1
|
Long J, Cai J, Gao X, Wang YC, Huang XM, Zhu L. Investigation on screening, identification, and fermentation characteristics of Yunnan olive in the fermented liquid utilizing five strains of Saccharomyces cerevisiae. Arch Microbiol 2024; 206:164. [PMID: 38483645 DOI: 10.1007/s00203-024-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Refined indigenous Saccharomyces cerevisiae can enhance refinement, sophistication, and subtlety of fruit wines by showcasing exceptional regional characteristics. In order to identify exceptional indigenous S. cerevisiae strains from Yunnan olive, this study isolated 60 yeast strains from wild Yunnan olive fermentation mash. The five S. cerevisiae strains were subjected to morphological and molecular biological identification, followed by evaluation of their fermentation performance, ethanol production capacity, ester production capacity, H2S production capacity, killing capacity, and tolerance. Strains LJM-4, LJM-10, and LJM-26 exhibited robust tolerance to 6% ethanol volume fraction, pH 2.8, sucrose concentration of 400 g/L, SO2 concentration of 0.3 g/L, glucose concentration of 400 g/L at both 40 °C and 15 °C. Additionally, strain LJM-10 demonstrated a faster fermentation rate compared to the other strains. Among the tested S. cerevisiae strains evaluated in this study for olive wine fermentation process in Yunnan region; strain LJM-10 displayed superior abilities in terms of ester and ethanol production while exhibiting the lowest H2S production levels. These findings suggest that strain LJM-10 holds great potential as an excellent candidate for optimizing fruit wine S. cerevisiae fermentation processes in Yunnan olive fruit wine.
Collapse
Affiliation(s)
- Junming Long
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Xiu Gao
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Yu-Chen Wang
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi, 653100, People's Republic of China
| | - Xian-Min Huang
- School of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, People's Republic of China
| | - Ling Zhu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, 655011, People's Republic of China.
| |
Collapse
|
2
|
Marr RA, Moore J, Formby S, Martiniuk JT, Hamilton J, Ralli S, Konwar K, Rajasundaram N, Hahn A, Measday V. Whole genome sequencing of Canadian Saccharomyces cerevisiae strains isolated from spontaneous wine fermentations reveals a new Pacific West Coast Wine clade. G3 (BETHESDA, MD.) 2023; 13:jkad130. [PMID: 37307358 PMCID: PMC10411583 DOI: 10.1093/g3journal/jkad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Vineyards in wine regions around the world are reservoirs of yeast with oenological potential. Saccharomyces cerevisiae ferments grape sugars to ethanol and generates flavor and aroma compounds in wine. Wineries place a high-value on identifying yeast native to their region to develop a region-specific wine program. Commercial wine strains are genetically very similar due to a population bottleneck and in-breeding compared to the diversity of S. cerevisiae from the wild and other industrial processes. We have isolated and microsatellite-typed hundreds of S. cerevisiae strains from spontaneous fermentations of grapes from the Okanagan Valley wine region in British Columbia, Canada. We chose 75 S. cerevisiae strains, based on our microsatellite clustering data, for whole genome sequencing using Illumina paired-end reads. Phylogenetic analysis shows that British Columbian S. cerevisiae strains cluster into 4 clades: Wine/European, Transpacific Oak, Beer 1/Mixed Origin, and a new clade that we have designated as Pacific West Coast Wine. The Pacific West Coast Wine clade has high nucleotide diversity and shares genomic characteristics with wild North American oak strains but also has gene flow from Wine/European and Ecuadorian clades. We analyzed gene copy number variations to find evidence of domestication and found that strains in the Wine/European and Pacific West Coast Wine clades have gene copy number variation reflective of adaptations to the wine-making environment. The "wine circle/Region B", a cluster of 5 genes acquired by horizontal gene transfer into the genome of commercial wine strains is also present in the majority of the British Columbian strains in the Wine/European clade but in a minority of the Pacific West Coast Wine clade strains. Previous studies have shown that S. cerevisiae strains isolated from Mediterranean Oak trees may be the living ancestors of European wine yeast strains. This study is the first to isolate S. cerevisiae strains with genetic similarity to nonvineyard North American Oak strains from spontaneous wine fermentations.
Collapse
Affiliation(s)
- R Alexander Marr
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jackson Moore
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sean Formby
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Jonathan T Martiniuk
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Food Science Graduate Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonah Hamilton
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sneha Ralli
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive East K9625, Burnaby, BC V5A 1S6, Canada
| | - Kishori Konwar
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Nisha Rajasundaram
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Aria Hahn
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Vivien Measday
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Gao J, Wang M, Huang W, You Y, Zhan J. Indigenous Saccharomyces cerevisiae Could Better Adapt to the Physicochemical Conditions and Natural Microbial Ecology of Prince Grape Must Compared with Commercial Saccharomyces cerevisiae FX10. Molecules 2022; 27:molecules27206892. [PMID: 36296484 PMCID: PMC9610378 DOI: 10.3390/molecules27206892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Indigenous Saccharomyces cerevisiae, as a new and useful tool, can be used in fermentation to enhance the aroma characteristic qualities of the wine-production region. In this study, we used indigenous S. cerevisiae L59 and commercial S. cerevisiae FX10 to ferment Prince (a new hybrid variety from Lion Winery) wine, detected the basic physicochemical parameters and the dynamic changes of fungal communities during fermentation, and analyzed the correlations between fungal communities and volatile compounds. The results showed that the indigenous S. cerevisiae L59 could quickly adapt to the specific physicochemical conditions and microbial ecology of the grape must, showing a strong potential for winemaking. Compared with commercial S. cerevisiae FX10, the wine fermented by indigenous S. cerevisiae L59 contained more glycerol and less organic acids, contributing to a rounder taste. The results of volatile compounds indicated that the indigenous S. cerevisiae L59 had a positive effect on adding rosy, honey, pineapple and other sweet aroma characteristics to the wine. Overall, the study we performed showed that selection of indigenous S. cerevisiae from the wine-producing region as a starter for wine fermentation is conducive to improving the aroma profile of wine and preserving the aroma of the grape variety.
