA) can achieve a target diagnostic performance comparable to that of human radiologists for approval from the Korean Ministry of Food and Drug Safety as an artificial intelligence-applied software. MATERIALS AND METHODS In this single-center, retrospective, confirmatory clinical trial, the diagnostic performance of the model was evaluated in a predetermined test set. After sample size estimation, the test set consisted of 135 aneurysm-containing examinations with 168 intracranial aneurysms and 197 aneurysm-free examinations. The target sensitivity and specificity were set as 87% and 92%, respectively. The patient-wise sensitivity and specificity of the model were analyzed. Moreover, the lesion-wise sensitivity and false-positive detection rate per case were also investigated. RESULTS The sensitivity and specificity of the model were 91.11% [95% confidence interval (CI): 84.99, 95.32] and 93.91% (95% CI: 89.60, 96.81), respectively, which met the target performance values. The lesion-wise sensitivity was 92.26%. The overall false-positive detection rate per case was 0.123. Of the 168 aneurysms, 13 aneurysms from 12 examinations were missed by the model. CONCLUSION The present deep learning model for automated detection of unruptured intracranial aneurysms on TOF MRA achieved the target diagnostic performance comparable to that of human radiologists. With high standalone performance, this model may be useful for accurate and efficient diagnosis of intracranial aneurysm.
Collapse
Affiliation(s)
- Bio Joo
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Seok Choi
- Department of Radiology, Seoul Medical Center, Seoul, Korea
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Sung Soo Ahn
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jihoon Cha
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - So Yeon Won
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Beomseok Sohn
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hwiyoung Kim
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | - Seung-Koo Lee
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Convolutional Neural Network-Processed MRI Images in the Diagnosis of Plastic Bronchitis in Children. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:2748830. [PMID: 34621144 PMCID: PMC8457940 DOI: 10.1155/2021/2748830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
Objective The study focused on the features of the convolutional neural networks- (CNN-) processed magnetic resonance imaging (MRI) images for plastic bronchitis (PB) in children. Methods 30 PB children were selected as subjects, including 19 boys and 11 girls. They all received the MRI examination for the chest. Then, a CNN-based algorithm was constructed and compared with Active Appearance Model (AAM) algorithm for segmentation effects of MRI images in 30 PB children, factoring into occurring simultaneously than (OST), Dice, and Jaccard coefficient. Results The maximum Dice coefficient of CNN algorithm reached 0.946, while that of active AAM was 0.843, and the Jaccard coefficient of CNN algorithm was also higher (0.894 vs. 0.758, P < 0.05). The MRI images showed pulmonary inflammation in all subjects. Of 30 patients, 14 (46.66%) had complicated pulmonary atelectasis, 9 (30%) had the complicated pleural effusion, 3 (10%) had pneumothorax, 2 (6.67%) had complicated mediastinal emphysema, and 2 (6.67%) had complicated pneumopericardium. Also, of 30 patients, 19 (63.33%) had lung consolidation and atelectasis in a single lung lobe and 11 (36.67%) in both two lung lobes. Conclusion The algorithm based on CNN can significantly improve the segmentation accuracy of MRI images for plastic bronchitis in children. The pleural effusion was a dangerous factor for the occurrence and development of PB.
Collapse
|
49
|
Liu X, Feng J, Wu Z, Neo Z, Zhu C, Zhang P, Wang Y, Jiang Y, Mitsouras D, Li Y. Deep neural network-based detection and segmentation of intracranial aneurysms on 3D rotational DSA. Interv Neuroradiol 2021; 27:648-657. [PMID: 33715500 PMCID: PMC8493355 DOI: 10.1177/15910199211000956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 12/27/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Accurate diagnosis and measurement of intracranial aneurysms are challenging. This study aimed to develop a 3D convolutional neural network (CNN) model to detect and segment intracranial aneurysms (IA) on 3D rotational DSA (3D-RA) images. METHODS 3D-RA images were collected and annotated by 5 neuroradiologists. The annotated images were then divided into three datasets: training, validation, and test. A 3D Dense-UNet-like CNN (3D-Dense-UNet) segmentation algorithm was constructed and trained using the training dataset. Diagnostic performance to detect aneurysms and segmentation accuracy was assessed for the final model on the test dataset using the free-response receiver operating characteristic (FROC). Finally, the CNN-inferred maximum diameter was compared against expert measurements by Pearson's correlation and Bland-Altman limits of agreement (LOA). RESULTS A total of 451 patients with 3D-RA images were split into n = 347/41/63 training/validation/test datasets, respectively. For aneurysm detection, observed FROC analysis showed that the model managed to attain a sensitivity of 0.710 at 0.159 false positives (FP)/case, and 0.986 at 1.49 FP/case. The proposed method had good agreement with reference manual aneurysmal maximum diameter measurements (8.3 ± 4.3 mm vs. 7.8 ± 4.8 mm), with a correlation coefficient r = 0.77, small bias of 0.24 mm, and LOA of -6.2 to 5.71 mm. 37.0% and 77% of diameter measurements were within ±1 mm and ±2.5 mm of expert measurements. CONCLUSIONS A 3D-Dense-UNet model can detect and segment aneurysms with relatively high accuracy using 3D-RA images. The automatically measured maximum diameter has potential clinical application value.
