1
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
2
|
Wang W, Khojasteh SC, Su D. Biosynthetic Strategies for Macrocyclic Peptides. Molecules 2021; 26:3338. [PMID: 34206124 PMCID: PMC8199541 DOI: 10.3390/molecules26113338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022] Open
Abstract
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Dian Su
- Drug Metabolism and Disposition, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (W.W.); (S.C.K.)
| |
Collapse
|
3
|
The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays Biochem 2021; 65:261-275. [PMID: 33956071 DOI: 10.1042/ebc20200132] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Streptomycetes are producers of a wide range of specialized metabolites of great medicinal and industrial importance, such as antibiotics, antifungals, or pesticides. Having been the drivers of the golden age of antibiotics in the 1950s and 1960s, technological advancements over the last two decades have revealed that very little of their biosynthetic potential has been exploited so far. Given the great need for new antibiotics due to the emerging antimicrobial resistance crisis, as well as the urgent need for sustainable biobased production of complex molecules, there is a great renewed interest in exploring and engineering the biosynthetic potential of streptomycetes. Here, we describe the Design-Build-Test-Learn (DBTL) cycle for metabolic engineering experiments in streptomycetes and how it can be used for the discovery and production of novel specialized metabolites.
Collapse
|
4
|
Sampaio de Oliveira KB, Leite ML, Rodrigues GR, Duque HM, da Costa RA, Cunha VA, de Loiola Costa LS, da Cunha NB, Franco OL, Dias SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020; 13:367-390. [PMID: 32357080 DOI: 10.1080/17512433.2020.1764347] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The need to develop new drugs for the control of pathogenic microorganisms has redoubled efforts to prospect for antimicrobial peptides (AMPs) from natural sources and to characterize its structure and function. These molecules present a broad spectrum of action against different microorganisms and frequently present promiscuous action, with anticancer and immunomodulatory activities. Furthermore, AMPs can be used as biopharmaceuticals in the treatment of hospital-acquired infections and other serious diseases with relevant social and economic impacts.Areas covered: The low yield and the therefore difficult extraction and purification process in AMPs are problems that limit their industrial application and scientific research. Thus, optimized heterologous expression systems were developed to significantly boost AMP yields, allow high efficiency in purification and structural optimization for the increase of therapeutic activity.Expert opinion: This review provides an update on recent developments in the recombinant production of ribosomal and non-ribosomal synthesis of AMPs and on strategies to increase the expression of genes encoding AMPs at the transcriptional and translational levels and regulation of the post-translational modifications. Moreover, there are detailed reports of AMPs that have already reached marketable status or are in the pipeline under advanced stages of preclinical testing.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Gisele Regina Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane Andrade da Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Lorena Sousa de Loiola Costa
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Patologia Molecular, Campus Darcy Ribeiro , Brasília, Brazil.,S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco , Campo Grande, Mato Grosso do Sul, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Universidade de Brasília, Pós-graduação em Biologia Animal, Campus Darcy Ribeiro , Brasília, Brazil
| |
Collapse
|
5
|
Farag S, Bleich RM, Shank EA, Isayev O, Bowers AA, Tropsha A. Inter-Modular Linkers play a crucial role in governing the biosynthesis of non-ribosomal peptides. Bioinformatics 2020; 35:3584-3591. [PMID: 30785185 DOI: 10.1093/bioinformatics/btz127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Non-ribosomal peptide synthetases (NRPSs) are modular enzymatic machines that catalyze the ribosome-independent production of structurally complex small peptides, many of which have important clinical applications as antibiotics, antifungals and anti-cancer agents. Several groups have tried to expand natural product diversity by intermixing different NRPS modules to create synthetic peptides. This approach has not been as successful as anticipated, suggesting that these modules are not fully interchangeable. RESULTS We explored whether Inter-Modular Linkers (IMLs) impact the ability of NRPS modules to communicate during the synthesis of NRPs. We developed a parser to extract 39 804 IMLs from both well annotated and putative NRPS biosynthetic gene clusters from 39 232 bacterial genomes and established the first IMLs database. We analyzed these IMLs and identified a striking relationship between IMLs and the amino acid substrates of their adjacent modules. More than 92% of the identified IMLs connect modules that activate a particular pair of substrates, suggesting that significant specificity is embedded within these sequences. We therefore propose that incorporating the correct IML is critical when attempting combinatorial biosynthesis of novel NRPS. AVAILABILITY AND IMPLEMENTATION The IMLs database as well as the NRPS-Parser have been made available on the web at https://nrps-linker.unc.edu. The entire source code of the project is hosted in GitHub repository (https://github.com/SWFarag/nrps-linker). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sherif Farag
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel M Bleich
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth A Shank
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Olexandr Isayev
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander Tropsha
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
In Silico Discovery of Novel Ligands for Antimicrobial Lipopeptides for Computer-Aided Drug Design. Probiotics Antimicrob Proteins 2019; 10:129-141. [PMID: 29218506 DOI: 10.1007/s12602-017-9356-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increase in antibiotic-resistant strains of pathogens has created havoc worldwide. These antibiotic-resistant pathogens require potent drugs for their inhibition. Lipopeptides, which are produced as secondary metabolites by many microorganisms, have the ability to act as potent safe drugs. Lipopeptides are amphiphilic molecules containing a lipid chain bound to the peptide. They exhibit broad-spectrum activities against both bacteria and fungi. Other than their antimicrobial properties, they have displayed anti-cancer properties as well, but their mechanism of action is not understood. In silico drug design uses computer simulation to discover and develop new drugs. This technique reduces the need of expensive and tedious lab work and clinical trials, but this method becomes a challenge due to complex structures of lipopeptides. Specific agonists (ligands) must be identified to initiate a physiological response when combined with a receptor (lipopeptide). In silico drug design and homology modeling talks about the interaction between ligands and the binding sites. This review summarizes the mechanism of selected lipopeptides, their respective ligands, and in silico drug design.