Collapse
Affiliation(s)
- Jie Gao
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
| | - Mingfei Wang
- Beijing Chateau Lion Winery Co., Ltd., Beijing 102400, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- Correspondence: or (W.H.); (Y.Y.); (J.Z.); Tel.: +86-10-62737024 (W.H.); +86-10-62737535 (Y.Y. & J.Z.)
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- Correspondence: or (W.H.); (Y.Y.); (J.Z.); Tel.: +86-10-62737024 (W.H.); +86-10-62737535 (Y.Y. & J.Z.)
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China
- Correspondence: or (W.H.); (Y.Y.); (J.Z.); Tel.: +86-10-62737024 (W.H.); +86-10-62737535 (Y.Y. & J.Z.)
| |
Collapse
|
4
|
Sánchez ML, Chimeno SV, Mercado LA, Ciklic IF. Hybridization and spore dissection of native wine yeasts for improvement of ethanol resistance and osmotolerance. World J Microbiol Biotechnol 2022; 38:225. [PMID: 36121519 DOI: 10.1007/s11274-022-03400-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Global warming has a significant impact on different viticultural parameters, including grape maturation. An increment of photosynthetic activity generates a rapid accumulation of sugars in the berry, followed by a dehydration process which leads to a higher concentration of soluble solids. This effect is exacerbated by current viticultural practices which favor the harvest of very mature grapes to obtain wines with sweet tannins. Considering the initial hyperosmotic stress conditions and the high ethanol concentration of the produced wine, fermentation of grape musts with high sugar content could be problematic for yeast starters. In the present study, we were able to obtain by classical hybridization and spore dissection methods one hybrid and one monosporic wine yeast strain with a combined ethanol and osmotolerant phenotype. The improved yeasts were tested in vinification trials with high sugar concentration and displayed excellent fermentation performance. Importantly, the obtained wines also showed good organoleptic properties during sensory analysis. Based on our results, we believed our improved hybrid and monosporic strains can be considered good alternatives to be used as yeast starters for fermentations with high sugar content.
Collapse
Affiliation(s)
- María Laura Sánchez
- Departamento de Ciencias Enológicas y Agroalimentarias, Facultad de Ciencias Agrarias UNCUYO, Almirante Brown 500, 5505, Luján de Cuyo, Mendoza, Argentina
| | - Selva Valeria Chimeno
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín 3853, 5507, Luján de Cuyo, Mendoza, Argentina
| | - Laura Analía Mercado
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín 3853, 5507, Luján de Cuyo, Mendoza, Argentina
| | - Iván Francisco Ciklic
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín 3853, 5507, Luján de Cuyo, Mendoza, Argentina.
| |
Collapse
|
5
|
Romano P, Braschi G, Siesto G, Patrignani F, Lanciotti R. Role of Yeasts on the Sensory Component of Wines. Foods 2022; 11:1921. [PMID: 35804735 PMCID: PMC9265420 DOI: 10.3390/foods11131921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
The aromatic complexity of a wine is mainly influenced by the interaction between grapes and fermentation agents. This interaction is very complex and affected by numerous factors, such as cultivars, degree of grape ripeness, climate, mashing techniques, must chemical−physical characteristics, yeasts used in the fermentation process and their interactions with the grape endogenous microbiota, process parameters (including new non-thermal technologies), malolactic fermentation (when desired), and phenomena occurring during aging. However, the role of yeasts in the formation of aroma compounds has been universally recognized. In fact, yeasts (as starters or naturally occurring microbiota) can contribute both with the formation of compounds deriving from the primary metabolism, with the synthesis of specific metabolites, and with the modification of molecules present in the must. Among secondary metabolites, key roles are recognized for esters, higher alcohols, volatile phenols, sulfur molecules, and carbonyl compounds. Moreover, some specific enzymatic activities of yeasts, linked above all to non-Saccharomyces species, can contribute to increasing the sensory profile of the wine thanks to the release of volatile terpenes or other molecules. Therefore, this review will highlight the main aroma compounds produced by Saccharomyces cerevisiae and other yeasts of oenological interest in relation to process conditions, new non-thermal technologies, and microbial interactions.
Collapse
Affiliation(s)
- Patrizia Romano
- Faculty of Economy, Universitas Mercatorum, 00186 Rome, Italy; (P.R.); (G.S.)
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus Food Science, p.zza Goidanich 60, 47521 Cesena, Italy; (G.B.); (R.L.)
| | - Gabriella Siesto
- Faculty of Economy, Universitas Mercatorum, 00186 Rome, Italy; (P.R.); (G.S.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus Food Science, p.zza Goidanich 60, 47521 Cesena, Italy; (G.B.); (R.L.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Quinto Bucci 336, 47521 Bologna, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus Food Science, p.zza Goidanich 60, 47521 Cesena, Italy; (G.B.); (R.L.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Quinto Bucci 336, 47521 Bologna, Italy
| |
Collapse
|
6
|
Selection of Three Indigenous Lebanese Yeast Saccharomyces cerevisiae with Physiological Traits from Grape Varieties in Western Semi-Desert and Pedoclimatic Conditions in the Bekaa Valley. FERMENTATION 2021. [DOI: 10.3390/fermentation7040280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Wine production depends on the fermentation process performed by yeasts, especially (but not solely) strains of the species Saccharomyces cerevisiae, which is a technique that has been practiced from the Middle Ages till modern days. Selecting indigenous starters offers a beneficial technique to manage alcoholic grape juice fermentation, conserving the particular sensory qualities of wine produced from specific regions. This paper investigated yeast biodiversity of four grape varieties (Carignan, Syrah, Grenache, and Aswad Karesh) grown in the pedoclimatic western semi-desert Bekaa Valley. Further research identified, characterized, and selected strains with the most industrial wine interest and economic value to Lebanon. By using molecular methods and by the ITS PCR analysis, the isolates belonging to the Saccharomyces and non-Saccharomyces genus were identified. These isolates taken from four varieties were further characterized by amplification with Interdelta and δ12/δ21 primer pairs, permitting the identification of 96 S. cerevisiae strains. Forty-five genomically homogenous groups were classified through the comparison between their mtDNA RFLP patterns. Based on physiological characterization analysis (H2S and SO2 production, killer phenotype, sugar consumption, malic and acetic acid, etc.), three strains (NL28629, NL28649, and NL28652) showed interesting features, where they were also vigorously fermented in a synthetic medium. These strains can be used as a convenient starter for typical wine production. In particular, Carignan and Syrah had the highest percentage of strains with the most desirable physiological parameters.