Collapse
Affiliation(s)
- Xinke Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junqiang Feng
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenzhou Wu
- National Clinical Research Center (CNCRC)-Hanalytics Artificial Intelligence Research Center for Neurological Disorders and Biomind Technology, Beijing China
| | - Zhonghao Neo
- National Clinical Research Center (CNCRC)-Hanalytics Artificial Intelligence Research Center for Neurological Disorders and Biomind Technology, Beijing China
| | - Chengcheng Zhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peifang Zhang
- National Clinical Research Center (CNCRC)-Hanalytics Artificial Intelligence Research Center for Neurological Disorders and Biomind Technology, Beijing China
| | - Yan Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Yuhua Jiang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dimitrios Mitsouras
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Sohn B, Park KY, Choi J, Koo JH, Han K, Joo B, Won SY, Cha J, Choi HS, Lee SK. Deep Learning-Based Software Improves Clinicians' Detection Sensitivity of Aneurysms on Brain TOF-MRA. AJNR Am J Neuroradiol 2021; 42:1769-1775. [PMID: 34385143 DOI: 10.3174/ajnr.a7242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/05/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The detection of cerebral aneurysms on MRA is a challenging task. Recent studies have used deep learning-based software for automated detection of aneurysms on MRA and have reported high performance. The purpose of this study was to evaluate the incremental value of using deep learning-based software for the detection of aneurysms on MRA by 2 radiologists, a neurosurgeon, and a neurologist. MATERIALS AND METHODS TOF-MRA examinations of intracranial aneurysms were retrospectively extracted. Four physicians interpreted the MRA blindly. After a washout period, they interpreted MRA again using the software. Sensitivity and specificity per patient, sensitivity per lesion, and the number of false-positives per case were measured. Diagnostic performances, including subgroup analysis of lesions, were compared. Logistic regression with a generalized estimating equation was used. RESULTS A total of 332 patients were evaluated; 135 patients had positive findings with 169 lesions. With software assistance, patient-based sensitivity was statistically improved after the washout period (73.5% versus 86.5%, P < .001). The neurosurgeon and neurologist showed a significant increase in patient-based sensitivity with software assistance (74.8% versus 85.2%, P = .03, and 56.3% versus 84.4%, P < .001, respectively), while the number of false-positive cases did not increase significantly (23 versus 30, P = .20, and 22 versus 24, P = .75, respectively). CONCLUSIONS Software-aided reading showed significant incremental value in the sensitivity of clinicians in the detection of aneurysms on MRA without a significant increase in false-positive findings, especially for the neurosurgeon and neurologist. Software-aided reading showed equivocal value for the radiologist.
Collapse
Affiliation(s)
- B Sohn
- From the Department of Radiology (B.S., J.C., J.H.K., K.H., B.J., S.Y.W., J.C., H.S.C., S.-K.L.), Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - K-Y Park
- Department of Neurosurgery (K.-Y.P.), Yonsei University College of Medicine, Seoul, South Korea
| | - J Choi
- From the Department of Radiology (B.S., J.C., J.H.K., K.H., B.J., S.Y.W., J.C., H.S.C., S.-K.L.), Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology (J.C.), Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology (J.C.), Seoul Medical Center, Seoul, South Korea
| | - J H Koo
- From the Department of Radiology (B.S., J.C., J.H.K., K.H., B.J., S.Y.W., J.C., H.S.C., S.-K.L.), Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - K Han
- From the Department of Radiology (B.S., J.C., J.H.K., K.H., B.J., S.Y.W., J.C., H.S.C., S.-K.L.), Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - B Joo
- From the Department of Radiology (B.S., J.C., J.H.K., K.H., B.J., S.Y.W., J.C., H.S.C., S.-K.L.), Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - S Y Won
- From the Department of Radiology (B.S., J.C., J.H.K., K.H., B.J., S.Y.W., J.C., H.S.C., S.-K.L.), Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - J Cha
- From the Department of Radiology (B.S., J.C., J.H.K., K.H., B.J., S.Y.W., J.C., H.S.C., S.-K.L.), Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - H S Choi
- From the Department of Radiology (B.S., J.C., J.H.K., K.H., B.J., S.Y.W., J.C., H.S.C., S.-K.L.), Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Radiology (H.S.C.), Seoul Medical Center, Seoul, South Korea
| | - S-K Lee
- From the Department of Radiology (B.S., J.C., J.H.K., K.H., B.J., S.Y.W., J.C., H.S.C., S.-K.L.), Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|