Collapse
|
7
|
Chandra Mohana N, Yashavantha Rao H, Rakshith D, Mithun P, Nuthan B, Satish S. Omics based approach for biodiscovery of microbial natural products in antibiotic resistance era. J Genet Eng Biotechnol 2018; 16:1-8. [PMID: 30647697 PMCID: PMC6296576 DOI: 10.1016/j.jgeb.2018.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 01/01/2023]
Abstract
The need for a new antibiotic pipeline to confront threat imposed by resistant pathogens has become a major global concern for human health. To confront the challenge there is a need for discovery and development of new class of antibiotics. Nature which is considered treasure trove, there is re-emerged interest in exploring untapped microbial to yield novel molecules, due to their wide array of negative effects associated with synthetic drugs. Natural product researchers have developed many new techniques over the past few years for developing diverse compounds of biopotential. Taking edge in the advancement of genomics, genetic engineering, in silico drug design, surface modification, scaffolds, pharmacophores and target-based approach is necessary. These techniques have been economically sustainable and also proven efficient in natural product discovery. This review will focus on recent advances in diverse discipline approach from integrated Bioinformatics predictions, genetic engineering and medicinal chemistry for the synthesis of natural products vital for the discovery of novel antibiotics having potential application.
Collapse
Affiliation(s)
- N. Chandra Mohana
- Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India
| | - H.C. Yashavantha Rao
- Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India
| | - D. Rakshith
- Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India
| | - P.R. Mithun
- Department of Life Sciences, Christ University, Bengaluru 560029, Karnataka, India
| | - B.R. Nuthan
- Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India
| | - S. Satish
- Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore 570006, Karnataka, India
| |
Collapse
|
8
|
Ho YTC, Leng DJ, Ghiringhelli F, Wilkening I, Bushell DP, Kostner O, Riva E, Havemann J, Passarella D, Tosin M. Novel chemical probes for the investigation of nonribosomal peptide assembly. Chem Commun (Camb) 2018. [PMID: 28627528 DOI: 10.1039/c7cc02427d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chemical probes were devised and evaluated for the capture of biosynthetic intermediates involved in the bio-assembly of the nonribosomal peptide echinomycin. Putative intermediate peptide species were isolated and characterised, providing fresh insights into pathway substrate flexibility and paving the way for novel chemoenzymatic approaches towards unnatural peptides.
Collapse
Affiliation(s)
- Y T Candace Ho
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Daniel J Leng
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Francesca Ghiringhelli
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK. and Department of Chemistry, Universita' degli Studi di Milano, Via Golgi, 19 20133 Milano, Italy
| | - Ina Wilkening
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Dexter P Bushell
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Otto Kostner
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK. and Institut für Organische Chemie, Universität Wien, Währinger Str., 38 1090 Wien, Austria
| | - Elena Riva
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Judith Havemann
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Daniele Passarella
- Department of Chemistry, Universita' degli Studi di Milano, Via Golgi, 19 20133 Milano, Italy
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| |
Collapse
|
9
|
Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential. Front Pharmacol 2017; 8:828. [PMID: 29209209 PMCID: PMC5702503 DOI: 10.3389/fphar.2017.00828] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs). Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Debabrata Acharya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Alok Adholeya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Sunil K Deshmukh
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| |
Collapse
|
10
|
Lin D, Lam HY, Han W, Cotroneo N, Pandya BA, Li X. Structure-activity relationship of daptomycin analogues with substitution at (2S, 3R) 3-methyl glutamic acid position. Bioorg Med Chem Lett 2017; 27:456-459. [DOI: 10.1016/j.bmcl.2016.12.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022]
|
11
|
Mnif I, Ghribi D. Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 2016; 104:129-47. [PMID: 25808118 DOI: 10.1002/bip.22630] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/09/2015] [Accepted: 02/23/2015] [Indexed: 11/10/2022]
Abstract
Lipopeptides are microbial surface active compounds produced by a wide variety of bacteria, fungi, and yeast. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Surfactin, iturin, and fengycin of Bacillus subtilis are among the most popular lipopeptides. Lipopepetides can be applied in diverse domains as food and cosmetic industries for their emulsification/de-emulsification capacity, dispersing, foaming, moisturizing, and dispersing properties. Also, they are qualified as viscosity reducers, hydrocarbon solubilizing and mobilizing agents, and metal sequestering candidates for application in environment and bioremediation. Moreover, their ability to form pores and destabilize biological membrane permits their use as antimicrobial, hemolytic, antiviral, antitumor, and insecticide agents. Furthermore, lipopeptides can act at the surface and can modulate enzymes activity permitting the enhancement of the activity of certain enzymes ameliorating microbial process or the inhibition of certain other enzymes permitting their use as antifungal agents. This article will present a detailed classification of lipopeptides biosurfactant along with their producing strain and biological activities and will discuss their functional properties and related applications.