Collapse
|
7
|
Ianieva O, Podgorsky V. Enological potential of non- Saccharomyces yeast strains of enological and brewery origin from Ukrainian Collection of Microorganisms. Mycology 2021; 12:203-215. [PMID: 34552811 PMCID: PMC8451676 DOI: 10.1080/21501203.2020.1837272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Non-conventional wine yeasts are extensively studied as promising producers of hydrolytic enzymes and as potential starter cultures in winemaking due to their ability to improve organoleptic properties of wine. Thirty-six yeast strains of enological and brewery origin from the Ukrainian Collection of Microorganisms belonging to Torulaspora, Kloeckera, Candida, Metschnikowia, Pichia, and Zygosaccharomyces genera have been screened for the production of extracellular hydrolases, stress tolerance, fermentative activity, and other traits of enological interest. This study revealed the high incidence of lipolytic, proteolytic, and β-glucosidase activities among the yeasts, while no pectinase activity was detected. Esterase, cellulase and glucanase activities were found in a small proportion of yeasts (8.33–16.66%). Several Pichia anomala, Kloekera javanica, Pichia membranifaciens, and Metschnikowia pulcherrima strains demonstrated a wide range of hydrolytic activities. High tolerance to stress factors (ethanol, osmotic, and oxidative stress) present during alcoholic fermentation was detected in P. anomala and M. pulcherrima strains. Fermentative activity of several yeast strains was evaluated in microfermentations in a model semi-synthetic medium. Strain P. anomala UCM Y-216 was selected as the most promising culture for winemaking due to its hydrolytic activities, tolerance to stress factors and other valuable metabolic traits. This study represents the first step for selecting a non-conventional yeast strain of enological origin as a potential co-culture for winemaking.
Collapse
Affiliation(s)
- Olga Ianieva
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, Kyiv, Ukraine
| | - Valentin Podgorsky
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, Kyiv, Ukraine
| |
Collapse
|
8
|
Ayoub MJ, Legras JL, Abi-Nakhoul P, Nguyen HV, Saliba R, Gaillardin C. Lebanon's Native Oenological Saccharomyces cerevisiae Flora: Assessment of Different Aspects of Genetic Diversity and Evaluation of Winemaking Potential. J Fungi (Basel) 2021; 7:jof7080678. [PMID: 34436217 PMCID: PMC8398109 DOI: 10.3390/jof7080678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/27/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 296 isolates of Saccharomyces cerevisiae sampled from naturally fermenting grape musts from various locations in Lebanon were typed by interdelta fingerprinting. Of these, 88 isolates were compared with oenological strains originating from various countries, using microsatellite characterization at six polymorphic loci. These approaches evidenced a large diversity of the natural oenological Lebanese flora over the territory as well as in individual spontaneous fermentations. Several cases of dominance and perenniality of isolates were observed in the same wineries, where fermentations appeared to involve lineages of sibling isolates. Our work thus evidenced a “winery effect” on strains’ relatedness. Similarly, related or identical strains were also detected in vicinal wineries, suggesting strain circulation within small geographical areas and a further “vicinity effect”. Moreover, and despite its diversity, the Lebanese flora seemed interrelated, on the basis of microsatellite loci analysis, in comparison to worldwide communities. We finally tested the ability of 21 indigenous strains to act as potential starters for winemaking. Seven of them passed our pre-selection scheme and two of them at least may be good candidates for use provided pilot-scale assays confirm their suitability.
Collapse
Affiliation(s)
- Marie-José Ayoub
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
- Correspondence:
| | - Jean-Luc Legras
- SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
- CIRM-Levures, SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
| | - Pierre Abi-Nakhoul
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
| | - Huu-Vang Nguyen
- CIRM-Levures, SPO, University of Montpellier, INRAE, Institut Agro, F-34060 Montpellier, France;
| | - Rachad Saliba
- Department of Food Sciences and Technologies, Faculty of Agricultural and Veterinary Sciences, Lebanese University, Beirut 14-6573, Lebanon; (P.A.-N.); (R.S.)
| | - Claude Gaillardin
- AgroParisTech, Micalis UMR 1319, CBAI, F-78850 Thiverval-Grignon, France;
- INRA, Micalis UMR 1319, CBAI, F-78850 Thiverval-Grignon, France
| |
Collapse
|
9
|
Selection Process of a Mixed Inoculum of Non-Saccharomyces Yeasts Isolated in the D.O.Ca. Rioja. FERMENTATION 2021. [DOI: 10.3390/fermentation7030148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of non-Saccharomyces yeasts in sequential fermentations with S. cerevisiae has been proposed to improve the organoleptic characteristics involved in the quality of wine. The present study set out to select a non-Saccharomyces inoculum from the D.O.Ca. Rioja for use in winemaking. Strains included in the study belonged to Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, Zygosaccharomyces bailii, Williopsis pratensis, Debaryomyces hansenii, Pichia kluyveri, Sporidiobolus salmonicolor, Candida spp., Cryptococcus spp. and two mixed inocula of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio. In the first stage of the process, SO2 resistance and presence of enzymatic activities related to wine aroma and wine color and fining (esterase, esterase-lipase, lipase, leucine arylamidase, valine arylamidase, cystine arylamidase, β-glucosidase, pectinase, cellulose, xylanase and glucanase) were studied. In the later stages, selection criteria such as fermentative behavior, aroma compound production or influence on phenolic compounds were studied in laboratory scale vinifications. Taking into account the results obtained in the different stages of the process, a mixed inoculum of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio was finally selected. This inoculum stood out for its high implantation capacity, the production of compounds of interest such as glycerol and lactic acid and the consequent modulation of wine acidity. Given these characteristics, the selected inoculum is suitable for the production of quality wines.
