1
|
Maloshenok LG, Panina YS, Bruskin SA, Zherdeva VV, Gessler NN, Rozumiy AV, Antonov EV, Deryabina YI, Isakova EP. Assessment of Recombinant β-Propeller Phytase of the Bacillus Species Expressed Intracellularly in Yarrowia lipolityca. J Fungi (Basel) 2025; 11:186. [PMID: 40137224 PMCID: PMC11943157 DOI: 10.3390/jof11030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Phytases of the PhyD class according to their pH optimum (7.0-7.8) and high thermal stability can claim to be used in the production of feed supplements. However, today they have no practical application in feed production because there are no suitable producers sufficient for its biotechnological production compared to the PhyA and PhyC class ones. Moreover, in most cases, the technologies with the enzymes produced in secretory form are preferable for the production of phytases, though upon microencapsulation in yeast-producing cells, the phytase thermal stability increases significantly compared to the extracellular form, which improves its compatibility with spray drying technology. In this study, we assayed the intracellular heterologous expression of PhyD phytase from Bacillus species in the Yarrowia lipolytica yeast cells. While the technology has been successfully used to synthesize PhyC phytase from Obesumbacterium proteus, PhyD phytase tends to aggregate upon intracellular accumulation. Furthermore, we evaluated the prospects for the production of encapsulated phytase of the PhyD class of high enzymatic activity when it accumulates in the cell cytoplasm of the Y. lipolytica extremophile yeast, a highly effective platform for the production of recombinant proteins.
Collapse
Affiliation(s)
- Liliya G. Maloshenok
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.G.M.); (Y.S.P.); (S.A.B.)
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Yulia S. Panina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.G.M.); (Y.S.P.); (S.A.B.)
| | - Sergey A. Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (L.G.M.); (Y.S.P.); (S.A.B.)
| | - Victoria V. Zherdeva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Alena V. Rozumiy
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Egor V. Antonov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| | - Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (V.V.Z.); (N.N.G.); (A.V.R.); (E.V.A.); (Y.I.D.)
| |
Collapse
|
2
|
Sharma R, Mittal A, Gupta V, Aggarwal NK. Production, purification and characterization of phytase from Pichia kudriavevii FSMP-Y17and its application in layers feed. Braz J Microbiol 2024; 55:3097-3115. [PMID: 39162933 PMCID: PMC11711429 DOI: 10.1007/s42770-024-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Phytase, recognized for its ability to enhance the nutritional value of phytate-rich foods, has has gained significant prominence. The production of this enzyme has been significantly boosted while preserving economic efficiency by utilizing natural substrates and optimizing essential factors. This study focuses on optimizing phytase production through solid-state fermentation and evaluating its effectiveness in enhancing nutrient utilization in chicken diets. OBJECTIVE The objective is to optimize phytase production via solid-state fermentation, characterize purified phytase properties, and assess its impact on nutrient utilization in chicken diets. Through these objectives, we aim to deepen understanding of phytase's role in poultry nutrition and contribute to more efficient feed formulations for improved agricultural outcomes. METHODOLOGY We utilized solid-state fermentation with Pichia kudriavzevii FSMP-Y17 yeast on orange peel substrate, optimizing variables like temperature, pH, incubation time, and supplementing with glucose and ammonium sulfate. Following fermentation, we purified the phytase enzyme using standard techniques, characterizing its properties, including molecular weight, optimal temperature and pH, substrate affinity, and kinetic parameters. RESULTS The optimized conditions yielded a remarkable phytase yield of 7.0 U/gds. Following purification, the enzyme exhibited a molecular weight of 64 kDa and displayed optimal activity at 55 °C and pH 5.5, with kinetic parameters (Km = 3.39 × 10-3 M and a Vmax of 7.092 mM/min) indicating efficient substrate affinity. CONCLUSION The addition of purified phytase to chicken diets resulted in significant improvements in nutrient utilization and overall performance, including increased feed intake, improved feed conversion ratio, enhanced bird growth, better phosphorus retention, and improved egg production and quality. By addressing challenges associated with phytate-rich diets, such as reduced nutrient availability and environmental pollution, phytase utilization promotes animal welfare and sustainability in poultry production.
Collapse
Affiliation(s)
- Ritu Sharma
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Arpana Mittal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Varun Gupta
- Gobind Ballabh Pant University of Agriculture and Technology, Pant Nagar, Uttarakhand, India
| | - Neeraj K Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| |
Collapse
|
3
|
Lawal OT, Onuegbu C, Afe AE, Olopoda IA, Igbe FO, Ojo FM, Sanni DM. Biochemical characterization of purified phytase produced from Aspergillus awamori AFE1 associated with the gastrointestinal tract of longhorn beetle ( Cerambycidae latreille). Mycologia 2024; 116:477-486. [PMID: 38819952 DOI: 10.1080/00275514.2024.2350337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/24/2024] [Indexed: 06/02/2024]
Abstract
The need for industrially and biotechnologically significant enzymes, such as phytase, is expanding daily as a result of the increased use of these enzymes in a variety of operations, including the manufacture of food, animal feed, and poultry feed. This study sought to characterize purified phytase from A. awamori AFE1 isolated from longhorn beetle for its prospect in industrial applications. Ammonium sulfate precipitation, ion-exchange chromatography, and gel-filtration chromatography were used to purify the crude enzyme obtained from submerged fermentation using phytase-producing media, and its physicochemical characteristics were examined. The homogenous 46.8-kDa phytase showed an 8.1-fold purification and 40.7% recovery. At 70 C and pH 7, the optimum phytase activity was noted. At acidic pH 4-6 and alkaline pH 8-10, it likewise demonstrated relative activity of 88-95% and 67-88%, respectively. It showed 67-70% residual activity between 30 and 70 C after 40 min, and 68-94% residual activity between pH 2 and 12 after 2 h. The presence of Hg+, Mg2+, and Al3+ significantly decreased the enzymatic activity, whereas Ca2+ and Cu2+ enhanced it. Ascorbic acid increased the activity of the purified enzyme, whereas ethylenediaminetetraacetic acid (EDTA) and mercaptoethanol inhibited it. The calculated values for Km and Vmax were 55.4 mM and1.99 μmol/min/mL respectively. A. awamori phytase, which was isolated from a new source, showed unique and remarkable qualities that may find use in industrial operations such as feed pelleting and food processing.