Collapse
Affiliation(s)
- Inès Mnif
- Higher Institute of Biotechnology, Sfax, Tunisia.,Unit Enzymes and Bioconversion, National School of Engineers, Tunisia
| | - Dhouha Ghribi
- Higher Institute of Biotechnology, Sfax, Tunisia.,Unit Enzymes and Bioconversion, National School of Engineers, Tunisia
| |
Collapse
|
12
|
Winn M, Fyans JK, Zhuo Y, Micklefield J. Recent advances in engineering nonribosomal peptide assembly lines. Nat Prod Rep 2016; 33:317-47. [PMID: 26699732 DOI: 10.1039/c5np00099h] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonribosomal peptides are amongst the most widespread and structurally diverse secondary metabolites in nature with many possessing bioactivity that can be exploited for therapeutic applications. Due to the major challenges associated with total- and semi-synthesis, bioengineering approaches have been developed to increase yields and generate modified peptides with improved physicochemical properties or altered bioactivity. Here we review the major advances that have been made over the last decade in engineering the biosynthesis of nonribosomal peptides. Structural diversity has been introduced by the modification of enzymes required for the supply of precursors or by heterologous expression of tailoring enzymes. The modularity of nonribosomal peptide synthetase (NRPS) assembly lines further supports module or domain swapping methodologies to achieve changes in the amino acid sequence of nonribosomal peptides. We also review the new synthetic biology technologies promising to speed up the process, enabling the creation and optimisation of many more assembly lines for heterologous expression, offering new opportunities for engineering the biosynthesis of novel nonribosomal peptides.
Collapse
Affiliation(s)
- M Winn
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - J K Fyans
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Y Zhuo
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - J Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
13
|
Patel S, Ahmed S, Eswari JS. Therapeutic cyclic lipopeptides mining from microbes: latest strides and hurdles. World J Microbiol Biotechnol 2015; 31:1177-93. [PMID: 26041368 DOI: 10.1007/s11274-015-1880-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/31/2015] [Indexed: 12/23/2022]
Abstract
Infectious diseases impose serious public health burdens and often have devastating consequences. The cyclic lipopeptides elaborated by bacteria Bacillus, Paenibacillus, Pseudomonas, Streptomyces, Serratia, Propionibacterium and fungus Fusarium are very crucial in restraining the pathogens. Composed of a peptide and a fatty acyl moiety these amphiphilic metabolites exhibit broad spectrum antimicrobial effects. Among the plethora of cyclic lipopeptides, only selective few have emerged as robust antibiotics. For their functional vigor, polymyxin, daptomycin, surfactin, iturin, fengysin, paenibacterin and pseudofactin have been integrated in mainstream healthcare. Daptomycin has been a significant part of antimicrobial arsenal since the past decade. As the magnitude of drug resistance rises in unprecedented manner, the urgency of prospecting novel cyclic lipopeptides is being perceived. Intense research has revealed the implication of these bioactive compounds stretching beyond antibacterial and antifungal. Anticancer, immunomodulatory, prosthetic parts disinfection and vaccine adjuvancy are some of the validated prospects. This review discusses the emerging applications, mechanisms governing the biological actions, role of genomics in refining structure and function, semi-synthetic analog discovery, novel strain isolation, setbacks etc. Though its beyond the scope of the current topic, for holistic purpose, the role of lipopeptides in bioremediation and crop biotechnology has been briefly outlined. This updated critique is expected to galvanize innovations and diversify therapeutic recruitment of microbial lipopeptides.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, CA, 92182, USA,
| | | | | |
Collapse
|
14
|
Sun H, Liu Z, Zhao H, Ang EL. Recent advances in combinatorial biosynthesis for drug discovery. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:823-33. [PMID: 25709407 PMCID: PMC4334309 DOI: 10.2147/dddt.s63023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1) precursor-directed biosynthesis; 2) enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3) pathway-level recombination. Recent examples of combinatorial biosynthesis employing these strategies will also be highlighted in this review.
