1
|
Drane K, Sheehan M, Whelan A, Ariel E, Kinobe R. The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment. Antibiotics (Basel) 2024; 13:668. [PMID: 39061350 PMCID: PMC11274174 DOI: 10.3390/antibiotics13070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Antibiotic Resistance Genes (ARGs) are contaminants of emerging concern with marked potential to impact public and environmental health. This review focusses on factors that influence the presence, abundance, and dissemination of ARGs within Wastewater Treatment Plants (WWTPs) and associated effluents. Antibiotic-Resistant Bacteria (ARB) and ARGs have been detected in the influent and the effluent of WWTPs worldwide. Different levels of wastewater treatment (primary, secondary, and tertiary) show different degrees of removal efficiency of ARGs, with further differences being observed when ARGs are captured as intracellular or extracellular forms. Furthermore, routinely used molecular methodologies such as quantitative polymerase chain reaction or whole genome sequencing may also vary in resistome identification and in quantifying ARG removal efficiencies from WWTP effluents. Additionally, we provide an overview of the One Health risk assessment framework, as well as future strategies on how WWTPs can be assessed for environmental and public health impact.
Collapse
Affiliation(s)
- Kezia Drane
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Madoc Sheehan
- College of Science, Technology, and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Anna Whelan
- Townsville Water and Waste, Wastewater Operations, Townsville, QLD 4810, Australia;
| | - Ellen Ariel
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Robert Kinobe
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
2
|
Yue X, Sheng D, Zhuo L, Li YZ. Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism. ENGINEERING MICROBIOLOGY 2023; 3:100075. [PMID: 39629250 PMCID: PMC11610982 DOI: 10.1016/j.engmic.2023.100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 12/07/2024]
Abstract
Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis. The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their manipulation. After more than half a century of research, a series of genetic techniques for myxobacteria have been developed, rendering these mysterious bacteria manipulable. Here, we review the advances in genetic manipulation of myxobacteria, with a particular focus on the exploitation of secondary metabolism. We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploitation of untapped secondary metabolism.
Collapse
Affiliation(s)
- Xinjing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Duohong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Chen Q, Dharmaraj T, Cai PC, Burgener EB, Haddock NL, Spakowitz AJ, Bollyky PL. Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics. Pharmaceutics 2022; 14:1425. [PMID: 35890320 PMCID: PMC9318951 DOI: 10.3390/pharmaceutics14071425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, viruses that infect and replicate within bacteria, impact bacterial responses to antibiotics in complex ways. Recent studies using lytic bacteriophages to treat bacterial infections (phage therapy) demonstrate that phages can promote susceptibility to chemical antibiotics and that phage/antibiotic synergy is possible. However, both lytic and lysogenic bacteriophages can contribute to antimicrobial resistance. In particular, some phages mediate the horizontal transfer of antibiotic resistance genes between bacteria via transduction and other mechanisms. In addition, chronic infection filamentous phages can promote antimicrobial tolerance, the ability of bacteria to persist in the face of antibiotics. In particular, filamentous phages serve as structural elements in bacterial biofilms and prevent the penetration of antibiotics. Over time, these contributions to antibiotic tolerance favor the selection of resistance clones. Here, we review recent insights into bacteriophage contributions to antibiotic susceptibility, resistance, and tolerance. We discuss the mechanisms involved in these effects and address their impact on bacterial fitness.
Collapse
Affiliation(s)
- Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Pamela C. Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
| | - Elizabeth B. Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; (E.B.B.); (A.J.S.)
| | - Naomi L. Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Andy J. Spakowitz
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; (E.B.B.); (A.J.S.)