Collapse
Affiliation(s)
- Olusola T Lawal
- Department of Medical Biochemistry, School of Basic Medical Sciences, Federal University of Technology, P.M.B. 704, Akure 340252 Nigeria
- Enzyme and Microbial Technology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure 340252, Nigeria
| | - Christian Onuegbu
- Enzyme and Microbial Technology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure 340252, Nigeria
| | - Ayoola E Afe
- Enzyme and Microbial Technology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure 340252, Nigeria
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetic Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academic of Agricultural Sciences, Beijing 100193, China
| | - Isaac A Olopoda
- Enzyme and Microbial Technology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure 340252, Nigeria
| | - Festus O Igbe
- Enzyme and Microbial Technology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure 340252, Nigeria
| | - Funmillayo M Ojo
- Enzyme and Microbial Technology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure 340252, Nigeria
| | - David M Sanni
- Enzyme and Microbial Technology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure 340252, Nigeria
| |
Collapse
|
4
|
Sanni DM, Jimoh MB, Lawal OT, Bamidele SO. Purification and biochemical characterization of phytase from Bacillus cereus isolated from gastrointestinal tract of African giant snail (Achatina fulica). Int Microbiol 2023; 26:961-972. [PMID: 37020067 DOI: 10.1007/s10123-023-00350-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Phytases are specialized enzymes meant for phytic acid degradation. They possess ability to prevent phytic acid indigestion, including its attendant environmental pollution. This study was aimed at investigating biochemical properties of purified phytase of B. cereus isolated from Achatina fulica. Phytase produced from Bacillus cereus that exhibited optimal phytate degrading-ability of all the bacteria isolated was purified in a three-step purification. The biochemical properties of the purified enzyme were also determined. The phytase homogeny of approximately 45 kDa exhibited 12.8-purification fold and 1.6% yield with optima phytate degrading efficiency and maximum stability at pH 7 and 50 °C. Remaining activity of 52 and 47% obtained between 60 and 70 °C after 2 h further established thermostability of the purified phytase. Mg2+ and Zn2+ enhanced phytate hydrolysis by the enzyme, while Na+ showed mild inhibition but Hg2+ severely inhibited the enzymatic activity. Km and Vmax were estimated to be 0.11 mM and 55.6 μmol/min/mL, displaying enzyme-high substrate affinity and catalytic efficiency, respectively. Phytase purified from Bacillus cereus, isolated from African giant snails, has shown excellent characteristics suitable for phytic acid hydrolysis and could be employed in industrial and biotechnological applications.
Collapse
Affiliation(s)
| | | | - Olusola Tosin Lawal
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
5
|
Joudaki H, Aria N, Moravej R, Rezaei Yazdi M, Emami-Karvani Z, Hamblin MR. Microbial Phytases: Properties and Applications in the Food Industry. Curr Microbiol 2023; 80:374. [PMID: 37847302 PMCID: PMC10581959 DOI: 10.1007/s00284-023-03471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/02/2023] [Indexed: 10/18/2023]
Abstract
Microbial phytases are enzymes that break down phytic acid, an anti-nutritional compound found in plant-based foods. These enzymes which are derived from bacteria and fungi have diverse properties and can function under different pH and temperature conditions. Their ability to convert phytic acid into inositol and inorganic phosphate makes them valuable in food processing. The application of microbial phytases in the food industry has several advantages. Firstly, adding them to animal feedstuff improves phosphorus availability, leading to improved nutrient utilization and growth in animals. This also reduces environmental pollution by phosphorus from animal waste. Secondly, microbial phytases enhance mineral bioavailability and nutrient assimilation in plant-based food products, counteracting the negative effects of phytic acid on human health. They can also improve the taste and functional properties of food and release bioactive compounds that have beneficial health effects. To effectively use microbial phytases in the food industry, factors like enzyme production, purification, and immobilization techniques are important. Genetic engineering and protein engineering have enabled the development of phytases with improved properties such as enhanced stability, substrate specificity, and resistance to degradation. This review provides an overview of the properties and function of phytases, the microbial strains that produce them, and their industrial applications, focusing on new approaches.
Collapse
Affiliation(s)
- Hanane Joudaki
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Negar Aria
- Department of Microbiology, School of Biology, Collect of Science, University of Tehran, Tehran, Iran
| | - Roya Moravej
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Nuge T, Hayyan A, A. M. Elgharbawy A, Mohd. Salleh H, Jun Yong Y, Kamarudin AF, Hizaddin HF, Zuhanis Has-Yun Hashim Y, Liu X, Saleh J, Ibrahim Daoud J, S.M. Aljohani A, Alhumaydhi FA, Zulkifli M, Roslan Mohd Nor M, Al Abdulmonem W. Enhanced large-scale production of recombinant phytase in E. coli DH5 α: Medium components optimization and thermodynamic studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Characterisation of a soil MINPP phytase with remarkable long-term stability and activity from Acinetobacter sp. PLoS One 2022; 17:e0272015. [DOI: 10.1371/journal.pone.0272015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Phylogenetic analysis, homology modelling and biochemical methods have been employed to characterize a phytase from a Gram-negative soil bacterium. Acinetobacter sp. AC1-2 phytase belongs to clade 2 of the histidine (acid) phytases, to the Multiple Inositol Polyphosphate Phosphatase (MINPP) subclass. The enzyme was extraordinarily stable in solution both at room temperature and 4°C, retaining near 100% activity over 755 days. It showed a broad pH activity profile from 2–8.5 with maxima at 3, 4.5–5 and 6. The enzyme showed Michaelis-Menten kinetics and substrate inhibition (Vmax, Km, and Ki, 228 U/mg, 0.65 mM and 2.23 mM, respectively). Homology modelling using the crystal structure of a homologous MINPP from a human gut commensal bacterium indicated the presence of a potentially stabilising polypeptide loop (a U-loop) straddling the active site. By employ of the enantiospecificity of Arabidopsis inositol tris/tetrakisphosphate kinase 1 for inositol pentakisphosphates, we show AC1-2 MINPP to possess D6-phytase activity, which allowed modelling of active site specificity pockets for InsP6 substrate. While phytase gene transcription was unaltered in rich media, it was repressed in minimal media with phytic acid and orthophosphate as phosphate sources. The results of this study reveal AC1-2 MINPP to possess desirable attributes relevant to biotechnological use.