Collapse
Affiliation(s)
- Huihua Sun
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| | - Zihe Liu
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore ; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
15
|
Lam HY, Gaarden RI, Li X. A Journey to the Total Synthesis of Daptomycin. CHEM REC 2014; 14:1086-99. [PMID: 25205345 DOI: 10.1002/tcr.201402049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Hiu Yung Lam
- Department of Chemistry; The University of Hong Kong; Hong Kong SAR P. R. China
| | | | - Xuechen Li
- Department of Chemistry; The University of Hong Kong; Hong Kong SAR P. R. China
| |
Collapse
|
16
|
Liu Z, Ioerger TR, Wang F, Sacchettini JC. Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme. J Biol Chem 2013; 288:18473-83. [PMID: 23625916 DOI: 10.1074/jbc.m113.466912] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis has a group of 34 FadD proteins that belong to the adenylate-forming superfamily. They are classified as either fatty acyl-AMP ligases (FAALs) or fatty acyl-CoA ligases based on sequence analysis. FadD10, involved in the synthesis of a virulence-related lipopeptide, was mis-annotated as a fatty acyl-CoA ligase; however, it is in fact a FAAL that transfers fatty acids to an acyl carrier protein (Rv0100). In this study, we have determined the structures of FadD10 in both the apo-form and the complexed form with dodecanoyl-AMP, where we see for the first time an adenylate-forming enzyme that does not adopt a closed conformation for catalysis. Indeed, this novel conformation of FadD10, facilitated by its unique inter-domain and intermolecular interactions, is critical for the enzyme to carry out the acyl transfer onto Rv0100 rather than coenzyme A. This contradicts the existing model of FAALs that rely on an insertion motif for the acyltransferase specificity and thus makes FadD10 a new type of FAAL. We have also characterized the fatty acid preference of FadD10 through biological and structural analyses, and the data indicate long chain saturated fatty acids as the biological substrates of the enzyme.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| | | | | | | |
Collapse
|
17
|
Lam HY, Zhang Y, Liu H, Xu J, Wong CTT, Xu C, Li X. Total Synthesis of Daptomycin by Cyclization via a Chemoselective Serine Ligation. J Am Chem Soc 2013; 135:6272-9. [DOI: 10.1021/ja4012468] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hiu Yung Lam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s
Republic of China
| | - Yinfeng Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s
Republic of China
| | - Han Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s
Republic of China
| | - Jianchao Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s
Republic of China
| | - Clarence T. T. Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s
Republic of China
| | - Ci Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s
Republic of China
| | - Xuechen Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s
Republic of China
| |
Collapse
|
18
|
Giessen TW, Marahiel MA. Ribosome-independent biosynthesis of biologically active peptides: Application of synthetic biology to generate structural diversity. FEBS Lett 2012; 586:2065-75. [PMID: 22273582 DOI: 10.1016/j.febslet.2012.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 01/24/2023]
Abstract
Peptide natural products continue to play an important role in modern medicine as last-resort treatments of many life-threatening diseases, as they display many interesting biological activities ranging from antibiotic to antineoplastic. A large fraction of these microbial natural products is assembled by ribosome-independent mechanisms. Progress in sequencing technology and the mechanistic understanding of secondary metabolite pathways has led to the discovery of many formerly cryptic natural products and a molecular understanding of their assembly. Those advances enable us to apply protein and metabolic engineering approaches towards the manipulation of biosynthetic pathways. In this review we discuss the application potential of both templated and non-templated pathways as well as chemoenzymatic strategies for the structural diversification and tailoring of peptide natural products.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Chemistry/Biochemistry, Philipps-University, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
19
|
Evans BS, Chen Y, Metcalf WW, Zhao H, Kelleher NL. Directed evolution of the nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. CHEMISTRY & BIOLOGY 2011; 18:601-7. [PMID: 21609841 PMCID: PMC3102229 DOI: 10.1016/j.chembiol.2011.03.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 02/02/2011] [Accepted: 03/07/2011] [Indexed: 11/17/2022]
Abstract
Many lead compounds in the search for new drugs derive from peptides and polyketides whose similar biosynthetic enzymes have been difficult to engineer for production of new derivatives. Problems with generating multiple analogs in a single experiment along with lack of high-throughput methods for structure-based screening have slowed progress in this area. Here, we use directed evolution and a multiplexed assay to screen a library of >14,000 members to generate three derivatives of the antibacterial compound, andrimid. Another limiting factor in reengineering these mega-enzymes of secondary metabolism has been that commonly used hosts such as Escherichia coli often give lower product titers, so our reengineering was performed in the native producer, Pantoea agglomerans. This integrated in vivo approach can be extended to larger enzymes to create analogs of natural products for bioactivity testing.
Collapse
Affiliation(s)
- Bradley S. Evans
- Department of Biochemistry, University of Illinois, Urbana, IL 61801
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801
| | - Yunqiu Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208
| | - William W. Metcalf
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | - Huimin Zhao
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801
| | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208
| |
Collapse
|
20
|
Katsuyama Y, Ohnishi Y, Horinouchi S. Production of Dehydrogingerdione Derivatives in Escherichia coli by Exploiting a Curcuminoid Synthase from Oryza sativa and a β-Oxidation Pathway from Saccharomyces cerevisiae. Chembiochem 2010; 11:2034-41. [DOI: 10.1002/cbic.201000379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Robbel L, Marahiel MA. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J Biol Chem 2010; 285:27501-8. [PMID: 20522545 DOI: 10.1074/jbc.r110.128181] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Daptomycin (Cubicin) is a branched cyclic lipopeptide antibiotic of nonribosomal origin and the prototype of the acidic lipopeptide family. It was approved in 2003 for the nontopical treatment of skin structure infections caused by gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), and in 2006 for the treatment of bacteremia. Understanding the ribosome-independent biosynthesis of daptomycin assembly will provide opportunities for the generation of daptomycin derivatives with an altered pharmaceutical spectrum to address upcoming daptomycin-resistant pathogens. Herein, the structural properties of daptomycin, its biosynthesis, recent efforts for the generation of structural diversity, and its proposed mode of action are discussed.