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| |
Collapse
|
4
|
Nohejl T, Valcek A, Papousek I, Palkovicova J, Wailan AM, Pratova H, Minoia M, Dolejska M. Genomic analysis of qnr-harbouring IncX plasmids and their transferability within different hosts under induced stress. BMC Microbiol 2022; 22:136. [PMID: 35590235 PMCID: PMC9118779 DOI: 10.1186/s12866-022-02546-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background Conjugative plasmids play a major role in the dissemination of antibiotic resistance genes. Knowledge of the plasmid characteristics and behaviour can allow development of control strategies. Here we focus on the IncX group of plasmids carrying genes conferring quinolone resistance (PMQR), reporting their transfer and persistence within host bacteria of various genotypes under distinct conditions and levels of induced stress in form of temperature change and various concentrations of ciprofloxacin supplementation. Methods Complete nucleotide sequences were determined for eight qnr-carrying IncX-type plasmids, of IncX1 (3), IncX2 (3) and a hybrid IncX1-2 (2) types, recovered from Escherichia coli of various origins. This data was compared with further complete sequences of IncX1 and IncX2 plasmids carrying qnr genes (n = 41) retrieved from GenBank and phylogenetic tree was constructed. Representatives of IncX1 (pHP2) and IncX2 (p194) and their qnrS knockout mutants, were studied for influence of induced stress and genetic background on conjugative transfer and maintenance. Results A high level of IncX core-genome similarity was found in plasmids of animal, environmental and clinical origin. Significant differences were found between the individual IncX plasmids, with IncX1 subgroup plasmids showing higher conjugative transfer rates than IncX2 plasmids. Knockout of qnr modified transfer frequency of both plasmids. Two stresses applied simultaneously were needed to affect transfer rate of wildtype plasmids, whereas a single stress was sufficient to affect the IncX ΔqnrS plasmids. The conjugative transfer was shown to be biased towards the host phylogenetic proximity. A long-term cultivation experiment pointed out the persistence of IncX plasmids in the antibiotic-free environment. Conclusions The study indicated the stimulating effect of ciprofloxacin supplementation on the plasmid transfer that can be nullified by the carriage of a single PMQR gene. The findings present the significant properties and behaviour of IncX plasmids carrying antibiotic resistance genes that are likely to play a role in their dissemination and stability in bacterial populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02546-6.
Collapse
Affiliation(s)
- Tomas Nohejl
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Adam Valcek
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic.,Faculty of Medicine, Biomedical Center, Charles University, Pilsen, Czech Republic
| | - Ivo Papousek
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jana Palkovicova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Alexander M Wailan
- Parasites and Microbes, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Hana Pratova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Marco Minoia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic. .,CEITEC, University of Veterinary Sciences Brno, Brno, Czech Republic. .,Faculty of Medicine, Biomedical Center, Charles University, Pilsen, Czech Republic. .,Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
5
|
Liu G, Thomsen LE, Olsen JE. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review. J Antimicrob Chemother 2021; 77:556-567. [PMID: 34894259 DOI: 10.1093/jac/dkab450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of antimicrobial resistance (AMR) among pathogenic bacteria constitute an accelerating crisis for public health. The selective pressures caused by increased use and misuse of antimicrobials in medicine and livestock production have accelerated the overall selection of resistant bacteria. In addition, horizontal gene transfer (HGT) plays an important role in the spread of resistance genes, for example mobilizing reservoirs of AMR from commensal bacteria into pathogenic ones. Antimicrobials, besides antibacterial function, also result in undesirable effects in the microbial populations, including the stimulation of HGT. The main aim of this narrative review was to present an overview of the current knowledge of the impact of antimicrobials on HGT in bacteria, including the effects of transformation, transduction and conjugation, as well as other less well-studied mechanisms of HGT. It is widely accepted that conjugation plays a major role in the spread of AMR in bacteria, and the focus of this review is therefore mainly on the evidence provided that antimicrobial treatment affects this process. Other mechanisms of HGT have so far been deemed less important in this respect; however, recent discoveries suggest their role may be larger than previously thought, and the review provides an update on the rather limited knowledge currently available regarding the impact of antimicrobial treatment on these processes as well. A conclusion from the review is that there is an urgent need to investigate the mechanisms of antimicrobial-induced HGT, since this will be critical for developing new strategies to combat the spread of AMR.