Collapse
|
10
|
Tra Bi CY, Kouakou-Kouamé CA, N'guessan FK, Djè MK, Montet D. Phenotypic characterization of indigenous Saccharomyces cerevisiae strains associated with sorghum beer and palm wines. World J Microbiol Biotechnol 2021; 37:24. [PMID: 33427964 DOI: 10.1007/s11274-020-02990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
In order to phenotypically characterized Saccharomyces cerevisiae strains isolated from sorghum beer and palm wines for a possible selection of a starter culture, 30 strains were tested for killer activity, temperature resistance, ethanol tolerance, carbohydrate fermentation, enzyme profile and sorghum wort fermentation. Of the tested strains, three showed a killer profile, while four showed a neutral profile and 23 were found to be sensitive to K2 toxin. Temperatures of 40 °C and 44 °C allowed to distinguish strains into four thermal groups with only three strains may grow at 44 °C. Almost tested strains were tolerant to 5% ethanol with viability rates up to 73%. But at 10% and 15% ethanol, respectively 18 and 7 strains were tolerant. Carbohydrate fermentation revealed 13 fermentation profiles, including one typical and 12 atypical profiles. The typical profile strains (16.13% of the strains) fermented glucose, galactose, fructose, sucrose, maltose, trehalose and raffinose. Most of the strains secreted lipases (mainly esterase and esterase-lipase), proteases (mainly valine and cysteine arylamidase, chrymotrypsin) and phosphatases (mainly acid phosphatase and naphthol phosphohydrolase). On contrary, only five strains isolated from sorghum beer exhibited glucosidase activity, mainly α-glucosidase. The analyse of fermented sorghum wort revealed that fermentative performance is strain dependent. Furthermore, the Hierarchical Cluster Analysis showed that the strains were separated in three distinct clusters with the strains from sorghum beer clustered separately.
Collapse
Affiliation(s)
- Charles Y Tra Bi
- Institut de Recherche sur les Energies Nouvelles (IREN), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - Clémentine A Kouakou-Kouamé
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - Florent K N'guessan
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire.
| | - Marcellin K Djè
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - Didier Montet
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, UMR Qualisud, TA 95B/16, 34398, Montpellier Cedex 5, France
| |
Collapse
|
11
|
Selected Indigenous Saccharomyces cerevisiae Strains as Profitable Strategy to Preserve Typical Traits of Primitivo Wine. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wine production by inoculated fermentation with commercial Saccharomyces cerevisiae strains is an ordinary practice in modern winemaking in order to assure the final quality of wine, although this procedure results in the production of highly homogeneous wines. The use of indigenous selected starters represents a useful tool to control alcoholic grape must fermentation, safeguarding the typical sensory characteristics of wine produced from specific regions. In this study, we selected three indigenous S. cerevisiae strains among 16 indigenous strains previously isolated from the spontaneous fermentation of Primitivo grapes, which were collected from the vineyards of three different cellars. The three selected starters (one for each cellar) were tested during fermentations at pilot scale by performing in each cellar two trials: one with an indigenous starter (specific for the winery), and one with the commercial starter AWRI796 (common to all the cellars). Starter dominance ability and influence on aromatic quality of the wine were used as criteria to test the suitability of these indigenous starters to be used at the cellar scale. The results obtained in this study showed that the indigenous strains were characterized by very high dominance ability, and the aromatic quality of wine was strongly influenced both by the inoculated strain and the interaction strain/grape must.
Collapse
|
12
|
Impact of co-inoculation of Saccharomyces cerevisiae, Hanseniaspora uvarum and Oenococcus oeni autochthonous strains in controlled multi starter grape must fermentations. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Bravo SME, Morales M, Del Mónaco SM, Caballero AC. Apple bagasse as a substrate for the propagation of Patagonian wine yeast biomass. J Appl Microbiol 2019; 126:1414-1425. [PMID: 30729620 DOI: 10.1111/jam.14216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/22/2019] [Accepted: 02/02/2019] [Indexed: 11/28/2022]
Abstract
AIMS A culture medium based on apple bagasse was designed and tested as a substrate for biomass production of conventional and unconventional native wine yeasts. METHODS AND RESULTS The physicochemical characterization of the apple bagasse was carried out and its potential utility as a constituent of a complete culture medium for the production of yeast biomass was analysed using the experimental statistical designs. Growth parameters of conventional and nonconventional Patagonian wine yeasts were analysed with Placket-Burman designs and response surface methodology, comparing in each assay the apple bagasse substrate with the commonly used substrate for biomass development, cane molasses. Culture media composition was optimized and models were validated. CONCLUSIONS This study demonstrates that, both from a nutritional and from an economic point of view, apple bagasse constitutes a more advantageous substrate than cane molasses for the propagation of native yeasts from Patagonia. SIGNIFICANCE AND IMPACT OF THE STUDY We used an alternate carbon-rich material, generously available in our region, originally generated as fruit industrial waste, to transform it into a source of sustainable, economically profitable and environmentally friendly energy resource.
Collapse
Affiliation(s)
- S M E Bravo
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), CONICET-Universidad Nacional del Comahue, Buenos Aires, Neuquén, Neuquén, Argentina.,Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, Villa Regina, Río Negro, Argentina
| | - M Morales
- Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, Villa Regina, Río Negro, Argentina
| | - S M Del Mónaco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), CONICET-Universidad Nacional del Comahue, Buenos Aires, Neuquén, Neuquén, Argentina.,Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, Villa Regina, Río Negro, Argentina
| | - A C Caballero
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), CONICET-Universidad Nacional del Comahue, Buenos Aires, Neuquén, Neuquén, Argentina.,Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, Villa Regina, Río Negro, Argentina
| |
Collapse
|
14
|
Eizaguirre JI, Peris D, Rodríguez ME, Lopes CA, De Los Ríos P, Hittinger CT, Libkind D. Phylogeography of the wild Lager-brewing ancestor (Saccharomyces eubayanus) in Patagonia. Environ Microbiol 2018; 20:3732-3743. [PMID: 30105823 DOI: 10.1111/1462-2920.14375] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/06/2018] [Indexed: 11/28/2022]
Abstract
Saccharomyces eubayanus is the close relative of the Lager-brewing yeast and was firstly found in North Patagonia associated with Nothofagus trees. In recent years additional strains were found in North America, Asia and New Zealand, and genomic analyses showed the existence of two main populations of this yeast, both of them present in Patagonia. Here, we performed the most comprehensive study of S. eubayanus in Patagonia natural environments (400 samples) and confirmed that this region has the highest isolation success rate for this species described worldwide (more than 10-fold). The genetic characterization of 200 isolates (COX2, DCR1, intFR) revealed five geographically structured subpopulations. We hypothesized that marine ingressions and glaciations, which shaped the Patagonian landscape, contributed on population differentiation. The first large screening of fermentation performance of 60 wild S. eubayanus strains indicated which subpopulations would be more suitable for beer production.