Collapse
Affiliation(s)
- Lars Robbel
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | | |
Collapse
|
22
|
Genetically engineered lipopeptide antibiotics related to A54145 and daptomycin with improved properties. Antimicrob Agents Chemother 2010; 54:1404-13. [PMID: 20086142 DOI: 10.1128/aac.01307-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic approved for the treatment of skin and skin structure infections caused by Gram-positive pathogens and for that of bacteremia and right-sided endocarditis caused by Staphylococcus aureus. Daptomycin failed to meet noninferiority criteria for the treatment of community-acquired pneumonia, likely due to sequestration in pulmonary surfactant. Many analogues of daptomycin have been generated by combinatorial biosynthesis, but only two displayed improved activity in the presence of bovine surfactant, and neither was as active as daptomycin in vitro. In the present study, we generated hybrid molecules of the structurally related lipopeptide A54145 in Streptomyces fradiae and tested them for antibacterial activity in the presence of bovine surfactant. Hybrid A54145 nonribosomal peptide synthetase (NRPS) biosynthetic genes were constructed by genetic engineering and were expressed in combination with a deletion of the lptI methyltransferase gene, which is involved in the formation of the 3-methyl-glutamic acid (3mGlu) residue at position 12. Some of the compounds were very active against S. aureus and other Gram-positive pathogens; one compound was also highly active in the presence of bovine surfactant, had low acute toxicity, and showed some efficacy against Streptococcus pneumoniae in a mouse model of pulmonary infection.
Collapse
|
23
|
Abstract
Acidic lipopeptide antibiotics are a new class of potent antibiotics, which includes daptomycin, A54145, calcium-dependent antibiotics (CDAs), friulimicins/amphomycins, laspartomycin/glycinocins and others. The importance of this novel class is exemplified by the success story of the clinically approved daptomycin, which is used for the treatment of skin infections and bacteremia caused by multidrug-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The potency of acidic lipopeptides is inherent in their chemical structure. The nonribosomally synthesized peptide cores consist of eleven to 13 amino acids, which are rigidified by the formation of a ten-membered ring. An N-terminal fatty acid, which facilitates insertion into the lipid bilayer of bacterial membranes, completes the structure. All these antibiotics contain multiple nonproteinogenic amino acids as well as different lipid tails; this yields remarkable structural diversity. This review summarizes the observed structural variety through a detailed description of the composition of the acidic lipopeptides. Furthermore, engineering approaches towards novel lipopeptides are presented. Recent discoveries in the field of tailoring enzymes, which enable structural plurality mainly by amino and fatty acid precursor biosynthesis, are highlighted.
Collapse
Affiliation(s)
- Matthias Strieker
- Chemistry and Biochemistry Department, Philipps-University Marburg, Hans-Meerwein-Strasse, Marburg, Germany
| | | |
Collapse
|
24
|
Baltz RH. Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr Opin Chem Biol 2009; 13:144-51. [PMID: 19303806 DOI: 10.1016/j.cbpa.2009.02.031] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/13/2009] [Accepted: 02/20/2009] [Indexed: 11/30/2022]
Abstract
Daptomycin is a lipopeptide antibiotic used clinically to treat infections caused by Gram-positive bacteria. Laboratory studies have shown that Staphylococcus aureus resistance to daptomycin occurs stepwise and slowly. Mutations associated with decreased susceptibility were mapped in mprF, yycG, rpoB, and rpoC, each giving about twofold increases in the minimal inhibitory concentration (MIC) and combinations giving higher MICs. The mprF gene encodes a dual functional enzyme that couples lysine to phosphatidylglycerol (PG) and transfers the lysyl-PG (LPG) to the outer leaflet of the membrane. LPG is less acidic than PG, and thus reduces the binding of Ca(++)-bound daptomycin to bacterial membranes. The mprF mutants have higher LPG/PG ratios in the membrane outer leaflet and bind less daptomycin than the wild-type strain. YycG is a sensor histidine kinase of a two component signal transduction system required for viability in many low G+C Gram-positive bacteria. The observation of DapR mutations in yycG suggests that YycG may be a target for daptomycin antibacterial activity. Daptomycin inserts into PG rich membrane at the cell division septum, but also inserts into lung surfactant, explaining why it failed to meet non-inferiority criteria in clinical trials for community acquired pneumonia (CAP). Recent advances in biosynthetic engineering have provided new tools to generate novel lipopeptides with modifications in the core peptide: several were very potent antibiotics against Gram-positive pathogens, and some were active in the presence of surfactant.