Collapse
|
8
|
Park Y, Solhtalab M, Thongsomboon W, Aristilde L. Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:3-24. [PMID: 35001516 PMCID: PMC9306846 DOI: 10.1111/1758-2229.13040] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Critical to meeting cellular phosphorus (P) demand, soil bacteria deploy a number of strategies to overcome limitation in inorganic P (Pi ) in soils. As a significant contributor to P recycling, soil bacteria secrete extracellular enzymes to degrade organic P (Po ) in soils into the readily bioavailable Pi . In addition, several Po compounds can be transported directly via specific transporters and subsequently enter intracellular metabolic pathways. In this review, we highlight the strategies that soil bacteria employ to recycle Po from the soil environment. We discuss the diversity of extracellular phosphatases in soils, the selectivity of these enzymes towards various Po biomolecules and the influence of the soil environmental conditions on the enzyme's activities. Moreover, we outline the intracellular metabolic pathways for Po biosynthesis and transporter-assisted Po and Pi uptake at different Pi availabilities. We further highlight the regulatory mechanisms that govern the production of phosphatases, the expression of Po transporters and the key metabolic changes in P metabolism in response to environmental Pi availability. Due to the depletion of natural resources for Pi , we propose future studies needed to leverage bacteria-mediated P recycling from the large pools of Po in soils or organic wastes to benefit agricultural productivity.
Collapse
Affiliation(s)
- Yeonsoo Park
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| | - Mina Solhtalab
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| | - Wiriya Thongsomboon
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Chemistry, Faculty of ScienceMahasarakham UniversityMahasarakham44150Thailand
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| |
Collapse
|
9
|
Trivedi S, Husain I, Sharma A. Purification and characterization of phytase from
Bacillus subtilis
P6: Evaluation for probiotic potential for possible application in animal feed. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shraddha Trivedi
- Department of P. G. Studies and Research in Biological Science Rani Durgavati University Jabalpur Madhya Pradesh India
| | - Islam Husain
- Department of P. G. Studies and Research in Biological Science Rani Durgavati University Jabalpur Madhya Pradesh India
- National Center for Natural Products Research School of Pharmacy The University of Mississippi University Oxford Mississippi USA
| | - Anjana Sharma
- Department of P. G. Studies and Research in Biological Science Rani Durgavati University Jabalpur Madhya Pradesh India
| |
Collapse
|
10
|
Wang L, Shah AM, Liu Y, Jin L, Wang Z, Xue B, Peng Q. Relationship between true digestibility of dietary phosphorus and gastrointestinal bacteria of goats. PLoS One 2020; 15:e0225018. [PMID: 32442173 PMCID: PMC7244181 DOI: 10.1371/journal.pone.0225018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/04/2020] [Indexed: 11/29/2022] Open
Abstract
The present research was conducted to evaluate the connection between the true digestibility of Phosphorus (TDP) in diet and bacterial community structure in the gastrointestinal tract (GIT) of goats. Twenty-eight Nubian goats were chosen and metabolic experiment was conducted to analyze TDP of research animals. Eight goats were grouped into the high digestibility of phosphorus (HP) phenotype, and another 8 were grouped into the low digestibility of phosphorus (LP) phenotype. And from the rumen, abomasum, jejunim, cecum and colon content of the goats, bacterial 16S rRNA gene amplicons were sequenced. In the rumen 239 genera belonging to 23 phyla, in abomasum 319 genera belonging to 30 phyla, in jejunum 248 genera belonging to 36 phyla, in colon 248 genera belonging to 25 phyla and in cecum 246 genera belonging to 23 phyla were noticed. In addition, there was a significant correlation between the TDP and the abundance of Ruminococcaceae_UCG-010, Ruminococcus_2, Ruminococcaceae_UCG-014, Selenomonas_1 and Prevotella in the rumen, Lachnospiraceae_ND3007_group, Saccharofermentans, Ruminococcus_1, Ruminococcaceae_UCG-014, Lachnospiraceae_XPB1014_group and Desulfovibrio in the abomasum, Prevotella, Clostridium_sensu_stricto_1, Fibrobacter, Desulfovibrio and Ruminococcus_2 in the jejunum, Ruminococcaceae_UCG-014 in the colon, and Desulfovibrio in the cecum. Present research trial recommended that the community of gastrointestinal microbiota is a factor affecting TDP in goats.
Collapse
Affiliation(s)
- Lizhi Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
- * E-mail:
| | - Ali Mujtaba Shah
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
- Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Science, Sakrand, Sindh, Pakistan
| | - Yuehui Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Lei Jin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Bai Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| | - Quanhui Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Priyodip P, Balaji S. Probiotic Validation of a Non-native, Thermostable, Phytase-Producing Bacterium: Streptococcus thermophilus. Curr Microbiol 2020; 77:1540-1549. [PMID: 32248282 DOI: 10.1007/s00284-020-01957-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
Phytate-linked nutritional deficiency disorders have plagued poultry for centuries. The application of exogenous phytases in poultry feed has served as a solution to this problem. However, they are linked to certain limitations which include thermal instability during prolonged feed processing. Therefore, in this study, Streptococcus thermophilus 2412 based phytase stability was assessed at higher temperatures up to 90 °C. This was followed by probiotic validation of the same bacterium in an in vitro intestinal model. Bacterial phytase showed thermostability up to 70 °C with a recorded activity of 9.90 U. The bacterium was viable in the intestinal lumen as indicated by the cell count of 6.10 log(CFU/mL) after 16 h. It also showed acid tolerance with a stable cell count of 5.01 log(CFU/mL) after 16 h of incubation at pH 2. The bacterium displayed bile tolerance yielding a cell count of 6.36 log(CFU/mL) in the presence of 0.3% bile. Bacterial susceptibility was observed toward all tested antibiotics with a maximum zone of 20 mm against clindamycin. The maximum antagonistic activity was observed against Staphylococcus aureus, Serratia marcescens, and Escherichia coli with inhibition zone diameters up to 10 mm. The above characteristics prove that S. thermophilus 2412 can be used as an effective phytase-producing poultry probiotic.