Collapse
Affiliation(s)
- Juan I Eizaguirre
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - David Peris
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Valencia, Spain
| | - María E Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Neuquén, Argentina
| | - Christian A Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Neuquén, Argentina
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| |
Collapse
|
15
|
Vaudano E, Quinterno G, Costantini A, Pulcini L, Pessione E, Garcia-Moruno E. Yeast distribution in Grignolino grapes growing in a new vineyard in Piedmont and the technological characterization of indigenous Saccharomyces spp. strains. Int J Food Microbiol 2018; 289:154-161. [PMID: 30245288 DOI: 10.1016/j.ijfoodmicro.2018.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
The aim of this study was to characterize the yeast consortium isolated from Grignolino grapes in a newly planted vineyard in Piedmont (Italy) via analysis of the intra-vineyard yeast distribution of grape samples from single rows. A two-phase approach allowed the identification of culturable yeasts present on grape skins and, through an enriching procedure via grape fermentation, the isolation of low frequency non-Saccharomyces and Saccharomyces spp. fermentative species, including S. paradoxus, which is highly unusual during grape fermentation, along with the intra-specific characterization of S. cerevisiae isolates. Culture-based molecular techniques revealed a grape yeast microbiota formed by (in order of abundance) Hanseniaspora uvarum, the yeast-like fungus Aerobasidium pullulans, Candida zemplinina, Pichia kluyveri, Candida californica, Curvibasidium cygneicollum, Meyerozima caribbica, Rhodotorula babjevae, Metschnikowia pulcherrima and Cryptococcus flavescens. Technological properties of isolated Saccharomyces spp. strains were analysed, identifying strains, including S. paradoxus, potentially suitable as an ecotypical starter for territorial wines.
Collapse
Affiliation(s)
- Enrico Vaudano
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca Viticoltura ed Enologia, Via Pietro Micca 35, 14100 Asti, Italy.
| | - Giorgia Quinterno
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca Viticoltura ed Enologia, Via Pietro Micca 35, 14100 Asti, Italy
| | - Antonella Costantini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca Viticoltura ed Enologia, Via Pietro Micca 35, 14100 Asti, Italy
| | - Laura Pulcini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca Viticoltura ed Enologia, Via Pietro Micca 35, 14100 Asti, Italy
| | - Enrica Pessione
- Università di Torino - Dipartimento di Scienze della Vita e Biologia dei Sistemi, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Emilia Garcia-Moruno
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca Viticoltura ed Enologia, Via Pietro Micca 35, 14100 Asti, Italy
| |
Collapse
|
16
|
Del Mónaco SM, Rodríguez ME, Lopes CA. Pichia kudriavzevii as a representative yeast of North Patagonian winemaking terroir. Int J Food Microbiol 2016; 230:31-9. [PMID: 27124468 DOI: 10.1016/j.ijfoodmicro.2016.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Abstract
Terroir concept includes specific soil, topography, climate, landscape characteristics and biodiversity features. In reference to the last aspect, recent studies investigating the microbial biogeography (lately called 'microbial terroir') have revealed that different wine-growing regions maintain different microbial communities. The aim of the present work was to identify potential autochthonous fermentative yeasts isolated from native plants in North Patagonia, Schinus johnstonii, Ephedra ochreata and Lycium chilense, that could be associated to the specific vitivinicultural terroir of this region. Different Pichia kudriavzevii isolates were recovered from these plants and physiologically and genetically compared to regional wine isolates and foreign reference strains of the same species. All isolates were subjected to molecular characterization including mtDNA-RFLP, RAPD-PCR and sequence analysis. Both wine and native P. kudriavzevii isolates from Patagonia showed similar features, different from those showed by foreign strains, suggesting that this species could be part of a specific regional terroir from North Patagonia.
Collapse
Affiliation(s)
- Silvana M Del Mónaco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina
| | - María E Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina.
| | - Christian A Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Buenos Aires, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina
| |
Collapse
|
17
|
Senses-Ergul S, Ozbas ZY. Characterization of some indigenous Saccharomyces cerevisiaeisolates obtained during vinification of ‘Kalecik Karasi’ and ‘EMIR’ grapes grown in Central Anatolia. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2016. [DOI: 10.1051/ctv/20163102051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
New sources and methods to isolate vinasse-tolerant wild yeasts efficient in ethanol production. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
Bevilacqua A, Petruzzi L, Corbo MR, Baiano A, Garofalo C, Sinigaglia M. Ochratoxin A released back into the medium by Saccharomyces cerevisiae as a function of the strain, washing medium and fermentative conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:3291-3295. [PMID: 24700209 DOI: 10.1002/jsfa.6683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/15/2014] [Accepted: 03/30/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND This study was aimed at investigating the removal of ochratoxin A (OTA) by two wild strains of Saccharomyces cerevisiae (W20 and W30) in a semi-synthetic medium under two temperatures (25, 30 °C) and sugar levels (200, 250 g L(-1) ), as well as the stability of OTA-yeast complex by evaluating the amount of bound toxin released back after some washing treatments with phosphate-buffered saline (PBS) or model wine (MW). In addition, the main products of fermentation were studied. RESULTS Both W20 and W30 strains reduced OTA with removal percentages of 5.41-49.58%, and this process was affected by temperature and sugar concentration. Concerning the stability of the OTA-yeast complex, the amount of bound toxin decreased by 20-99% after five passes of washing, with a strong strain dependence and an effect of temperature and sugar concentration only for the W30 isolate. In addition, the two strains showed interesting technological properties in terms of fermentation products in a semi-synthetic medium (high ethanol yield, volatile acidity as acetic acid < 1.2 g L(-1) ; glycerol production exceeding 5.2 g L(-1) ). CONCLUSIONS Apart from the removal of OTA, release of the toxin is a variable process and relies upon the strain effect; a significance of the other factors of the design (sugar concentration, temperature) was found only for a single isolate. Thus evaluation of the stability of the complex yeasts/OTA should be an additional trait to select promising functional yeasts.