Collapse
Affiliation(s)
- Richard H Baltz
- Discovery Biology, Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, MA 02421, USA.
| |
Collapse
|
25
|
Baltz RH. Chapter 20. Biosynthesis and genetic engineering of lipopeptides in Streptomyces roseosporus. Methods Enzymol 2009; 458:511-31. [PMID: 19374996 DOI: 10.1016/s0076-6879(09)04820-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Daptomycin is an acidic cyclic lipopeptide antibiotic approved for treatment of infections caused by Gram-positive pathogens, including Staphylococcus aureus strains resistant to other antibiotics. Daptomycin biosynthesis is carried out by a giant multisubunit, multienzyme nonribosomal peptide synthetase (NRPS). The daptomycin (dpt) biosynthetic genes have been cloned in a bacterial artificial chromosome (BAC) vector, sequenced, and expressed in Streptomyces lividans. Several of the dpt genes, including the three NRPS genes, are transcribed as a lengthy polycistronic message. The daptomycin-producing strain, Streptomyces roseosporus, can be genetically manipulated, and a number of deletion mutants encompassing one or more of the dpt genes have been constructed. Several of the dpt genes have been expressed from ectopic chromosomal loci (varphiC31 or IS117 attB sites) under the transcriptional control of the strong constitutive ermEp* promoter, and recombinant strains produced high levels of lipopeptides, thus establishing a trans-complementation system for combinatorial biosynthesis. A number of hybrid NRPS subunits have been generated by lambda-Red-mediated recombination, and combinatorial libraries of lipopeptides have been generated by NRPS subunit exchanges, module exchanges, multidomain exchanges, deletion mutagenesis, and multiple natural lipidations, using the ectopic trans-complementation system in S. roseosporus.
Collapse
|
26
|
Felnagle EA, Jackson EE, Chan YA, Podevels AM, Berti AD, McMahon MD, Thomas MG. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm 2008; 5:191-211. [PMID: 18217713 PMCID: PMC3131160 DOI: 10.1021/mp700137g] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural products biosynthesized wholly or in part by nonribosomal peptide synthetases (NRPSs) are some of the most important drugs currently used clinically for the treatment of a variety of diseases. Since the initial research into NRPSs in the early 1960s, we have gained considerable insights into the mechanism by which these enzymes assemble these natural products. This review will present a brief history of how the basic mechanistic steps of NRPSs were initially deciphered and how this information has led us to understand how nature modified these systems to generate the enormous structural diversity seen in nonribosomal peptides. This review will also briefly discuss how drug development and discovery are being influenced by what we have learned from nature about nonribosomal peptide biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706
| |
Collapse
|
27
|
Baker DD, Chu M, Oza U, Rajgarhia V. The value of natural products to future pharmaceutical discovery. Nat Prod Rep 2007; 24:1225-44. [PMID: 18033577 DOI: 10.1039/b602241n] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natural products have provided considerable value to the pharmaceutical industry over the past half century. In particular, the therapeutic areas of infectious diseases and oncology have benefited from numerous drug classes derived from natural product sources. Unfortunately, pharmaceutical companies have significantly decreased activities in natural product discovery during the past several years. Biotechnology companies working in the fields of combinatorial biosynthesis, genetic engineering and metagenomic approaches to identify novel natural product lead molecules have had limited success. Despite what appears to be a slow death of natural product discovery research, many new and interesting molecules with biological activity have been published in the past few years. If natural product materials continue to be tested for desirable therapeutic activities, we believe that significant progress in identifying new antibiotics, oncology therapeutics and other useful medicines will be made.
Collapse
Affiliation(s)
- Dwight D Baker
- Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, Massachusetts 02421, USA.
| | | | | | | |
Collapse
|
28
|
Baltz RH. Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat Biotechnol 2007; 24:1533-40. [PMID: 17160059 DOI: 10.1038/nbt1265] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular engineering approaches to producing new antibiotics have been in development for about 25 years. Advances in cloning and analysis of antibiotic gene clusters, engineering biosynthetic pathways in Escherichia coli, transfer of engineered pathways from E. coli into Streptomyces expression hosts, and stable maintenance and expression of cloned genes have streamlined the process in recent years. Advances in understanding mechanisms and substrate specificities during assembly by polyketide synthases, nonribosomal peptide synthetases, glycosyltransferases and other enzymes have made molecular engineering design and outcomes more predictable. Complex molecular scaffolds not amenable to synthesis by medicinal chemistry (for example, vancomycin (Vancocin), daptomycin (Cubicin) and erythromycin) are now tractable by molecular engineering. Medicinal chemistry can further embellish the properties of engineered antibiotics, making the two disciplines complementary.
Collapse
Affiliation(s)
- Richard H Baltz
- Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, Massachusetts 02421, USA.
| |
Collapse
|
29
|
Kirschning A, Taft F, Knobloch T. Total synthesis approaches to natural product derivatives based on the combination of chemical synthesis and metabolic engineering. Org Biomol Chem 2007; 5:3245-59. [PMID: 17912378 DOI: 10.1039/b709549j] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secondary metabolites are an extremely diverse and important group of natural products with industrial and biomedical implications. Advances in metabolic engineering of both native and heterologous secondary metabolite producing organisms have allowed the directed synthesis of desired novel products by exploiting their biosynthetic potentials. Metabolic engineering utilises knowledge of cellular metabolism to alter biosynthetic pathways. An important technique that combines chemical synthesis with metabolic engineering is mutasynthesis (mutational biosynthesis; MBS), which advanced from precursor-directed biosynthesis (PDB). Both techniques are based on the cellular uptake of modified biosynthetic intermediates and their incorporation into complex secondary metabolites. Mutasynthesis utilises genetically engineered organisms in conjunction with feeding of chemically modified intermediates. From a synthetic chemist's point of view the concept of mutasynthesis is highly attractive, as the method combines chemical expertise with Nature's synthetic machinery and thus can be exploited to rapidly create small libraries of secondary metabolites. However, in each case, the method has to be critically compared with semi- and total synthesis in terms of practicability and efficiency. Recent developments in metabolic engineering promise to further broaden the scope of outsourcing chemically demanding steps to biological systems.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, and Center of Biomolecular Drug Research (BMWZ), Schneiderberg 1b, 30167 Hannover, Germany.