Collapse
Affiliation(s)
- Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Line Elnif Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
6
|
Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes (Basel) 2020; 11:genes11111239. [PMID: 33105635 PMCID: PMC7690428 DOI: 10.3390/genes11111239] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.
Collapse
|
7
|
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 2020; 46:578-599. [PMID: 32954887 DOI: 10.1080/1040841x.2020.1813687] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).
Collapse
Affiliation(s)
- Syeda Fatima Nadeem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Syed Fahad Tahir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | | | - Pikunthong Nukthamna
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,College of Research Methodology and Cognitive Science, Burapha University, Chonburi, Thailand
| | - Ali Muhammed Moula Ali
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Salvatore Massa
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
8
|
Hassan R, Tantawy M, Gouda NA, Elzayat MG, Gabra S, Nabih A, Diab AA, El-Hadidi M, Bakry U, Shoeb MR, Elanany M, Shalaby L, Sayed AA. Genotypic characterization of multiple drug resistant Escherichia coli isolates from a pediatric cancer hospital in Egypt. Sci Rep 2020; 10:4165. [PMID: 32139767 PMCID: PMC7057982 DOI: 10.1038/s41598-020-61159-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/20/2020] [Indexed: 11/08/2022] Open
Abstract
Infection with multiple drug resistant (MDR) Escherichia coli poses a life threat to immunocompromised pediatric cancer patients. Our aim is to genotypically characterize the plasmids harbored in MDR E. coli isolates recovered from bacteremic patients of Children's Cancer Hospital in Egypt 57357 (CCHE 57357). In this study, 21 carbapenem-resistant E. coli (CRE) isolates were selected that exhibit Quinolones and Aminoglycosides resistance. Plasmid shot-gun sequencing was performed using Illumina next- generation sequencing platform. Isolates demonstrated resistant to all beta-lactams, carbapenems, aminoglycosides and quinolones. Of the 32 antimicrobial resistant genes identified that exceeded the analysis cutoff coverage, the highest represented genes were aph(6)-Id, sul2, aph(3″)-Ib, aph(3')-Ia, sul1, dfrA12, TEM-220, NDM-11. Isolates employed a wide array of resistance mechanisms including antibiotic efflux, antibiotic inactivation, antibiotic target replacements and antibiotic target alteration. Sequenced isolates displayed diverse insertion sequences, including IS26, suggesting dynamic reshuffling of the harbored plasmids. Most isolates carried plasmids originating from other bacterial species suggesting a possible horizontal gene transfer. Only two isolates showed virulence factors with iroA gene cluster which was found in only one of them. Outside the realms of nosocomial infections among patients in hospitals, our results indicate a transfer of resistant genes and plasmids across different organisms.
Collapse
Affiliation(s)
- Reem Hassan
- Molecular Microbiology Unit, Children's cancer hospital Egypt 57357, Cairo, Egypt
- Department of clinical pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Tantawy
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Nouran A Gouda
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Mariam G Elzayat
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Sara Gabra
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Amena Nabih
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Aya A Diab
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center of Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Usama Bakry
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Mohamed R Shoeb
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Mervat Elanany
- Department of clinical pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Microbiology Unit, Children's cancer hospital Egypt 57357, Cairo, Egypt
| | - Lobna Shalaby
- Infectious disease unit, Children's cancer hospital Egypt 57357, Cairo, Egypt
- Department of pediatric oncology, National cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed A Sayed
- Genomics Program, Children's cancer hospital Egypt 57357, Cairo, Egypt.