Collapse
Affiliation(s)
- Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Killer activity of Saccharomyces cerevisiae strains: partial characterization and strategies to improve the biocontrol efficacy in winemaking. Antonie van Leeuwenhoek 2014; 106:865-78. [DOI: 10.1007/s10482-014-0256-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/08/2014] [Indexed: 01/12/2023]
|
21
|
Rodríguez ME, Pérez-Través L, Sangorrín MP, Barrio E, Lopes CA. Saccharomyces eubayanus and Saccharomyces uvarum associated with the fermentation of Araucaria araucana seeds in Patagonia. FEMS Yeast Res 2014; 14:948-65. [PMID: 25041507 DOI: 10.1111/1567-1364.12183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/29/2014] [Accepted: 07/07/2014] [Indexed: 12/27/2022] Open
Abstract
Mudai is a traditional fermented beverage, made from the seeds of the Araucaria araucana tree by Mapuche communities. The main goal of the present study was to identify and characterize the yeast microbiota responsible of Mudai fermentation as well as from A. araucana seeds and bark from different locations in Northern Patagonia. Only Hanseniaspora uvarum and a commercial bakery strain of Saccharomyces cerevisiae were isolated from Mudai and all Saccharomyces isolates recovered from A. araucana seed and bark samples belonged to the cryotolerant species Saccharomyces eubayanus and Saccharomyces uvarum. These two species were already reported in Nothofagus trees from Patagonia; however, this is the first time that they were isolated from A. araucana, which extends their ecological distribution. The presence of these species in A. araucana seeds and bark samples, led us to postulate a potential role for them as the original yeasts responsible for the elaboration of Mudai before the introduction of commercial S. cerevisiae cultures. The molecular and genetic characterization of the S. uvarum and S. eubayanus isolates and their comparison with European S. uvarum strains and S. eubayanus hybrids (S. bayanus and S. pastorianus), allowed their ecology and evolution us to be examined.
Collapse
Affiliation(s)
- M Eugenia Rodríguez
- Grupo de Biodiversidad y Biotecnología de Levaduras, Fac. Ingeniería, Instituto Multidisciplinario de Investigación y Desarrollo en Ingeniería de procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina - Universidad Nacional del Comahue), Facultad de Ingeniería, UNCo, Buenos Aires, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Comahue, Neuquén, Argentina
| | | | | | | | | |
Collapse
|
22
|
Petruzzi L, Bevilacqua A, Corbo MR, Garofalo C, Baiano A, Sinigaglia M. Selection of autochthonous Saccharomyces cerevisiae strains as wine starters using a polyphasic approach and ochratoxin A removal. J Food Prot 2014; 77:1168-77. [PMID: 24988024 DOI: 10.4315/0362-028x.jfp-13-384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Over the last few years, the selection of autochthonous strains of Saccharomyces cerevisiae as wine starters has been studied; however, researchers have not focused on the ability to remove ochratoxin A (OTA) as a possible trait to use in oenological characterization. In this article, a polyphasic approach, including yeast genotyping, evaluation of phenotypic traits, and fermentative performance in a model system (temperature, 25 and 30°C; sugar level, 200 and 250 g liter(-1)), was proposed as a suitable approach to select wine starters of S. cerevisiae from 30 autochthonous isolates from Uva di Troia cv., a red wine grape variety grown in the Apulian region (Southern Italy). The ability to remove OTA, a desirable trait to improve the safety of wine, was also assessed using enzyme-linked immunosorbent assay. The isolates, identified by PCR-restriction fragment length polymorphism analysis of the internal transcribed spacer region and DNA sequencing, were differentiated at strain level through the amplification of the interdelta region; 11 biotypes (I to XI) were identified and further studied. Four biotypes (II, III, V, VIII) were able to reduce OTA, with the rate of toxin removal from the medium (0.6 to 42.8%, wt/vol) dependent upon the strain and the temperature, and biotypes II and VIII were promising in terms of ethanol, glycerol, and volatile acidity production, as well as for their enzymatic and stress resistance characteristics. For the first time, the ability of S. cerevisiae to remove OTA during alcoholic fermentation was used as an additional trait in the yeast-selection program; the results could have application for evaluating the potential of autochthonous S. cerevisiae strains as starter cultures for the production of typical wines with improved quality and safety.
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy. .
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Carmela Garofalo
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonietta Baiano
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
23
|
Bağder Elmacı S, Özçelik F, Tokatlı M, Çakır İ. Technological properties of indigenous wine yeast strains isolated from wine production regions of Turkey. Antonie van Leeuwenhoek 2014; 105:835-47. [PMID: 24549515 DOI: 10.1007/s10482-014-0138-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to evaluate the important technological and fermentative properties of wine yeast strains previously isolated from different wine producing regions of Turkey. The determination of the following important properties was made: growth at high temperatures; fermentative capability in the presence of high sugar concentration; fermentation rate; hydrogen sulfide production; killer activity; resistance to high ethanol and sulfur dioxide; foam production; and enzymatic profiles. Ten local wine yeast strains belonging to Saccharomyces, and one commercial active dry yeast as a reference strain were evaluated. Fermentation characteristics were evaluated in terms of kinetic parameters, including ethanol yield (YP/S), biomass yield (YX/S), theoretical ethanol yield (%), specific ethanol production rate (qp; g/gh), specific glucose uptake rate (qs; g/gh), and the substrate conversion (%). All tested strains were able to grow at 37 °C and to start fermentation at 30° Brix, and were resistant to high concentrations of sulfur dioxide. 60 % of the strains were weak H2S producers, while the others produced high levels. Foam production was high, and no strains had killer activity. Six of the tested strains had the ability to grow and ferment at concentrations of 14 % ethanol. Except for one strain, all fermented most of the media sugars at a high rate, producing 11.0-12.4 % (v/v) ethanol. Although all but one strain had suitable characteristics for wine production, they possessed poor activities of glycosidase, esterase and proteinase enzymes of oenological interest. Nine of the ten local yeast strains were selected for their good oenological properties and their suitability as a wine starter culture.