Collapse
Affiliation(s)
- Paul Priyodip
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Seetharaman Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
12
|
de Oliveira Ornela PH, Souza Guimarães LH. Purification and characterization of an alkalistable phytase produced by Rhizopus microsporus var. microsporus in submerged fermentation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Yang CL, Chen XK, Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Lin JQ, Chen LX. Essential Role of σ Factor RpoF in Flagellar Biosynthesis and Flagella-Mediated Motility of Acidithiobacillus caldus. Front Microbiol 2019; 10:1130. [PMID: 31178842 PMCID: PMC6543871 DOI: 10.3389/fmicb.2019.01130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/03/2019] [Indexed: 12/04/2022] Open
Abstract
Acidithiobacillaceae, an important family of acidophilic and chemoautotrophic sulfur or iron oxidizers, participate in geobiochemical circulation of the elements and drive the release of heavy metals in mining associated habitats. Because of their environmental adaptability and energy metabolic systems, Acidithiobacillus spp. have become the dominant bacteria used in bioleaching for heavy metal recovery. Flagella-driven motility is associated with bacterial chemotaxis and bacterial responses to environmental stimuli. However, little is known about how the flagellum of Acidithiobacillus spp. is regulated and how the flagellum affects the growth of these chemoautotrophic bacteria. In this study, we analyzed the flagellar gene clusters in Acidithiobacillus strains and uncovered the close relationship between flagella and the sulfur-oxidizing systems (Sox system). The σ28 gene (rpoF) knockout and overexpression strains of Acidithiobacillus caldus were constructed. Scanning electron microscopy shows that A. caldus ΔrpoF cells lacked flagella, indicating the essential role of RpoF in regulating flagella synthesis in these chemoautotrophic bacteria. Motility analysis suggests that the deletion of rpoF resulted in the reduction of swarming capability, while this capability was enhanced in the rpoF overexpression strain. Both static cultivation and low concentration of energy substrates (elemental sulfur or tetrathionate) led to weak growth of A. caldus ΔrpoF cells. The deletion of rpoF promoted bacterial attachment to the surface of elemental sulfur in static cultivation. The absence of RpoF caused an obvious change in transcription profile, including genes in flagellar cluster and those involved in biofilm formation. These results provide an understanding on the regulation of flagellar hierarchy and the flagellar function in these sulfur or iron oxidizers.
Collapse
Affiliation(s)
- Chun-Long Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xian-Ke Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rui Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Qiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiang-Mei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Cheng-Jia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
14
|
Purification and Biochemical Characterization of Phytase Enzyme from Lactobacillus coryniformis (MH121153). Mol Biotechnol 2018; 60:783-790. [DOI: 10.1007/s12033-018-0116-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Ghorbani Nasrabadi R, Greiner R, Yamchi A, Nourzadeh Roshan E. A novel purple acid phytase from an earthworm cast bacterium. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3667-3674. [PMID: 29266239 DOI: 10.1002/jsfa.8845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Phytases are a diverse group of enzymes initiating the dephosphorylation of phytate. Phytate is considered as an anti-nutritional compound because of its capability to chelate nutrients such as Fe2+ , Zn2+ , Mg2+ , and Ca2+ . In this study, several bacterial isolates obtained from earthworm casts were evaluated for their phytate degrading capability. Enzymatic properties and the sequence of the corresponding phytase-encoding gene of the selected isolate were determined. RESULTS The phytase exhibited its highest activity at pH 4.0 and was stable from pH 3 up to pH 9. The temperature optimum was determined to be 65 °C. The strongest inhibitors of enzymatic activity were identified as vanadate, Cu2+ , and Zn2+ . High-performance ion chromatography analysis of enzymatic phytate dephosphorylation revealed that the first dephosphorylation product was d/l-myo-inositol(1,2,3,4,5)pentakisphosphate. CONCLUSION Owing to its enzymatic properties, such as tolerance to tartrate and the presence of the consensus motifs PDTVY, GNHE, DLG, VLFH, and GHDH, this phytase could be classified as a purple acid phytase. To the best of our knowledge, this is the first report describing a bacterial purple acid phytase. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Reza Ghorbani Nasrabadi
- Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Ahad Yamchi
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Nourzadeh Roshan
- Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
16
|
Jain J, Kumar A, Singh D, Singh B. Purification and kinetics of a protease-resistant, neutral, and thermostable phytase from Bacillus subtilis subsp. subtilis JJBS250 ameliorating food nutrition. Prep Biochem Biotechnol 2018; 48:718-724. [DOI: 10.1080/10826068.2018.1487848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jinender Jain
- Department of Microbiology, Laboratory of Bioprocess Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anil Kumar
- Department of Botany, Pt. Neki Ram Sharma Government College, Rohtak, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Balana, Haryana, India
| | - Bijender Singh
- Department of Microbiology, Laboratory of Bioprocess Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
17
|
Gessler NN, Serdyuk EG, Isakova EP, Deryabina YI. Phytases and the Prospects for Their Application (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818040087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Jorquera MA, Gabler S, Inostroza NG, Acuña JJ, Campos MA, Menezes-Blackburn D, Greiner R. Screening and Characterization of Phytases from Bacteria Isolated from Chilean Hydrothermal Environments. MICROBIAL ECOLOGY 2018; 75:387-399. [PMID: 28861598 DOI: 10.1007/s00248-017-1057-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Phytases are enzymes involved in organic phosphorus cycling in nature and widely used as feed additives in animal diets. Thermal tolerance is a desired property of phytases. The objectives of this study were to screen and characterize bacterial phytases from Chilean hydrothermal environments. In this study, 60% (30 of 63) of screened thermophilic (60 °C) isolates showed phytase activity in crude protein extracts. The characterization of phytase from two selected isolates (9B and 15C) revealed that both isolates produce phytases with a pH optimum at 5.0. The temperature optimum for phytate dephosphorylation was determined to be 60 and 50 °C for the phytases from the isolates 9B and 15C, respectively. Interestingly, the phytase from the isolate 15C showed a residual activity of 46% after incubation at 90 °C for 20 min. The stepwise dephosphorylation of phytate by protein extracts of the isolates 9B and 15C was verified by HLPC analysis. Finally, the isolates 9B and 15C were identified by partial sequencing of the 16S rRNA gene as members of the genera Bacillus and Geobacillus, respectively.