| | | | | |
Collapse
|
30
|
Rokem JS, Lantz AE, Nielsen J. Systems biology of antibiotic production by microorganisms. Nat Prod Rep 2007; 24:1262-87. [DOI: 10.1039/b617765b] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Nguyen KT, Kau D, Gu JQ, Brian P, Wrigley SK, Baltz RH, Miao V. A glutamic acid 3-methyltransferase encoded by an accessory gene locus important for daptomycin biosynthesis in Streptomyces roseosporus. Mol Microbiol 2006; 61:1294-307. [PMID: 16879412 DOI: 10.1111/j.1365-2958.2006.05305.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In many peptide antibiotics, modified amino acids are important for biological activity. The amino acid 3-methyl-glutamic acid (3mGlu) has been found only in three cyclic lipopeptide antibiotics: daptomycin and the A21978C family produced by Streptomyces roseosporus, calcium-dependent antibiotic produced by Streptomyces coelicolor and A54145 produced by Streptomyces fradiae. We studied the non-ribosomal peptide synthetase genes involved in A21978C biosynthesis and the downstream genes, dptG, dptH, dptI and dptJ predicted to encode a conserved protein of unknown function, a thioesterase, a methyltransferase (MTase) and a tryptophan 2,3-dioxygenase respectively. Deletion of dptGHIJ reduced overall lipopeptide yield and led to production of a series of novel A21978C analogues containing Glu12 instead of 3mGlu12. Complementation by only dptI, or its S. coelicolor homologue, glmT, restored the biosynthesis of the 3mGlu-containing compounds in the mutant. Compared with A21978C, the Glu12-containing derivatives were less active against Staphylococcus aureus. Further genetic analyses showed that members of the dptGHIJ locus cooperatively contributed to optimal A21978C production; deletion of dptH, dptI or dptJ genes reduced the yield significantly, while expression of dptIJ or dptGHIJ from the strong ermEp* promoter substantially increased lipopeptide production. The results indicate that these genes play important roles in the biosynthesis of daptomycin, and that dptI encodes a Glu MTase.
Collapse
Affiliation(s)
- Kien T Nguyen
- Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, MA 02421, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Nguyen KT, Ritz D, Gu JQ, Alexander D, Chu M, Miao V, Brian P, Baltz RH. Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc Natl Acad Sci U S A 2006; 103:17462-7. [PMID: 17090667 PMCID: PMC1859951 DOI: 10.1073/pnas.0608589103] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Daptomycin, a cyclic lipopeptide produced by Streptomyces roseosporus, is the active ingredient of Cubicin (daptomycin-for-injection), a first-in-class antibiotic approved for treatment of skin and skin-structure infections caused by Gram-positive pathogens and bacteremia and endocarditis caused by Staphylococcus aureus, including methicillin-resistant strains. Genetic engineering of the nonribosomal peptide synthetase (NRPS) in the daptomycin biosynthetic pathway was exploited for the biosynthesis of novel active antibiotics. lambda-Red-mediated recombination was used to exchange single or multiple modules in the DptBC subunit of the NRPS to modify the daptomycin cyclic peptide core. We combined module exchanges, NRPS subunit exchanges, inactivation of the tailoring enzyme glutamic acid 3-methyltransferase, and natural variations of the lipid tail to generate a library of novel lipopeptides, some of which were as active as daptomycin against Gram-positive bacteria. One compound was more potent against an Escherichia coli imp mutant that has increased outer membrane permeability. This study established a robust combinatorial biosynthesis platform to produce novel peptide antibiotics in sufficient quantities for antimicrobial screening and drug development.