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
9
|
Lu J, Wang Y, Li J, Mao L, Nguyen SH, Duarte T, Coin L, Bond P, Yuan Z, Guo J. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. ENVIRONMENT INTERNATIONAL 2018; 121:1217-1226. [PMID: 30389380 DOI: 10.1016/j.envint.2018.10.040] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Antibiotic resistance poses an increasing threat to public health. Horizontal gene transfer (HGT) promoted by antibiotics is recognized as a significant pathway to disseminate antibiotic resistance genes (ARGs). However, it is unclear whether non-antibiotic, anti-microbial (NAAM) chemicals can directly promote HGT of ARGs in the environment. OBJECTIVES We aimed to investigate whether triclosan (TCS), a widely-used NAAM chemical in personal care products, is able to stimulate the conjugative transfer of antibiotic multi-resistance genes carried by plasmid within and across bacterial genera. METHODS We established two model mating systems, to investigate intra-genera transfer and inter-genera transfer. Escherichia coli K-12 LE392 carrying IncP-α plasmid RP4 was used as the donor, and E. coli K-12 MG1655 or Pseudomonas putida KT2440 were the intra- and inter-genera recipients, respectively. The mechanisms of the HGT promoted by TCS were unveiled by detecting oxidative stress and cell membrane permeability, in combination with Nanopore sequencing, genome-wide RNA sequencing and proteomic analyses. RESULTS Exposure of the bacteria to environmentally relevant concentrations of TCS (from 0.02 μg/L to 20 μg/L) significantly stimulated the conjugative transfer of plasmid-encoded multi-resistance genes within and across genera. The TCS exposure promoted ROS generation and damaged bacterial membrane, and caused increased expression of the SOS response regulatory genes umuC, dinB and dinD in the donor. In addition, higher expression levels of ATP synthesis encoding genes in E. coli and P. putida were found with increased TCS dosage. CONCLUSIONS TCS could enhance the conjugative ARGs transfer between bacteria by triggering ROS overproduction at environmentally relevant concentrations. These findings improve our awareness of the hidden risks of NAAM chemicals on the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yue Wang
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jie Li
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Likai Mao
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Son Hoang Nguyen
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Tania Duarte
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Lachlan Coin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Philip Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
10
|
Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 2018; 65:34-44. [PMID: 30248271 DOI: 10.1139/cjm-2018-0275] [Citation(s) in RCA: 400] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A global medical crisis is unfolding as antibiotics lose effectiveness against a growing number of bacterial pathogens. Horizontal gene transfer (HGT) contributes significantly to the rapid spread of resistance, yet the transmission dynamics of genes that confer antibiotic resistance are poorly understood. Multiple mechanisms of HGT liberate genes from normal vertical inheritance. Conjugation by plasmids, transduction by bacteriophages, and natural transformation by extracellular DNA each allow genetic material to jump between strains and species. Thus, HGT adds an important dimension to infectious disease whereby an antibiotic resistance gene (ARG) can be the agent of an outbreak by transferring resistance to multiple unrelated pathogens. Here, we review the small number of cases where HGT has been detected in clinical environments. We discuss differences and synergies between the spread of plasmid-borne and chromosomal ARGs, with a special consideration of the difficulties of detecting transduction and transformation by routine genetic diagnostics. We highlight how 11 of the top 12 priority antibiotic-resistant pathogens are known or predicted to be naturally transformable, raising the possibility that this mechanism of HGT makes significant contributions to the spread of ARGs. HGT drives the evolution of untreatable "superbugs" by concentrating ARGs together in the same cell, thus HGT must be included in strategies to prevent the emergence of resistant organisms in hospitals and other clinical settings.
