1
|
Maqsood A, Shakir NA, Aslam M, Rahman M, Rashid N. Structural and functional investigations of Pcal_0606, a bifunctional phosphoglucose/phosphomannose isomerase from Pyrobaculum calidifontis. Int J Biol Macromol 2024; 279:135127. [PMID: 39208883 DOI: 10.1016/j.ijbiomac.2024.135127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
We are investigating the glycolytic pathway in Pyrobaculum calidifontis whose genome sequence contains homologues of all the enzymes involved in this pathway. We have characterized most of them. An open reading frame, Pcal_0606, annotated as a putative phosphoglucose/phosphomannose isomerase has to be characterized yet. In silico analysis indicated the presence of more than one substrate binding pockets at the dimeric interface of Pcal_0606. The gene encoding Pcal_0606 was cloned and expressed in Escherichia coli. Recombinant Pcal_0606, produced in soluble form, exhibited highest enzyme activity at 90 °C and pH 8.5. Presence or absence of metal ions or EDTA did not significantly affect the enzyme activity. Under optimal conditions, Pcal_0606 displayed apparent Km values of 0.33, 0.34, and 0.29 mM against glucose 6-phosphate, mannose 6-phosphate and fructose 6-phosphate, respectively. In the same order, Vmax values against these substrates were 290, 235, and 240 μmol min-1 mg-1, indicating that Pcal_0606 catalyzed the reversible isomerization of these substrates with nearly same catalytic efficiency. These results characterize Pcal_0606 a bifunctional phosphoglucose/phosphomannose isomerase, which displayed high thermostability with a half-life of ∼50 min at 100 °C. To the best of our knowledge, Pcal_0606 is the most active and thermostable bifunctional phosphoglucose/phosphomannose isomerase characterized to date.
Collapse
Affiliation(s)
- Amina Maqsood
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nisar Ahmed Shakir
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
2
|
Ahmad A, Joshi P, Mishra R. Amino acids and glycine derivatives differently affect refolding of mesophilic and thermophilic like α-amylases: implications in protein refolding and aggregation. J Biomol Struct Dyn 2024:1-14. [PMID: 38486406 DOI: 10.1080/07391102.2024.2327540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/02/2024] [Indexed: 03/29/2025]
Abstract
α-amylases are industrially important enzymes which are used in different starch-based industries. They are adapted to different environmental conditions like extremes of temperature, pH and salinity. Herein, α-amylases from Bacillus amyloliquifaciens (BAA) and Bacillus licheniformis (BLA), representing mesophilic and thermophilic-like proteins, respectively, have been used to investigate the effect of naturally occurring osmolytes like arginine, proline, glycine and its methyl derivatives, sarcosine and betaine on their refolding. In this study, we have shown that among amino acids and glycine derivatives, betaine is the most promising osmolyte, while arginine and glycine exhibit moderately positive effect at their lower concentrations on the refolding of BAA only. Except betaine, all other osmolytes above 0.25 M showed inhibitory effect on the native enzyme activity of BLA and BAA. However, aggregation kinetics monitored by static light scattering indicates suppression of aggregation by all of these osmolytes. Further investigation by tryptophan and ANS fluorescence spectroscopy indicates the formation of compact hydrophobic core in the presence of the osmolytes. The morphology of protein aggregates having different sizes was visualized by atomic force microscopy ,and it was observed that amorphous aggregates of variable heights were formed. Our study highlights the importance of differential effects of arginine, proline, glycine, sarcosine and betaine on the native state as well as on refolding of BLA and BAA which may be helpful in devising strategies for developing effective protein formulation and prevention of aggregation of industrially and therapeutically important proteins.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Prachi Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Molecular cloning and production of recombinant Pcal_0672, a family GH57 glycoside hydrolase from Pyrobaculum calidifontis. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
4
|