Collapse
Affiliation(s)
- Kien T. Nguyen
- Department of Drug Discovery and Evaluation, Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA 02421
| | - Daniel Ritz
- Department of Drug Discovery and Evaluation, Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA 02421
| | - Jian-Qiao Gu
- Department of Drug Discovery and Evaluation, Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA 02421
| | - Dylan Alexander
- Department of Drug Discovery and Evaluation, Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA 02421
| | - Min Chu
- Department of Drug Discovery and Evaluation, Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA 02421
| | - Vivian Miao
- Department of Drug Discovery and Evaluation, Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA 02421
| | - Paul Brian
- Department of Drug Discovery and Evaluation, Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA 02421
| | - Richard H. Baltz
- Department of Drug Discovery and Evaluation, Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA 02421
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Gal MFCL, Thurston L, Rich P, Miao V, Baltz RH. Complementation of daptomycin dptA and dptD deletion mutations in trans and production of hybrid lipopeptide antibiotics. Microbiology (Reading) 2006; 152:2993-3001. [PMID: 17005980 DOI: 10.1099/mic.0.29022-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Daptomycin is a lipopeptide antibiotic produced by Streptomyces roseosporus and recently commercialized as Cubicin® (daptomycin-for-injection) for treatment of skin and skin-structure infections caused by Gram-positive pathogens. Daptomycin is synthesized by a non-ribosomal peptide synthetase (NRPS) encoded by three overlapping genes, dptA, dptBC and dptD. The dptE and dptF genes, immediately upstream of dptA, are likely to be involved in the initiation of daptomycin biosynthesis by coupling decanoic acid to the N-terminal Trp. Analysis of RT-PCR data suggests that dptE, dptF, dptA, dptBC, dptD and possibly other dpt genes are transcribed as one large message; however, it has been demonstrated that sequential translation of these genes from a long transcript is not essential for robust daptomycin production. The dptA and the dptD genes were deleted from the dpt gene cluster, and expressed from ectopic positions in the chromosome under the control of the strong constitutive ermEp* promoter to produce high levels of lipopeptides. This three-locus trans-complementation system was used to produce hybrid lipopeptide antibiotics by introducing the heterologous lptD and cdaPS3 genes from Streptomyces fradiae and Streptomyces coelicolor, respectively, to complement the ΔdptD mutation.
Collapse
Affiliation(s)
| | - Lisa Thurston
- Cubist Pharmaceuticals Inc., 65 Hayden Avenue, Lexington, MA 02421, USA
| | - Paul Rich
- Cubist Pharmaceuticals Inc., 65 Hayden Avenue, Lexington, MA 02421, USA
| | - Vivian Miao
- Cubist Pharmaceuticals Inc., 65 Hayden Avenue, Lexington, MA 02421, USA
| | - Richard H Baltz
- Cubist Pharmaceuticals Inc., 65 Hayden Avenue, Lexington, MA 02421, USA
| |
Collapse
|
34
|
Wilkinson B, Bachmann BO. Biocatalysis in pharmaceutical preparation and alteration. Curr Opin Chem Biol 2006; 10:169-76. [PMID: 16500136 DOI: 10.1016/j.cbpa.2006.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 02/10/2006] [Indexed: 10/25/2022]
Abstract
The term 'synthetic biology' is being used with increasing frequency to describe the biocatalytic generation of small molecules, either via stepwise biotransformation or engineered biosynthetic pathways. The flexibility of this newly coined term encompasses the historically separate fields of natural product biosynthesis and metabolic engineering. This review discusses the state of the art of these two disciplines in the context of the discovery and development of bioactive precursors and products.
Collapse
Affiliation(s)
- Barrie Wilkinson
- Biotica technology Ltd, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK.
| | | |
Collapse
|
35
|
Baltz RH. Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 2006; 33:507-13. [PMID: 16418869 DOI: 10.1007/s10295-005-0077-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
There are few new antibiotics in the pipeline today. The reasons may include starvation at the front of the pipeline due to inadequate sources of suitable compounds to screen coupled with poorly validated discovery methodologies. A successful antibiotic discovery approach in the past, based upon whole cell antibiotic screening of natural products from actinomycetes and fungi, eventually suffered from constipation in the middle of the pipeline due to rediscovery of known compounds, even though low throughput methodology was employed at the front end. The current lack of productivity may be attributed to the poor choice of strategies to address the discovery of new antibiotics. Recent applications of high throughput in vitro screening of individual antibacterial targets to identify lead compounds from combinatorial chemical libraries, traditional chemical libraries, and partially purified natural product extracts has not produced any significant clinical candidates. The solution to the current dilemma may be to return to natural product whole cell screening. For this approach to work in the current millennium, the process needs to be miniaturized to increase the throughput by orders of magnitude over traditional screening, and the rediscovery of known antibiotics needs to be minimized by methods that can be readily monitored and improved over time.
Collapse
Affiliation(s)
- Richard H Baltz
- Cubist Pharmaceuticals, Inc., 65 Hayden Avenue, Lexington, MA 02421, USA.
| |
Collapse
|
36
|
Van Lanen SG, Shen B. Progress in combinatorial biosynthesis for drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2006; 3:285-292. [PMID: 24980530 DOI: 10.1016/j.ddtec.2006.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Combinatorial biosynthesis, the process of genetic manipulations of natural product biosynthetic machinery for structural diversity, depends on several factors, and discussed here are two critical factors: access to genetic information and biochemical characterization of enzymes. Examples of the former include using predictions for the biosynthesis of unusual chemical entities such as aminohydroxybenzoic acid starter units, methoxymalonylate extender units, the enediyne core and bacterial aromatic polyketides. The latter aspect includes the continued elucidation of domain functionalities of modular polyketide synthases and nonribosomal peptide synthases and novel biochemical pathways such as the biosynthesis of a cyclopropyl unit and a β-hydroxyl acid. Finally, examples of successful combinatorial biosynthesis for daptomycin and indolocarbozole compounds are discussed.:
Collapse
Affiliation(s)
- Steven G Van Lanen
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA
| | - Ben Shen
- Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|