Collapse
Affiliation(s)
| | - Andrew D S Cameron
- a Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada.,b Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
11
|
Garner E, Chen C, Xia K, Bowers J, Engelthaler DM, McLain J, Edwards MA, Pruden A. Metagenomic Characterization of Antibiotic Resistance Genes in Full-Scale Reclaimed Water Distribution Systems and Corresponding Potable Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6113-6125. [PMID: 29741366 DOI: 10.1021/acs.est.7b05419] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Water reclamation provides a valuable resource for meeting nonpotable water demands. However, little is known about the potential for wastewater reuse to disseminate antibiotic resistance genes (ARGs). Here, samples were collected seasonally in 2014-2015 from four U.S. utilities' reclaimed and potable water distribution systems before treatment, after treatment, and at five points of use (POU). Shotgun metagenomic sequencing was used to profile the resistome (i.e., full contingent of ARGs) of a subset ( n = 38) of samples. Four ARGs ( qnrA, blaTEM, vanA, sul1) were quantified by quantitative polymerase chain reaction. Bacterial community composition (via 16S rRNA gene amplicon sequencing), horizontal gene transfer (via quantification of intI1 integrase and plasmid genes), and selection pressure (via detection of metals and antibiotics) were investigated as potential factors governing the presence of ARGs. Certain ARGs were elevated in all ( sul1; p ≤ 0.0011) or some ( blaTEM, qnrA; p ≤ 0.0145) reclaimed POU samples compared to corresponding potable samples. Bacterial community composition was weakly correlated with ARGs (Adonis, R2 = 0.1424-0.1734) and associations were noted between 193 ARGs and plasmid-associated genes. This study establishes that reclaimed water could convey greater abundances of certain ARGs than potable waters and provides observations regarding factors that likely control ARG occurrence in reclaimed water systems.
Collapse
Affiliation(s)
- Emily Garner
- Via Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Chaoqi Chen
- Department of Crop and Soil Environmental Sciences , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Kang Xia
- Department of Crop and Soil Environmental Sciences , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Jolene Bowers
- Translational Genomics Research Institute , Flagstaff , Arizona 86005 , United States
| | - David M Engelthaler
- Translational Genomics Research Institute , Flagstaff , Arizona 86005 , United States
| | - Jean McLain
- Water Resources Research Center , University of Arizona , Tucson , Arizona 85719 , United States
| | - Marc A Edwards
- Via Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
12
|
Garner E, Benitez R, von Wagoner E, Sawyer R, Schaberg E, Hession WC, Krometis LAH, Badgley BD, Pruden A. Stormwater loadings of antibiotic resistance genes in an urban stream. WATER RESEARCH 2017; 123:144-152. [PMID: 28662396 DOI: 10.1016/j.watres.2017.06.046] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/16/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
Antibiotic resistance presents a critical public health challenge and the transmission of antibiotic resistance via environmental pathways continues to gain attention. Factors driving the spread of antibiotic resistance genes (ARGs) in surface water and sources of ARGs in urban stormwater have not been well-characterized. In this study, five ARGs (sul1, sul2, tet(O), tet(W), and erm(F)) were quantified throughout the duration of three storm runoff events in an urban inland stream. Storm loads of all five ARGs were significantly greater than during equivalent background periods. Neither fecal indicator bacteria measured (E. coli or enterococci) was significantly correlated with sul1, sul2, or erm(F), regardless of whether ARG concentration was absolute or normalized to 16S rRNA levels. Both E. coli and enterococci were correlated with the tetracycline resistance genes, tet(O) and tet(W). Next-generation shotgun metagenomic sequencing was conducted to more thoroughly characterize the resistome (i.e., full complement of ARGs) and profile the occurrence of all ARGs described in current databases in storm runoff in order to inform future watershed monitoring and management. Between 37 and 121 different ARGs were detected in each stream sample, though the ARG profiles differed among storms. This study establishes that storm-driven transport of ARGs comprises a considerable fraction of overall downstream loadings and broadly characterizes the urban stormwater resistome to identify potential marker ARGs indicative of impact.