Ahmad A, Mishra R. Differential effect of polyol and sugar osmolytes on the refolding of homologous alpha amylases: A comparative study. Biophys Chem 2021; 281:106733. [PMID: 34864226 DOI: 10.1016/j.bpc.2021.106733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Polyol and sugar osmolytes are known to enhance the stability of proteins, however, their role in assisting protein folding is not well understood. We asked whether these osmolytes have the same effect during refolding of a pair of thermophilic and mesophilic proteins. Herein, we have chosen α-amylases from Bacillus licheniformis (BLA) and Bacillus amyloliquefaciens (BAA) as thermophilic like and mesophilic counterparts respectively, having similar structures but differing thermostability. The effect of a series of polyols with varying number of -OH groups from 2 to 6 (Ethylene glycol, glycerol, erythritol, xylitol and sorbitol) and sugars (trehalose and sucrose) has been studied on the refolding of BLA and BAA. Our study demonstrates that glycerol, sorbitol and trehalose are the efficient cosolvents for BAA refolding, while comparatively less effective for BLA. Urea induced destabilization of BLA and BAA is differently compensated by polyol and sugar osmolytes during refolding. This suggests that the early species formed during BLA and BAA refolding are differently susceptible towards urea, indicating differential nature of their refolding pathways. Addition of trehalose at different times during refolding showed that the presence of trehalose is essential at the early stages of refolding. It is one of the first systematic study wherein the comparative effect of polyol and sugar assisted refolding of thermophilic and mesophilic protein has been carried out. The study highlights the differential effect of protein-osmolyte interactions during refolding of thermophilic and mesophilic proteins which may have implications in protein formulations, refolding and inhibition of aggregation.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Zhang K, Tan R, Yao D, Su L, Xia Y, Wu J. Enhanced Production of Soluble Pyrococcus furiosus α-Amylase in Bacillus subtilis through Chaperone Co-Expression, Heat Treatment and Fermentation Optimization. J Microbiol Biotechnol 2021; 31:570-583. [PMID: 33753701 PMCID: PMC9723276 DOI: 10.4014/jmb.2101.01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022]
Abstract
Pyrococcus furiosus α-amylase can hydrolyze α-1,4 linkages in starch and related carbohydrates under hyperthermophilic condition (~ 100°C), showing great potential in a wide range of industrial applications, while its relatively low productivity from heterologous hosts has limited the industrial applications. Bacillus subtilis, a gram-positive bacterium, has been widely used in industrial production for its non-pathogenic and powerful secretory characteristics. This study was conducted to increase production of P. furiosus α-amylase in B. subtilis through three strategies. Initial experiments showed that co-expression of P. furiosus molecular chaperone peptidyl-prolyl cis-trans isomerase through genomic integration mode, using a CRISPR/Cas9 system, increased soluble amylase production. Therefore, considering that native P. furiosus α-amylase is produced within a hyperthermophilic environment and is highly thermostable, heat treatment of intact culture at 90°C for 15 min was performed, thereby greatly increasing soluble amylase production. After optimization of the culture conditions (nitrogen source, carbon source, metal ion, temperature and pH), experiments in a 3-L fermenter yielded a soluble activity of 3,806.7 U/ml, which was 3.3- and 28.2-fold those of a control without heat treatment (1,155.1 U/ml) and an empty expression vector control (135.1 U/ml), respectively. This represents the highest P. furiosus α-amylase production reported to date and should promote innovation in the starch liquefaction process and related industrial productions. Meanwhile, heat treatment, which may promote folding of aggregated P. furiosus α-amylase into a soluble, active form through the transfer of kinetic energy, may be of general benefit when producing proteins from thermophilic archaea.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P.R. China
| | - Ruiting Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P.R. China
| | - Dongbang Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P.R. China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P.R. China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P.R. China,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P.R. China,Corresponding author Phone: 86-510-85327802 Fax: 86-510-85326653 E-mail:
| |
Collapse
|
6
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
7
|
Parashar D, Satyanarayana T. An Insight Into Ameliorating Production, Catalytic Efficiency, Thermostability and Starch Saccharification of Acid-Stable α-Amylases From Acidophiles. Front Bioeng Biotechnol 2018; 6:125. [PMID: 30324103 PMCID: PMC6172347 DOI: 10.3389/fbioe.2018.00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
Most of the extracellular enzymes of acidophilic bacteria and archaea are stable at acidic pH with a relatively high thermostability. There is, however, a dearth of information on their acid stability. Although several theories have been postulated, the adaptation of acidophilic proteins to low pH has not been explained convincingly. This review highlights recent developments in understanding the structure and biochemical characteristics, and production of acid-stable and calcium-independent α-amylases by acidophilic bacteria with special reference to that of Bacillus acidicola.