Collapse
Affiliation(s)
- Milko A Jorquera
- Applied Microbial Ecology Laboratory, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| | - Stefanie Gabler
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Nitza G Inostroza
- Applied Microbial Ecology Laboratory, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Jacquelinne J Acuña
- Applied Microbial Ecology Laboratory, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Marco A Campos
- Applied Microbial Ecology Laboratory, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Daniel Menezes-Blackburn
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| |
Collapse
|
19
|
Muslim SN, Mohammed Ali AN, AL-Kadmy IM, Khazaal SS, Ibrahim SA, Al-Saryi NA, Al-saadi LG, Muslim SN, Salman BK, Aziz SN. Screening, nutritional optimization and purification for phytase produced by Enterobacter aerogenes and its role in enhancement of hydrocarbons degradation and biofilm inhibition. Microb Pathog 2018; 115:159-167. [DOI: 10.1016/j.micpath.2017.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 12/31/2022]
|
20
|
Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci Rep 2017; 7:1777. [PMID: 28496135 PMCID: PMC5431837 DOI: 10.1038/s41598-017-01940-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) may trigger tolerance against biotic/abiotic stresses and growth enhancement in plants. In this study, an endophytic bacterial strain from rapeseed was isolated to assess its role in enhancing plant growth and tolerance to abiotic stresses, as well as banded leaf and sheath blight disease in maize. Based on 16S rDNA and BIOLOG test analysis, the 330-2 strain was identified as Bacillus subtilis. The strain produced indole-3-acetic acid, siderophores, lytic enzymes and solubilized different sources of organic/inorganic phosphates and zinc. Furthermore, the strain strongly suppressed the in vitro growth of Rhizoctonia solani AG1-IA, Botrytis cinerea, Fusarium oxysporum, Alternaria alternata, Cochliobolus heterostrophus, and Nigrospora oryzae. The strain also significantly increased the seedling growth (ranging 14–37%) of rice and maize. Removing PCR analysis indicated that 114 genes were differentially expressed, among which 10%, 32% and 10% were involved in antibiotic production (e.g., srfAA, bae, fen, mln, and dfnI), metabolism (e.g., gltA, pabA, and ggt) and transportation of nutrients (e.g., fhu, glpT, and gltT), respectively. In summary, these results clearly indicate the effectiveness and mechanisms of B. subtilis strain 330-2 in enhancing plant growth, as well as tolerance to biotic/abiotic stresses, which suggests that the strain has great potential for commercialization as a vital biological control agent.
Collapse
|
21
|
Pal Roy M, Datta S, Ghosh S. A novel extracellular low‐temperature active phytase fromBacillus aryabhattaiRS1 with potential application in plant growth. Biotechnol Prog 2017; 33:633-641. [DOI: 10.1002/btpr.2452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/31/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Moushree Pal Roy
- Dept. of BiotechnologyUniversity of North BengalRaja Rammohunpur Siliguri India
| | - Subhabrata Datta
- Dept. of BiotechnologyUniversity of North BengalRaja Rammohunpur Siliguri India
| | - Shilpi Ghosh
- Dept. of BiotechnologyUniversity of North BengalRaja Rammohunpur Siliguri India
| |
Collapse
|
22
|
Kumar V, Yadav AN, Verma P, Sangwan P, Saxena A, Kumar K, Singh B. β-Propeller phytases: Diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 2017; 98:595-609. [PMID: 28174082 DOI: 10.1016/j.ijbiomac.2017.01.134] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/02/2023]
Abstract
Phytases are phosphatases which stepwise remove phosphates from phytic acid or its salts. β-Propeller phytase (BPPhy) belongs to a special class of microbial phytases that is regarded as most diverse, isolated and characterized from different microbes, mainly from Bacillus spp. BPPhy class is unique for its Ca2+-dependent catalytic activity, strict substrate specificity, active at neutral to alkaline pH and high thermostability. Numerous sequence and structure based studies have revealed unique attributes and catalytic properties of this class, as compared to other classes of phytases. Recent studies including cloning and expression and genetic engineering approaches have led to improvements in BPPhy which provide an opportunity for extended utilization of this class of phytases in improving animal nutrition, human health, plant growth promotion, and environmental protection, etc. This review describes the sources and diversity of BPPhy genes, biochemical properties, Ca2+ dependence, current developments in structural elucidation, heterogeneous expression and catalytic improvements, and multifarious applications of BPPhy.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India.
| | - Ajar Nath Yadav
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Priyanka Verma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Punesh Sangwan
- Department of Biochemistry, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Abhishake Saxena
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Krishan Kumar
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Bijender Singh
- Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
23
|
Rocky-Salimi K, Hashemi M, Safari M, Mousivand M. Valorisation of untreated cane molasses for enhanced phytase production by Bacillus subtilis K46b and its potential role in dephytinisation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:222-229. [PMID: 26991843 DOI: 10.1002/jsfa.7716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/05/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The high cost of phytase production is the most limiting factor in its application in animal feeds. The present study aimed to develop a low-cost medium for production of a novel phytase in submerged fermentation using inexpensive agro-industrial by-products. The applicability of phytase in dephytinisation of commonly used food/feed ingredients, i.e. soybean meal and wheat bran, was also investigated. RESULTS Using a one-factor-at-a-time approach, soybean meal and cane molasses were identified as significant agro-industrial by-products and these factors were subsequently optimised using response surface methodology (RSM). A central composite design was employed to further enhance phytase yield. Under optimum conditions of soybean meal 22.3 g L-1 , cane molasses 100 g L-1 and 39 h fermentation, phytase production increased to 56.562 U mL-1 , indicating more than 28-fold enhancement. The enzyme efficiently dephytinised wheat bran and soybean meal after 24 h incubation at 56.5 °C and increased inorganic phosphate content by 240% and 155%, respectively. CONCLUSION Soybean meal and cane molasses were successfully used for enhancement of phytase production as economical carbon, nitrogen and phytic acid sources using RSM. The phytase showed a good capability to dephytinise wheat bran and soybean meal, demonstrating that the enzyme can be considered as a potential candidate for industrial food and feed applications. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Karim Rocky-Salimi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, 31587-77871, Karaj, Iran
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P.O. Box 3135933151, 31535-1897, Karaj, Iran
| | - Maryam Hashemi
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P.O. Box 3135933151, 31535-1897, Karaj, Iran
| | - Mohammad Safari
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, 31587-77871, Karaj, Iran