Collapse
Affiliation(s)
- Emily Garner
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Romina Benitez
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Emily von Wagoner
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Richard Sawyer
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Erin Schaberg
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - W Cully Hession
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Leigh-Anne H Krometis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Brian D Badgley
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
13
|
Yue XJ, Cui XW, Zhang Z, Peng R, Zhang P, Li ZF, Li YZ. A bacterial negative transcription regulator binding on an inverted repeat in the promoter for epothilone biosynthesis. Microb Cell Fact 2017; 16:92. [PMID: 28535774 PMCID: PMC5442856 DOI: 10.1186/s12934-017-0706-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/15/2017] [Indexed: 12/29/2022] Open
Abstract
Background Microbial secondary metabolism is regulated by a complex and mostly-unknown network of global and pathway-specific regulators. A dozen biosynthetic gene clusters for secondary metabolites have been reported in myxobacteria, but a few regulation factors have been identified. Results We identified a transcription regulator Esi for the biosynthesis of epothilones. Inactivation of esi promoted the epothilone production, while overexpression of the gene suppressed the production. The regulation was determined to be resulted from the transcriptional changes of epothilone genes. Esi was able to bind, probably via the N-terminus of the protein, to an inverted repeat sequence in the promoter of the epothilone biosynthetic gene cluster. The Esi-homologous sequences retrieved from the RefSeq database are all of the Proteobacteria. However, the Esi regulation is not universal in myxobacteria, because the esi gene exists only in a few myxobacterial genomes. Conclusions Esi binds to the epothilone promoter and down-regulates the transcriptional level of the whole gene cluster to affect the biosynthesis of epothilone. This is the first transcription regulator identified for epothilone biosynthesis. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0706-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin-Jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xiao-Wen Cui
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Ran Peng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Zhi-Feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
14
|
Garner E, Wallace JS, Argoty GA, Wilkinson C, Fahrenfeld N, Heath LS, Zhang L, Arabi M, Aga DS, Pruden A. Metagenomic profiling of historic Colorado Front Range flood impact on distribution of riverine antibiotic resistance genes. Sci Rep 2016; 6:38432. [PMID: 27917931 PMCID: PMC5137141 DOI: 10.1038/srep38432] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
Record-breaking floods in September 2013 caused massive damage to homes and infrastructure across the Colorado Front Range and heavily impacted the Cache La Poudre River watershed. Given the unique nature of this watershed as a test-bed for tracking environmental pathways of antibiotic resistance gene (ARG) dissemination, we sought to determine the impact of extreme flooding on ARG reservoirs in river water and sediment. We utilized high-throughput DNA sequencing to obtain metagenomic profiles of ARGs before and after flooding, and investigated 23 antibiotics and 14 metals as putative selective agents during post-flood recovery. With 277 ARG subtypes identified across samples, total bulk water ARGs decreased following the flood but recovered to near pre-flood abundances by ten months post-flood at both a pristine site and at a site historically heavily influenced by wastewater treatment plants and animal feeding operations. Network analysis of de novo assembled sequencing reads into 52,556 scaffolds identified ARGs likely located on mobile genetic elements, with up to 11 ARGs per plasmid-associated scaffold. Bulk water bacterial phylogeny correlated with ARG profiles while sediment phylogeny varied along the river’s anthropogenic gradient. This rare flood afforded the opportunity to gain deeper insight into factors influencing the spread of ARGs in watersheds.
Collapse
Affiliation(s)
- Emily Garner
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua S Wallace
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | | - Caitlin Wilkinson
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nicole Fahrenfeld
- Department of Civil and Environmental Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mazdak Arabi
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
15
|
Lopatkin AJ, Huang S, Smith RP, Srimani JK, Sysoeva TA, Bewick S, Karig D, You L. Antibiotics as a selective driver for conjugation dynamics. Nat Microbiol 2016; 1:16044. [PMID: 27572835 PMCID: PMC5010019 DOI: 10.1038/nmicrobiol.2016.44] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/02/2016] [Indexed: 01/19/2023]
Abstract
It is generally assumed that antibiotics can promote horizontal gene transfer. However, because of a variety of confounding factors that complicate the interpretation of previous studies, the mechanisms by which antibiotics modulate horizontal gene transfer remain poorly understood. In particular, it is unclear whether antibiotics directly regulate the efficiency of horizontal gene transfer, serve as a selection force to modulate population dynamics after such gene transfer has occurred, or both. Here, we address this question by quantifying conjugation dynamics in the presence and absence of antibiotic-mediated selection. Surprisingly, we find that sublethal concentrations of antibiotics from the most widely used classes do not significantly increase the conjugation efficiency. Instead, our modelling and experimental results demonstrate that conjugation dynamics are dictated by antibiotic-mediated selection, which can both promote and suppress conjugation dynamics. Our findings suggest that the contribution of antibiotics to the promotion of horizontal gene transfer may have been overestimated. These findings have implications for designing effective antibiotic treatment protocols and for assessing the risks of antibiotic use.