Collapse
Affiliation(s)
- Deepak Parashar
- Functional Genomic Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Tulasi Satyanarayana
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, New Delhi, India
| |
Collapse
|
8
|
Zhu H, Reynolds LB, Menassa R. A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates. BMC Biotechnol 2017; 17:53. [PMID: 28629346 PMCID: PMC5477289 DOI: 10.1186/s12896-017-0372-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca 2++ independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. RESULTS We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco's large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. CONCLUSIONS Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase.
Collapse
Affiliation(s)
- Hong Zhu
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario Canada
| | - L. Bruce Reynolds
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario Canada
- Department of Biology, University of Western Ontario, London, Ontario Canada
| |
Collapse
|
9
|
Koschorreck K, Wahrendorff F, Biemann S, Jesse A, Urlacher VB. Cell thermolysis – A simple and fast approach for isolation of bacterial laccases with potential to decolorize industrial dyes. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Peng S, Chu Z, Lu J, Li D, Wang Y, Yang S, Zhang Y. Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli. Cell Stress Chaperones 2016; 21:477-84. [PMID: 26862080 PMCID: PMC4837189 DOI: 10.1007/s12192-016-0675-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/14/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022] Open
Abstract
The extracellular α-amylase from the hyperthermophilic archaeum Pyrococcus furiosus (PFA) is extremely thermostable and of an industrial importance and interest. PFA aggregates and accumulates as insoluble inclusion bodies when expressed as a heterologous protein at a high level in Escherichia coli. In the present study, we investigated the roles of chaperones from P. furiosus in the soluble expression of recombinant PFA in E. coli. The results indicate that co-expression of PFA with the molecular chaperone prefoldin alone significantly increased the soluble expression of PFA. Although, co-expression of other main chaperone components from P. furiosus, such as the small heat shock protein (sHSP) or chaperonin (HSP60), was also able to improve the soluble expression of PFA to a certain extent. Co-expression of chaperonin or sHSP in addition to prefoldin did not further increase the soluble expression of PFA. This finding emphasizes the biotechnological potentials of the molecular chaperone prefoldin from P. furiosus, which may facilitate the production of recombinant PFA.
Collapse
Affiliation(s)
- Shuaiying Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhongmei Chu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Lu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences, Shanghai, China
| | - Dongxiao Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | - Shengli Yang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci Rep 2016; 6:22229. [PMID: 26916714 PMCID: PMC4768087 DOI: 10.1038/srep22229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/12/2022] Open
Abstract
Extracellular α-amylase from Pyrococcus furiosus (PFA) shows great starch-processing potential for industrial application due to its thermostability, long half-life and optimal activity at low pH; however, it is difficult to produce in large quantities. In contrast, α-amylase from Bacillus amyloliquefaciens (BAA) can be produced in larger quantities, but shows lower stability at high temperatures and low pH. Here, we describe a BAA protein expression pattern-mimicking strategy to express PFA in B. amyloliquefaciens using the expression and secretion elements of BAA, including the codon usage bias and mRNA structure of gene, promoter, signal peptide, host and cultivation conditions. This design was assessed to be successful by comparing the various genes (mpfa and opfa), promoters (PamyA and P43), and strains (F30, F31, F32 and F30-∆amyA). The final production of PFA yielded 2714 U/mL, about 3000- and 14-fold that reportedly produced in B. subtilis or E. coli, respectively. The recombinant PFA was optimally active at ~100 °C and pH 5 and did not require Ca2+ for activity or thermostability, and >80% of the enzyme activity was retained after treatment at 100 °C for 4 h.