Collapse
Affiliation(s)
- Simel Bağder Elmacı
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey,
| | | | | | | |
Collapse
|
24
|
Molecular and Technological Characterization of Saccharomyces cerevisiae Strains Isolated from Natural Fermentation of Susumaniello Grape Must in Apulia, Southern Italy. Int J Microbiol 2014; 2014:897428. [PMID: 24672552 PMCID: PMC3942102 DOI: 10.1155/2014/897428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/16/2013] [Indexed: 11/17/2022] Open
Abstract
The characterization of autochthonous Saccharomyces cerevisiae strains is an important step towards the conservation and employment of microbial biodiversity. The utilization of selected autochthonous yeast strains would be a powerful tool to enhance the organoleptic and sensory properties of typical regional wines. In fact, indigenous yeasts are better tailored to a particular must and because of this they are able to praise the peculiarities of the derived wine. The present study described the biodiversity of indigenous S. cerevisiae strains isolated from natural must fermentations of an ancient and recently rediscovered Apulian grape cultivar, denoted as "Susumaniello." The yeast strains denoted by the best oenological and technological features were identified and their fermentative performances were tested by either laboratory assay. Five yeast strains showed that they could be excellent candidates for the production of industrial starter cultures, since they dominated the fermentation process and produced wines characterized by peculiar oenological and organoleptic features.
Collapse
|
25
|
|
26
|
Petruzzi L, Bevilacqua A, Baiano A, Beneduce L, Corbo MR, Sinigaglia M. In vitro removal of ochratoxin A by two strains of Saccharomyces cerevisiae and their performances under fermentative and stressing conditions. J Appl Microbiol 2013; 116:60-70. [PMID: 24112596 DOI: 10.1111/jam.12350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/28/2013] [Accepted: 09/13/2013] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this research was to study the effect of time, temperature, sugar content and addition of diammonium phosphate (DAP) on ochratoxin A (OTA) removal by two strains of Saccharomyces cerevisiae using a completely randomized design. METHODS AND RESULTS The strains were grown in a medium containing OTA (2 μg l(-1)), two sugar levels (200 and 250 g l(-1)), with or without DAP (300 mg l(-1)), and incubated at 25-30°C. The yeasts were able to decrease the toxin amount by c. 70%, with the highest removing effect observed after 3 days at 30°C in the presence of 250 g l(-1) of sugars and with DAP; after 10 days, the toxin was partially released into the medium. The strains produced high ethanol and glycerol contents, showed high tolerance to single/combined stress conditions and possessed β-d-glucosidase, pectinase and xylanase activities. CONCLUSIONS Ochratoxin A removal was affected by time, temperature, sugar and addition of DAP. Moreover, the phenomenon was reversible. SIGNIFICANCE AND IMPACT OF THE STUDY Ochratoxin A removal could be an interesting trait for the selection of promising strains; however, the strains removing efficiently the toxin could release it back; thus, the selection of the starter should take into account both the removal and the binding ability of OTA.
Collapse
Affiliation(s)
- L Petruzzi
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Petruzzi L, Sinigaglia M, Corbo MR, Beneduce L, Bevilacqua A. Ochratoxin A removal by Saccharomyces cerevisiae strains: effect of wine-related physicochemical factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2110-2115. [PMID: 23254552 DOI: 10.1002/jsfa.6010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/31/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND This study investigated the effect of some physicochemical parameters on the removal of ochratoxin A (OTA) by yeasts. RESULTS Two wild strains of Saccharomyces cerevisiae (W47 and Y28) were used to assess OTA removal under various conditions of temperature, pH, ethanol content and incubation time. All samples were analysed for OTA concentration by enzyme-linked immunosorbent assay (ELISA). In addition, yeast oenological traits were investigated: qualitative and technological traits were assessed on appropriate laboratory media, while the main products of microfermentation (sugars, ethanol, glycerol, acetic acid) were evaluated by Fourier transform infrared spectroscopy (FTIR). The results showed OTA reduction by 36-42% in cultures containing 100 g L⁻¹ ethanol incubated at pH 3.5 and 37 °C. CONCLUSION OTA removal was affected by contact time, pH and ethanol content, as it was increased at low pH and by 100 g L⁻¹ ethanol. Moreover, the phenomenon was reversible, as OTA was lowest after 4 days, then it was partially released in the medium.
Collapse
Affiliation(s)
- Leonardo Petruzzi
- Department of Agriculture, Food and Environmental Science, University of Foggia, Foggia, Italy
| | | | | | | | | |
Collapse
|
28
|
Selection of an autochthonous Saccharomyces strain starter for alcoholic fermentation of Sherry base wines. ACTA ACUST UNITED AC 2013; 40:613-23. [DOI: 10.1007/s10295-013-1251-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
Abstract
Several indigenous Saccharomyces strains from musts were isolated in the Jerez de la Frontera region, at the end of spontaneous fermentation, in order to select the most suitable autochthonous yeast starter, during the 2007 vintage. Five strains were chosen for their oenological abilities and fermentative kinetics to elaborate a Sherry base wine. The selected autochthonous strains were characterized by molecular methods: electrophoretic karyotype and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and by physiological parameters: fermentative power, ethanol production, sugar consumption, acidity and volatile compound production, sensory quality, killer phenotype, desiccation, and sulphur dioxide tolerance. Laboratory- and pilot-scale fermentations were conducted with those autochthonous strains. One of them, named J4, was finally selected over all others for industrial fermentations. The J4 strain, which possesses exceptional fermentative properties and oenological qualities, prevails in industrial fermentations, and becomes the principal biological agent responsible for winemaking. Sherry base wine, industrially manufactured by means of the J4 strain, was analyzed, yielding, together with its sensory qualities, final average values of 0.9 g/l sugar content, 13.4 % (v/v) ethanol content and 0.26 g/l volatile acidity content; apart from a high acetaldehyde production, responsible for the distinctive aroma of “Fino”. This base wine was selected for “Fino” Sherry elaboration and so it was fortified; it is at present being subjected to biological aging by the so-called “flor” yeasts. The “flor” velum formed so far is very high quality. To the best of our knowledge, this is the first study covering from laboratory to industrial scale of characterization and selection of autochthonous starter intended for alcoholic fermentation in Sherry base wines. Since the 2010 vintage, the indigenous J4 strain is employed to industrially manufacture a homogeneous, exceptional Sherry base wine for “Fino” Sherry production.