- Center of Excellence for Application of Modern Technology for Producing Functional Foods and Drinks, University of Tehran, P.O. Box 4111, 31587-77871, Karaj, Iran
| | - Maryam Mousivand
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P.O. Box 3135933151, 31535-1897, Karaj, Iran
| |
Collapse
|
24
|
Dokuzparmak E, Sirin Y, Cakmak U, Saglam Ertunga N. Purification and characterization of a novel thermostable phytase from the thermophilic Geobacillus sp. TF16. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1203930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. A Novel Phytase Derived from an Acidic Peat-Soil Microbiome Showing High Stability under Acidic Plus Pepsin Conditions. J Mol Microbiol Biotechnol 2016; 26:291-301. [DOI: 10.1159/000446567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
Abstract
Four novel phytases of the histidine acid phosphatase family were identified in two publicly available metagenomic datasets of an acidic peat-soil microbiome in northeastern Bavaria, Germany. These enzymes have low similarity to all the reported phytases. They were overexpressed in <i>Escherichia coli</i> and purified. Catalytic efficacy in simulated gastric fluid was measured and compared among the four candidates. The phytase named rPhyPt4 was selected for its high activity. It is the first phytase identified from unculturable Acidobacteria. The phytase showed a longer half-life than all the gastric-stable phytases that have been reported to date, suggesting a strong resistance to low pH and pepsin. A wide pH profile was observed between pH 1.5 and 5.0. At the optimum pH (2.5) the activity was 2,790 μmol/min/mg at the physiological temperature of 37°C and 3,989 μmol/min/mg at the optimum temperature of 60°C. Due to the competent activity level as well as the high gastric stability, the phytase could be a potential candidate for practical use in livestock and poultry feeding
Collapse
|
26
|
Abat C, Kerbaj J, Dubourg G, Garcia V, Rolain JM. Human Infection with Sporolactobacillus laevolacticus, Marseille, France. Emerg Infect Dis 2016; 21:2106-8. [PMID: 26488681 PMCID: PMC4622267 DOI: 10.3201/eid2111.151197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
Kalsi HK, Singh R, Dhaliwal HS, Kumar V. Phytases from Enterobacter and Serratia species with desirable characteristics for food and feed applications. 3 Biotech 2016; 6:64. [PMID: 28330134 PMCID: PMC4752950 DOI: 10.1007/s13205-016-0378-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/03/2015] [Indexed: 11/18/2022] Open
Abstract
Phytases are enzymes of great industrial importance with wide range of applications in animal and human nutrition. These catalyze the hydrolysis of phosphomonoester bonds in phytate, thereby releasing lower forms of myo-inositol phosphates and inorganic phosphate. Addition of phytase to plant-based foods can improve its nutritional value and increase mineral bioavailability by decreasing nutritional effect of phytate. In the present investigation, 43 phytase positive bacteria on PSM plates were isolated from different sources and characterized for phytase activity. On the basis of phytase activity and zone of hydrolysis, two bacterial isolates (PSB-15 and PSB-45) were selected for further characterization studies, i.e., pH and temperature optima and stability, kinetic properties and effect of modulators. The phytases from both isolates were optimally active at the pH value from 3 to 8 and in the temperature range of 50-70 °C. Further, the stability of isolates was good in the pH range of 3.0-8.0. Much variation was observed in temperature and storage stability, responses of phytases to metal ions and modulators. The K m and V max values for PSB-15 phytase were 0.48 mM and 0.157 μM/min, while for PSB-45 these were 1.25 mM and 0.140 μM/min, respectively. Based on 16S rDNA gene sequence, the isolates were identified as Serratia sp. PSB-15 (GenBank Accession No. KR133277) and Enterobacter cloacae strain PSB-45 (GenBank Accession No. KR133282). The novel phytases from these isolates have multiple characteristics of high thermostability and good phytase activity at desirable range of pH and temperature for their efficient use in food and feed to facilitate hydrolysis of phytate-metal ion complex and in turn, increased bioavailability of important metal ions to monogastric animals.
Collapse
Affiliation(s)
- Harpreet Kaur Kalsi
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India
| | - Rajveer Singh
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India
| | - Harcharan Singh Dhaliwal
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India
| | - Vinod Kumar
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India.
| |
Collapse
|
28
|
Boukhris I, Farhat-Khemakhem A, Bouchaala K, Virolle MJ, Chouayekh H. Cloning and characterization of the first actinomycete β-propeller phytase fromStreptomycessp. US42. J Basic Microbiol 2016; 56:1080-1089. [DOI: 10.1002/jobm.201500760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ines Boukhris
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; University Paris-Sud; Orsay France
| | - Ameny Farhat-Khemakhem
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| | - Kameleddine Bouchaala
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| | - Marie-Joëlle Virolle
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; University Paris-Sud; Orsay France
| | - Hichem Chouayekh
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; University of Sfax; Sfax Tunisia
| |
Collapse
|
29
|
Sato VS, Jorge JA, Guimarães LHS. Characterization of a Thermotolerant Phytase Produced by Rhizopus microsporus var. microsporus Biofilm on an Inert Support Using Sugarcane Bagasse as Carbon Source. Appl Biochem Biotechnol 2016; 179:610-24. [DOI: 10.1007/s12010-016-2018-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/15/2016] [Indexed: 11/29/2022]
|
30
|
Rocky-Salimi K, Hashemi M, Safari M, Mousivand M. A novel phytase characterized by thermostability and high pH tolerance from rice phyllosphere isolated Bacillus subtilis B.S.46. J Adv Res 2016; 7:381-90. [PMID: 27222743 PMCID: PMC4856833 DOI: 10.1016/j.jare.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 11/16/2022] Open
Abstract
In this study, an extracellular alkali-thermostable phytase producing bacteria, Bacillus subtilis B.S.46, were isolated and molecularly identified using 16S rRNA sequencing. Response surface methodology was applied to study the interaction effects of assay conditions to obtain optimum value for maximizing phytase activity. The optimization resulted in 137% (4.627 U/mL) increase in phytase activity under optimum condition (56.5 °C, pH 7.30 and 2.05 mM sodium phytate). The enzyme also showed 60-73% of maximum activity at wide ranges of temperature (47-68 °C), pH (6.3-8.0) and phytate concentration (1.40-2.50 mM). The partially purified phytase demonstrated high stability over a wide range of pH (6.0-10.0) after 24 h, retaining 85% of its initial activity at pH 6 and even interestingly, the phytase activity enhanced at pH 8.0-10.0. It also exhibited thermostability, retaining about 60% of its original activity after 2 h at 60 °C. Cations such as Ca(2+) and Li(+) enhanced the phytase activity by 10-46% at 1 mM concentration. The phytase activity was completely inhibited by Cu(2+), Mg(2+), Fe(2+), Zn(2+), Hg(2+) and Mn(2+) and the inhibition was in a dose dependent manner. B. subtilis B.S.46 phytase had interesting characteristics to be considered as animal feed additive, dephytinization of food ingredients, and bioremediation of phosphorous pollution in the environment.