Collapse
|
12
|
Ahmad N, Mehboob S, Rashid N. Starch-processing enzymes — emphasis on thermostable 4-α-glucanotransferases. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221. Appl Microbiol Biotechnol 2014; 99:3901-11. [DOI: 10.1007/s00253-014-6186-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
|
14
|
Novel maltotriose-hydrolyzing thermoacidophilic type III pullulan hydrolase from Thermococcus kodakarensis. Appl Environ Microbiol 2013; 80:1108-15. [PMID: 24296501 DOI: 10.1128/aem.03139-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel thermoacidophilic pullulan-hydrolyzing enzyme (PUL) from hyperthermophilic archaeon Thermococcus kodakarensis (TK-PUL) that efficiently hydrolyzes starch under industrial conditions in the absence of any additional metal ions was cloned and characterized. TK-PUL possessed both pullulanase and α-amylase activities. The highest activities were observed at 95 to 100°C. Although the enzyme was active over a broad pH range (3.0 to 8.5), the pH optima for both activities were 3.5 in acetate buffer and 4.2 in citrate buffer. TK-PUL was stable for several hours at 90°C. Its half-life at 100°C was 45 min when incubated either at pH 6.5 or 8.5. The Km value toward pullulan was 2 mg ml(-1), with a Vmax of 109 U mg(-1). Metal ions were not required for the activity and stability of recombinant TK-PUL. The enzyme was able to hydrolyze both α-1,6 and α-1,4 glycosidic linkages in pullulan. The most preferred substrate, after pullulan, was γ-cyclodextrin, which is a novel feature for this type of enzyme. Additionally, the enzyme hydrolyzed a variety of polysaccharides, including starch, glycogen, dextrin, amylose, amylopectin, and cyclodextrins (α, β, and γ), mainly into maltose. A unique feature of TK-PUL was the ability to hydrolyze maltotriose into maltose and glucose.
Collapse
|
15
|
Malik B, Rashid N, Ahmad N, Akhtar M. Escherichia coli signal peptidase recognizes and cleaves the signal sequence of α-amylase originating from Bacillus licheniformis. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:958-62. [PMID: 24228886 DOI: 10.1134/s0006297913080142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The gene encoding the α-amylase from Bacillus licheniformis was cloned, with and without the native signal sequence, and expressed in Escherichia coli, resulting in the production of the recombinant protein in the cytoplasm as insoluble but enzymatically active aggregates. Expression with a low concentration of the inducer at low temperature resulted in the production of the recombinant protein in soluble form in a significantly higher amount. The protein produced with signal sequence was exported to the extracellular medium, whereas there was no export of the protein produced from the gene without the signal sequence. Similarly, the α-amylase activity in the culture medium increased with time after induction in case of the protein produced with signal sequence. Molecular mass determinations by MALDI-TOF mass spectrometry and N-terminal amino acid sequencing of the purified recombinant α-amylase from the extracellular medium revealed that the native signal peptide was cleaved by E. coli signal peptidase between Ala28 and Ala29. It seems possible that the signal peptide of α-amylase from B. licheniformis can be used for the secretion of other recombinant proteins produced using the E. coli expression system.
Collapse
Affiliation(s)
- B Malik
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | | | | | | |
Collapse
|
16
|
Conley AJ, Zhu H, Le LC, Jevnikar AM, Lee BH, Brandle JE, Menassa R. Recombinant protein production in a variety of Nicotiana hosts: a comparative analysis. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:434-44. [PMID: 21040385 DOI: 10.1111/j.1467-7652.2010.00563.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although many different crop species have been used to produce a wide range of vaccines, antibodies, biopharmaceuticals and industrial enzymes, tobacco has the most established history for the production of recombinant proteins. To further improve the heterologous protein yield of tobacco platforms, transient and stable expression of four recombinant proteins (i.e. human erythropoietin and interleukin-10, an antibody against Pseudomonas aeruginosa, and a hyperthermostable α-amylase) was evaluated in numerous species and cultivars of Nicotiana. Whereas the transient level of recombinant protein accumulation varied significantly amongst the different Nicotiana plant hosts, the variety of Nicotiana had little practical impact on the recombinant protein concentration in stable transgenic plants. In addition, this study examined the growth rate, amount of leaf biomass, total soluble protein levels and the alkaloid content of the various Nicotiana varieties to establish the best plant platform for commercial production of recombinant proteins. Of the 52 Nicotiana varieties evaluated, Nicotiana tabacum (cv. I 64) produced the highest transient concentrations of recombinant proteins, in addition to producing a large amount of biomass and a relatively low quantity of alkaloids, probably making it the most effective plant host for recombinant protein production.