Collapse
Affiliation(s)
- Allison J. Lopatkin
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Shuqiang Huang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Robert P. Smith
- Department of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale FL, USA
| | - Jaydeep K. Srimani
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Tatyana A. Sysoeva
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sharon Bewick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - David Karig
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
16
|
Ye W, Zhang W, Chen Y, Li H, Li S, Pan Q, Tan G, Liu T. A new approach for improving epothilone B yield in Sorangium cellulosum by the introduction of vgb epoF genes. J Ind Microbiol Biotechnol 2016; 43:641-50. [PMID: 26803504 DOI: 10.1007/s10295-016-1735-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
Epothilone B has drawn great attention due to its much stronger anticancer activity and weaker side effects compared with taxol. The relative low yield of epothilone B limited its application. In this study, we report the successful introduction of the vgb gene and the epoF gene into Sorangium cellulosum So ce M4 by electroporation for the first time, which was demonstrated by Southern blot analysis. Results of qRT-PCR, SDS-PAGE and western blot analysis confirmed the transcription and expression of the vgb and epoF genes. LC-MS results showed that the epothilones B, A yields were improved and epothilones D, C yields were decreased. The yields of epothilone B were improved by 57.9 ± 0.3, 62.7 ± 0.8 and 122.4 ± 0.7 % through the introduction of vgb gene, epoF gene and both genes into strain So ce M4, respectively. Our study provides a new approach for improving epothilone B yield in S. cellulosum.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China.
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Qingling Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Guohui Tan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Taomei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| |
Collapse
|
17
|
Zhu LP, Yue XJ, Han K, Li ZF, Zheng LS, Yi XN, Wang HL, Zhang YM, Li YZ. Allopatric integrations selectively change host transcriptomes, leading to varied expression efficiencies of exotic genes in Myxococcus xanthus. Microb Cell Fact 2015; 14:105. [PMID: 26194479 PMCID: PMC4509775 DOI: 10.1186/s12934-015-0294-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 01/29/2023] Open
Abstract
Background Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. Results We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. Conclusions With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0294-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ping Zhu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Kui Han
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Zhi-Feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Lian-Shuai Zheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Xiu-Nan Yi
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Hai-Long Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - You-Ming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
18
|
Li SG, Zhao L, Han K, Li PF, Li ZF, Hu W, Liu H, Wu ZH, Li YZ. Diversity of epothilone producers among Sorangium strains in producer-positive soil habitats. Microb Biotechnol 2013; 7:130-41. [PMID: 24308800 PMCID: PMC3937717 DOI: 10.1111/1751-7915.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022] Open
Abstract
Large-scale surveys show that the anti-tumour compounds known as epothilones are produced by only a small proportion of Sorangium strains, thereby greatly hampering the research and development of these valuable compounds. In this study, to investigate the niche diversity of epothilone-producing Sorangium strains, we re-surveyed four soil samples where epothilone producers were previously found. Compared with the < 2.5% positive strains collected from different places, epothilone producers comprised 25.0-75.0% of the Sorangium isolates in these four positive soil samples. These sympatric epothilone producers differed not only in their 16S rRNA gene sequences and morphologies but also in their production of epothilones and biosynthesis genes. A further exploration of 14 soil samples collected from a larger area around a positive site showed a similar high positive ratio of epothilone producers among the Sorangium isolates. The present results suggest that, in an area containing epothilone producers, the long-term genetic variations and refinements resulting from selective pressure form a large reservoir of epothilone-producing Sorangium strains with diverse genetic compositions.