Collapse
Affiliation(s)
- Karim Rocky-Salimi
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, 31587-77871 Karaj, Iran
| | - Maryam Hashemi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P.O. Box 3135933151, Karaj, Iran
| | - Mohammad Safari
- Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, 31587-77871 Karaj, Iran; Center of Excellence for Application of Modern Technology for Producing Functional Foods and Drinks, University of Tehran, P.O. Box 4111, 31587-77871 Karaj, Iran
| | - Maryam Mousivand
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P.O. Box 3135933151, Karaj, Iran
| |
Collapse
|
31
|
|
32
|
de Souza R, Ambrosini A, Passaglia LM. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 2015; 38:401-19. [PMID: 26537605 PMCID: PMC4763327 DOI: 10.1590/s1415-475738420150053] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.
Collapse
Affiliation(s)
- Rocheli de Souza
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciane M.P. Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
33
|
Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Appl Microbiol Biotechnol 2015; 100:2225-41. [PMID: 26536874 DOI: 10.1007/s00253-015-7097-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022]
Abstract
Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.
Collapse
Affiliation(s)
- Hao Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China
| | - Xiang Wu
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China
| | - Liyuan Xie
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China
| | - Zhongqian Huang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China
| | - Weihong Peng
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China
| | - Bingcheng Gan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China. .,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China.
| |
Collapse
|
34
|
Bajaj BK, Wani MA. Purification and characterization of a novel phytase fromNocardiasp. MB 36. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1083014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573. Int J Biol Macromol 2015; 80:581-7. [DOI: 10.1016/j.ijbiomac.2015.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 11/19/2022]
|
36
|
Purification and Characterization of Extracellular Phytase from Bacillus licheniformis Isolated from Fish Gut. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40011-015-0571-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Borgi MA, Boudebbouze S, Mkaouar H, Maguin E, Rhimi M. Bacillus phytases: Current status and future prospects. Bioengineered 2015; 6:233-6. [PMID: 25946551 PMCID: PMC4601277 DOI: 10.1080/21655979.2015.1048050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022] Open
Abstract
Phytases catalyze the hydrolysis of phytic acid in a stepwise manner to lower inositol phosphates, myo-inositol (having important role in metabolism and signal transduction pathways), and inorganic phosphate. These enzymes have been widely used in animal feed in order to improve phosphorus nutrition and to decrease pollution in animal waste. Compared to previously described phytases, the phytase (PhyL) from Bacillus licheniformis ATCC 14580 has attractive biochemical properties which can increase the profitability of several biotechnological procedures (animal nutrition, humain health…etc). Due to its amino acid sequence with critical substitutions, the PhyL could be a model to enhance other phytases features, in terms of thermal stability and high activity. Otherwise, an engineered PhyL, with low pH optimum, will represent a challenge within the class of β- propeller phytases.
Collapse
Affiliation(s)
- Mohamed Ali Borgi
- Faculty of Sciences of Gafsa - Unit of Macromolecular Biochemistry and Genetic; Department of Life Sciences; Zarroug, Gafsa, Tunisia
| | | | | | | | - Moez Rhimi
- INRA, UMR 1319 Micalis;Jouy-en-Josas, France
| |
Collapse
|
38
|
Sharma A, Trivedi S. Evaluation ofin vitroprobiotic potential of phytase-producing bacterial strain as a new probiotic candidate. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjana Sharma
- Bacteriology Laboratory; Department of P. G. Studies and Research in Biological Science; Rani Durgavati University; Pachpedi Jabalpur Madhya Pradesh 482001 India
| | - Shraddha Trivedi
- Bacteriology Laboratory; Department of P. G. Studies and Research in Biological Science; Rani Durgavati University; Pachpedi Jabalpur Madhya Pradesh 482001 India
| |
Collapse
|
39
|
Overexpression and Biochemical Characterization of a Thermostable Phytase from Bacillus subtilis US417 in Pichia pastoris. Mol Biotechnol 2014; 56:839-48. [DOI: 10.1007/s12033-014-9764-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol 2014; 2014:426483. [PMID: 24669222 PMCID: PMC3941791 DOI: 10.1155/2014/426483] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022] Open
Abstract
Bacterial inoculants are known to possess plant growth promoting abilities and have potential as liquid biofertilizer application. Four phytase producing bacterial isolates (phytase activity in the range of 0.076–0.174 U/mL), identified as Advenella species (PB-05, PB-06, and PB-10) and Cellulosimicrobium sp. PB-09, were analyzed for their plant growth promoting activities like siderophore production, IAA production, HCN production, ammonia production, phosphate solubilization, and antifungal activity. All isolates were positive for the above characteristics except for HCN production. The solubilization index for phosphorus on Pikovskaya agar plates was in the range of 2–4. Significant amount of IAA (7.19 to 35.03 μg/mL) production and solubilized phosphate (189.53 to 746.84 μg/mL) was noticed by these isolates at different time intervals. Besides that, a greenhouse study was also conducted with Indian mustard to evaluate the potential of these isolates to promote plant growth. Effect of seed bacterization on various plant growth parameters and P uptake by plant were used as indicators. The plant growth promoting ability of bacterial isolates in pot experiments was correlated to IAA production, phosphate solubilization, and other in vitro tests. On the basis of present findings, isolate PB-06 was most promising in plant growth promotion with multiple growth promoting characteristics.