Collapse
Affiliation(s)
- Andrew J Conley
- Department of Biology, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Effective solubilization and single-step purification of Bacillus licheniformis alpha-amylase from insoluble aggregates. Folia Microbiol (Praha) 2010; 55:133-6. [PMID: 20490755 DOI: 10.1007/s12223-010-0020-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/22/2009] [Indexed: 10/19/2022]
Abstract
A high level expression of thermostable alpha-amylase gene from Bacillus licheniformis in Escherichia coli was obtained. The recombinant enzyme was mainly produced in the form of insoluble aggregates. The enzyme was solubilized without using denaturing agents and purified to homogeneity in a single step by ion exchange chromatography. The enzyme was purified 138-fold with a final yield of 349 %; the specific activity of the purified enzyme was 1343 U/mg.
Collapse
|
18
|
Stampolidis P, Kaderbhai NN, Kaderbhai MA. Periplasmically-exported lupanine hydroxylase undergoes transition from soluble to functional inclusion bodies in Escherichia coli. Arch Biochem Biophys 2009; 484:8-15. [PMID: 19467626 DOI: 10.1016/j.abb.2009.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Pseudomonas lupanine hydroxylase is a periplasmic-localised, two domain quinocytochrome c enzyme. It requires numerous post-translocation modifications involving signal peptide processing, disulphide bridge formation and, heme linkage in the carboxy-terminal cytochrome c domain to eventually generate a Ca(2+)-bound quino-c hemoprotein that hydroxylates the plant alkaloid, lupanine. An exported, functional recombinant enzyme was generated in Escherichia coli by co-expression with cytochrome c maturation factors. Increased growth temperatures ranging from 18 to 30 degrees C gradually raised the enzyme production to a peak together with its concomitant aggregation as red solid particles, readily activatable in a fully functional form by mild chaotropic treatment. Here, we demonstrate that the exported lupanine hydroxylase undergoes a cascade transition from a soluble to "non-classical" inclusion body form when build-up in the periplasm exceeded a basal threshold concentration. These periplasmic aggregates were distinct from the non-secreted, signal-sequenceless counterpart that occurred as misfolded, non-functional concatamers in the form of classical inclusion bodies. We discuss our findings in the light of current models of how aggregation of lupanine hydroxylase arises in the periplasmic space.
Collapse
Affiliation(s)
- Pavlos Stampolidis
- Institute of Biological Sciences, Cledwyn Building, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DD, United Kingdom
| | | | | |
Collapse
|
19
|
Bagos PG, Tsirigos KD, Plessas SK, Liakopoulos TD, Hamodrakas SJ. Prediction of signal peptides in archaea. Protein Eng Des Sel 2008; 22:27-35. [PMID: 18988691 DOI: 10.1093/protein/gzn064] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Computational prediction of signal peptides (SPs) and their cleavage sites is of great importance in computational biology; however, currently there is no available method capable of predicting reliably the SPs of archaea, due to the limited amount of experimentally verified proteins with SPs. We performed an extensive literature search in order to identify archaeal proteins having experimentally verified SP and managed to find 69 such proteins, the largest number ever reported. A detailed analysis of these sequences revealed some unique features of the SPs of archaea, such as the unique amino acid composition of the hydrophobic region with a higher than expected occurrence of isoleucine, and a cleavage site resembling more the sequences of gram-positives with almost equal amounts of alanine and valine at the position-3 before the cleavage site and a dominant alanine at position-1, followed in abundance by serine and glycine. Using these proteins as a training set, we trained a hidden Markov model method that predicts the presence of the SPs and their cleavage sites and also discriminates such proteins from cytoplasmic and transmembrane ones. The method performs satisfactorily, yielding a 35-fold cross-validation procedure, a sensitivity of 100% and specificity 98.41% with the Matthews' correlation coefficient being equal to 0.964. This particular method is currently the only available method for the prediction of secretory SPs in archaea, and performs consistently and significantly better compared with other available predictors that were trained on sequences of eukaryotic or bacterial origin. Searching 48 completely sequenced archaeal genomes we identified 9437 putative SPs. The method, PRED-SIGNAL, and the results are freely available for academic users at http://bioinformatics.biol.uoa.gr/PRED-SIGNAL/ and we anticipate that it will be a valuable tool for the computational analysis of archaeal genomes.
Collapse
Affiliation(s)
- P G Bagos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens 15701, Greece.
| | | | | | | | | |
Collapse
|