Collapse
Affiliation(s)
- Shu-Guang Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 2013; 3:2101. [PMID: 23812535 PMCID: PMC3696898 DOI: 10.1038/srep02101] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/13/2013] [Indexed: 01/03/2023] Open
Abstract
Complex environmental conditions can significantly affect bacterial genome size by unknown mechanisms. The So0157-2 strain of Sorangium cellulosum is an alkaline-adaptive epothilone producer that grows across a wide pH range. Here, we show that the genome of this strain is 14,782,125 base pairs, 1.75-megabases larger than the largest bacterial genome from S. cellulosum reported previously. The total 11,599 coding sequences (CDSs) include massive duplications and horizontally transferred genes, regulated by lots of protein kinases, sigma factors and related transcriptional regulation co-factors, providing the So0157-2 strain abundant resources and flexibility for ecological adaptation. The comparative transcriptomics approach, which detected 90.7% of the total CDSs, not only demonstrates complex expression patterns under varying environmental conditions but also suggests an alkaline-improved pathway of the insertion and duplication, which has been genetically testified, in this strain. These results provide insights into and a paradigm for how environmental conditions can affect bacterial genome expansion.
Collapse
|
20
|
Li PF, Li SG, Li ZF, Zhao L, Wang T, Pan HW, Liu H, Wu ZH, Li YZ. Co-cultivation ofSorangium cellulosumstrains affects cellular growth and biosynthesis of secondary metabolite epothilones. FEMS Microbiol Ecol 2013; 85:358-68. [DOI: 10.1111/1574-6941.12125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 12/18/2022] Open
Affiliation(s)
- Peng-fei Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Shu-guang Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Lin Zhao
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Ting Wang
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Hong-wei Pan
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Hong Liu
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Zhi-hong Wu
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| |
Collapse
|
21
|
Zhu LP, Li ZF, Sun X, Li SG, Li YZ. Characteristics and activity analysis of epothilone operon promoters from Sorangium cellulosum strains in Escherichia coli. Appl Microbiol Biotechnol 2013; 97:6857-66. [PMID: 23549746 DOI: 10.1007/s00253-013-4830-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 11/26/2022]
Abstract
The epothilones, compounds with anticancer mechanisms similar to that of paclitaxel (Taxol), are produced by strains of the myxobacterium Sorangium cellulosum, and the gene cluster responsible for epothilone biosynthesis is organised as a large operon. In this work, we showed that the 440-bp promoter regions of the operons from eight S. cellulosum strains have 94.27 % DNA sequence identity and 50 % variability in promoter activity in Escherichia coli. A primer extension analysis revealed two transcriptional start sites (TSSs) at 246 (TSS1) and 193 bp (TSS2) upstream of the translation start site (TLS), respectively. Promoter truncation determined that the basal promoter from the So0157-2 strain is located within a 264-bp region containing weak promoter activity; whereas in the 38-bp region upstream, the 264-bp promoter was required for the strong promoter activity, which was dramatically increased by 11-fold in average. There was a conserved stem-loop structure between TSS2 and the TLS, which was identified in E. coli as a negative regulatory element. In addition, the upstream non-conserved 357-bp non-coding region contributes to the promoter activity, increasing it by 1.5-fold. In conclusion, the expression of the epothilone operon non-coding region in E. coli is regulated by a double promoter (with -35 and -10 regions and two distinct TSSs), a stem-loop structure, and a distal non-coding region.
Collapse
Affiliation(s)
- Li-Ping Zhu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | |
Collapse
|
22
|
|