Collapse
|
41
|
The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization. Appl Microbiol Biotechnol 2013; 98:5937-47. [DOI: 10.1007/s00253-013-5421-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/29/2013] [Accepted: 11/16/2013] [Indexed: 10/25/2022]
|
42
|
Effect of metals ions on thermostable alkaline phytase from Bacillus subtilis YCJS isolated from soybean rhizosphere soil. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0751-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
43
|
Fasimoye FO, Olajuyigbe FM, Sanni MD. PURIFICATION AND CHARACTERIZATION OF A THERMOSTABLE EXTRACELLULAR PHYTASE FROMBacillus licheniformisPFBL-03. Prep Biochem Biotechnol 2013; 44:193-205. [DOI: 10.1080/10826068.2013.812565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Awad GEA, Helal MMI, Danial EN, Esawy MA. Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box-Behnken design. Saudi J Biol Sci 2013; 21:81-8. [PMID: 24596503 DOI: 10.1016/j.sjbs.2013.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022] Open
Abstract
Phytase production by Penicillium purpurogenum GE1 isolated from soil around bean root nodules was investigated by solid state fermentation (SSF) using mixed substrates consisted of corn cob and corn bran. The SSF conditions were optimized by using one-variable-at-a-time strategy. The optimum conditions for phytase production were at 27 °C, pH 8 and 66% moisture content. The study of different carbon and nitrogen sources revealed that glucose and peptone registered the highest enzyme productivity (92 ± 5.6 U/g ds, 125 ± 4.9 U/g ds). Among different surfactants, maximum phytase productivity was observed with Tween 80 at 0.001 concentrations (170 ± 4.2 U/g ds). A Box-Behnken design was employed to investigate the optimization of the most significant variables affecting the enzyme production. Maximal phytase production was detected after the addition of (g/5 g ds): 0.75 glucose, 0.375 peptone and 0, 01 tween 80. This result represented an improvement in phytase production of 2.6 folds when compared to that previously obtained using the basal medium under the same cultivation conditions. The generated model was found to be very adequate for phytase production (90% accuracy) as the experimental value was 444 ± 3.5 U/g ds compared to 401 U/g ds for the predicted value. In brief, the production of phytase using corn cob and corn bran is a novel and cheap way for the production of this important enzyme and opens a new way for researchers to discover and explore this arena.
Collapse
Affiliation(s)
- Ghada E A Awad
- Chemistry of Natural and Microbial Products Department, National Research Center, Dokki, Cairo, Egypt
| | - Mohamed M I Helal
- Chemistry of Natural and Microbial Products Department, National Research Center, Dokki, Cairo, Egypt
| | - Enas N Danial
- Chemistry of Natural and Microbial Products Department, National Research Center, Dokki, Cairo, Egypt ; Department of Biochemistry, Faculty of Girls Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
45
|
Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine. World J Microbiol Biotechnol 2013; 29:2181-93. [PMID: 23709169 DOI: 10.1007/s11274-013-1384-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
A number of soil microorganisms can convert insoluble forms of phosphorus (P) to an accessible form to increase plant yields. Phytate is such a large kind of insoluble organic phosphorus that plants cannot absorb directly in soil, so the objectives of this study were to isolate, screen phytate-degrading rhizobacteria (PDRB), and to select potential microbial inocula that could increase the P uptake by plants. In this study, a total of 24 soil samples were collected from natural habitats of eight poplar and pine planting areas from the eastern to southern China. 17 PDRB strains were preliminarily screened from the rhizosphere soil of poplars and pines by the visible decolorization in the phytate selective medium. The highest ratio of the total diameter (colony + halo zone) to the colony diameter of the isolates was JZ-GX1, 3.85. Afterward, 17 PDRB strains were further determined for their abilities to degrade sodium phytate based on the amount of liberated inorganic P in liquid phytate specific medium. The results showed that the phytase ability of the three highest PDRB strains: JZ-GX1, JZ-DZ1 and JZ-ZJ1 were up to 2.58, 2.36 and 2.24 U/mL, respectively, much better than most of the bacteria reported in previous studies. In the soil-plant experiment, compared to CK, the best three strains of PDRB all could significantly promote growth of poplar and Masson pine under container growing. The three efficient PDRB strains were identified as follow: JZ-GX1, Rahnella aquatilis, both JZ-DZ1 and JZ-ZJ1 being autofluorescent, Pseudomonas fluorescens, by 16S rDNA gene sequencing technology, Biolog Identification System and biological characterization. The present study suggests that the three screened PDRB strains would have great potential application as biological fertilizers in the future.
Collapse
|
46
|
Roy T, Banerjee G, Dan SK, Ray AK. Optimization of Fermentation Conditions for Phytase Production by Two Strains of Bacillus licheniformis (LF1 and LH1) Isolated from the Intestine of Rohu, Labeo rohita (Hamilton). ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s12595-012-0057-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Fathallh Eida M, Nagaoka T, Wasaki J, Kouno K. Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts. Microbes Environ 2012; 28:71-80. [PMID: 23100024 PMCID: PMC4070677 DOI: 10.1264/jsme2.me12083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting.
Collapse
|
48
|
Kumar P, Chamoli S, Agrawal S. Enhanced phytase production fromAchromobactersp. PB-01 using wheat bran as substrate: Prospective application for animal feed. Biotechnol Prog 2012; 28:1432-42. [DOI: 10.1002/btpr.1622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Indexed: 11/07/2022]
|
49
|
Park I, Lee J, Cho J. Degradation of Phytate Pentamagnesium Salt by Bacillus sp. T4 Phytase as a Potential Eco-friendly Feed Additive. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:1466-72. [PMID: 25049504 PMCID: PMC4093014 DOI: 10.5713/ajas.2012.12276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/16/2012] [Accepted: 07/09/2012] [Indexed: 11/27/2022]
Abstract
A bacterial isolate derived from soil samples near a cattle farm was found to display extracellular phytase activity. Based on 16S rRNA sequence analysis, the strain was named Bacillus sp. T4. The optimum temperature for the phytase activity toward magnesium phytate (Mg-InsP6) was 40°C without 5 mM Ca2+ and 50°C with 5 mM Ca2+. T4 phytase had a characteristic bi-hump two pH optima of 6.0 to 6.5 and 7.4 for Mg-InsP6. The enzyme showed higher specificity for Mg-InsP6 than sodium phytate (Na-InsP6). Its activity was fairly inhibited by EDTA, Cu2+, Mn2+, Co2+, Ba2+ and Zn2+. T4 phytase may have great potential for use as an eco-friendly feed additive to enhance the nutritive quality of phytate and reduce phosphorus pollution.
Collapse
|
50
|
Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH. Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 2011; 112:1-14. [DOI: 10.1111/j.1365-2672.2011.05181.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|