Collapse
|
29
|
Patagonian red wines: selection of Lactobacillus plantarum isolates as potential starter cultures for malolactic fermentation. World J Microbiol Biotechnol 2013; 29:1537-49. [DOI: 10.1007/s11274-013-1337-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/24/2013] [Indexed: 11/26/2022]
|
30
|
Tanguler H. Evaluation ofWilliopsis saturnusInoculum Level on Fermentation and Flavor Compounds of White Wines Made from Emir (Vitis viniferaL.) Grown in Anatolia. FOOD BIOTECHNOL 2012. [DOI: 10.1080/08905436.2012.724038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Surfome analysis of a wild-type wine Saccharomyces cerevisiae strain. Food Microbiol 2011; 28:1220-30. [DOI: 10.1016/j.fm.2011.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 04/18/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022]
|
32
|
de Ullivarri MF, Mendoza LM, Raya RR, Farías ME. Killer phenotype of indigenous yeasts isolated from Argentinian wine cellars and their potential starter cultures for winemaking. Biotechnol Lett 2011; 33:2177-83. [PMID: 21720847 DOI: 10.1007/s10529-011-0674-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
Of 31 yeasts, from different surfaces of two cellars from the northwest region of Argentina, 11 expressed killer activity against the sensitive strain Saccharomyces cerevisiae P351. Five of these killer yeasts were identified as S. cerevisiae by phenotypic tests and PCR-RFLP analysis. Two S. cerevisiae killer strains, Cf5 and Cf8, were selected based on their excellent kinetic and enological properties as potential autochthonous mixed starter cultures to be used during wine fermentation. They could dominate the natural microbiota in fermentation vats and keep the typical sensorial characteristics of the wine of this region.
Collapse
|
33
|
Tristezza M, Vetrano C, Bleve G, Grieco F, Tufariello M, Quarta A, Mita G, Spano G, Grieco F. Autochthonous fermentation starters for the industrial production of Negroamaro wines. J Ind Microbiol Biotechnol 2011; 39:81-92. [PMID: 21691795 DOI: 10.1007/s10295-011-1002-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/07/2011] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to establish a new procedure for the oenological selection of Saccharomyces cerevisiae strains isolated from natural must fermentations of an important Italian grape cultivar, denoted as "Negroamaro". For this purpose, 108 S. cerevisiae strains were selected as they did not produce H(2)S and then assayed by microfermentation tests. The adopted procedure made it possible to identify 10 strains that were low producers of acetic acid and hydrogen sulphide and showed that they completed sugar consumption during fermentation. These strains were characterized for their specific oenological and technological properties and, two of them, strains 6993 and 6920, are good candidates as industrial starter cultures. A novel protocol was set up for their biomass production and they were employed for industrial-scale fermentation in two industrial cellars. The two strains successfully dominated the fermentation process and contributed to increasing the wines' organoleptic quality. The proposed procedure could be very effective for selecting "company-specific" yeast strains, ideal for the production of typical regional wines. "Winery" starter cultures could be produced on request in a small plant just before or during the vintage season and distributed as a fresh liquid concentrate culture.
Collapse
Affiliation(s)
- Mariana Tristezza
- C.N.R. Institute of Sciences of Food Production (ISPA), Operative Unit of Lecce, via Provinciale Lecce-Monteroni, 73100, Lecce, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Massera A, Assof M, Sturm ME, Sari S, Jofré V, Cordero-Otero R, Combina M. Selection of indigenous Saccharomyces cerevisiae strains to ferment red musts at low temperature. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0271-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
35
|
Capece A, Pietrafesa R, Romano P. Experimental approach for target selection of wild wine yeasts from spontaneous fermentation of “Inzolia” grapes. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0753-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Exploitation of autochthonous micro-organism potential to enhance the quality of Apulian wines. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0091-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
37
|
Franco-Duarte R, Umek L, Zupan B, Schuller D. Computational approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection. Yeast 2010; 26:675-92. [PMID: 19894212 DOI: 10.1002/yea.1728] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Within this study, we have used a set of computational techniques to relate the genotypes and phenotypes of natural populations of Saccharomyces cerevisiae, using allelic information from 11 microsatellite loci and results from 24 phenotypic tests. A group of 103 strains was obtained from a larger S. cerevisiae winemaking strain collection by clustering with self-organizing maps. These strains were further characterized regarding their allelic combinations for 11 microsatellites and analysed in phenotypic screens that included taxonomic criteria (carbon and nitrogen assimilation tests, growth at different temperatures) and tests with biotechnological relevance (ethanol resistance, H(2)S or aromatic precursors formation). Phenotypic variability was rather high and each strain showed a unique phenotypic profile. The results, expressed as optical density (A(640)) after 22 h of growth, were in agreement with taxonomic data, although with some exceptions, since few strains were capable of consuming arabinose and ribose to a small extent. Based on microsatellite allelic information, naïve Bayesian classifier correctly assigned (AUC = 0.81, p < 10(-8)) most of the strains to the vineyard from where they were isolated, despite their close location (50-100 km). We also identified subgroups of strains with similar values of a phenotypic feature and microsatellite allelic pattern (AUC > 0.75). Subgroups were found for strains with low ethanol resistance, growth at 30 degrees C and growth in media containing galactose, raffinose or urea. The results demonstrate that computational approaches can be used to establish genotype-phenotype relations and to make predictions about a strain's biotechnological potential.
Collapse
Affiliation(s)
- R Franco-Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | | | | | | |
Collapse
|
38
|
Influence of Candida pulcherrima Patagonian strain on alcoholic fermentation behaviour and wine aroma. Int J Food Microbiol 2010; 138:19-25. [DOI: 10.1016/j.ijfoodmicro.2009.12.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 12/01/2009] [Accepted: 12/29/2009] [Indexed: 11/22/2022]
|
39
|
Diversity and oenological characterization of indigenous Saccharomyces cerevisiae associated with Žilavka grapes. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
An optimized protocol for the production of interdelta markers in Saccharomyces cerevisiae by using capillary electrophoresis. J Microbiol Methods 2009; 78:286-91. [DOI: 10.1016/j.mimet.2009.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/15/2009] [Accepted: 06/15/2009] [Indexed: 11/19/2022]
|
41
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|