1
|
Wang Q, Guo S, Ali M, Song X, Tang Z, Zhang Z, Zhang M, Luo Y. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128749. [PMID: 35364527 DOI: 10.1016/j.jhazmat.2022.128749] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Thermally enhanced bioremediation (TEB), a new concept proposed in recent years, explores the combination of thermal treatment and bioremediation to address the challenges of the low efficiency and long duration of bioremediation. This study presented a comprehensive review regarding the fundamentals of TEB and its applications in soil and groundwater remediation. The temperature effects on the bioremediation of contaminants were systematically reviewed. The thermal effects on the physical, chemical and biological characteristics of soil, and the corresponding changes of contaminants bioavailability and microbial metabolic activities were summarized. Specifically, the increase in temperature within a suitable range can proliferate enzymes enrichment, extracellular polysaccharides and biosurfactants production, and further enhancing bioremediation. Furthermore, a systematic evaluation of TEB applications by utilizing traditional in situ heating technologies, as well as renewable energy (e.g., stored aquifer thermal energy and solar energy), was provided. Additionally, TEB has been applied as a biological polishing technology post thermal treatment, which can be a cost-effective method to address the contaminants rebounds in groundwater remediation. However, there are still various challenges to be addressed in TEB, and future research perspectives to further improve the basic understanding and applications of TEB for the remediation of contaminated soil and groundwater are presented.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwei Guo
- Zhejiang University, Hangzhou, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
A comparative study on chemical characterization and properties of surface active compounds from Gram-positive Bacillus and Gram-negative Ochrobactrum strains utilizing pure hydrocarbons and waste mineral lubricating oils. World J Microbiol Biotechnol 2022; 38:141. [PMID: 35710855 DOI: 10.1007/s11274-022-03321-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Mineral lubricating oils are widely used in various industrial sectors for their applications in maintenance and functioning of machineries. However, indiscriminate dumping of these used oils have resulted in polluting the natural reservoirs which subsequently destroys ecological balance. Bacteria can emulsify or lower surface tension between phases of immiscible substrates and can acquire them as their carbon and energy sources. Such a phenomenon is mediated by production of extracellular polymers which can function as eminent surface active compounds based on their surfactant or emulsifying nature. The comparison between bacterial strains (Gram-positive Bacillus stratosphericus A15 and Gram-negative Ochrobactrum pseudintermedium C1) on utilization of pure straight chain hydrocarbons, waste mineral lubricating oils as sole carbon source and chemical characterization of the synthesized surface active compounds were studied. Characterization analysis by Ultraviolet Visible spectrophotometry, Fourier transform infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, Carbon-Hydrogen-Nitrogen analysis has given detailed structural elucidation of surface active compounds. The contrasting nature of bacterial strains in utilization of different hydrocarbons of waste mineral lubricating oils was observed in Gas Chromatography-Mass Spectroscopy analysis. The variation between both strains in utilization of hydrocarbons can be manifested in chemical structural differences and properties of the produced surface active compounds. Scanning Electron Microscopy has given detailed insight into the microstructural difference of the compounds. The utilization of lubricating oils can address waste disposal problem and offer an economical feasible approach for bacterial production of surface active compounds. Our results suggest that these surface active compounds can maneuver applications in environmental bioremediation and agriculture, pharmaceuticals and food as functional biomaterials.
Collapse
|
3
|
Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118686. [PMID: 34920044 DOI: 10.1016/j.envpol.2021.118686] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Structural Selectivity of PAH Removal Processes in Soil, and the Effect of Metal Co-Contaminants. ENVIRONMENTS 2022. [DOI: 10.3390/environments9020023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) form a convenient structural series of molecules with which to examine the selectivity exerted on their removal by soil microbiota. It is known that there is an inverse relationship between PAH molecular size and degradation rates in soil. In this paper, we look at how the magnitude of the slope for this relationship, m, can be used as an indicator of the effect of metal co-contaminants on degradation rates across a range of PAH molecular weights. The analysis utilises data collected from our previous microcosm study (Deary, M.E.; Ekumankama, C.C.; Cummings, S.P. Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants. Journal of Hazard Materials 2016, 307, 240–252) in which we followed the degradation of the 16 US EPA PAHs over 40 weeks in soil microcosms taken from a high organic matter content woodland soil. The soil was amended with a PAH mixture (total concentration of 2166 mg kg−1) and with a range of metal co-contaminant concentrations (lead, up to 782 mg kg−1; cadmium up to 620 mg kg−1; and mercury up to 1150 mg kg−1). It was found that the magnitude of m increases in relation to the applied concentration of metal co-contaminant, indicating a more adverse effect on microbial communities that participate in the removal of higher molecular weight PAHs. We conclude that m is a useful parameter by which we might measure the differential effects of environmental contaminants on the PAH removal. Such information will be useful in planning and implementing remediation strategies.
Collapse
|
5
|
Dash DM, Osborne WJ. Rapid biodegradation and biofilm-mediated bioremoval of organophosphorus pesticides using an indigenous Kosakonia oryzae strain -VITPSCQ3 in a Vertical-flow Packed Bed Biofilm Bioreactor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110290. [PMID: 32058164 DOI: 10.1016/j.ecoenv.2020.110290] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The widespread use of pesticides has been one of the major anthropogenic sources of environmental pollution. Organophosphorus (OP) pesticides are predominantly used in agriculture due to their broad-spectrum insecticidal activity and chemical stability. The study was focused on the biodegradation of OP pesticides, Profenofos (PF) and Quinalphos (QP) in culture media using bacterium isolated from wetland paddy rhizosphere. The strain VITPSCQ3 showed higher pesticide tolerance, efficient biofilm formation and was capable of synthesizing organophosphate degrading enzymes. Based on the 16S rRNA gene sequencing the isolate exhibited maximum sequence similarity with Kosakinia oryzae (GenBank accession number: KR149275). Biodegradation assay with various concentrations of PF and QP (200, 400, 600 and 800 mg L-1) showed maximum degradation up to 82% and 92% within 48 h. The kinetic studies revealed the biodegradation rates (k) to be 0.0844 min-1 and 0.107 min-1 with half-lives (h) of 18 h and 14.8 h for PF and QP. The degradation products were identified by GCMS and possible degradation pathways were proposed using Insilico techniques. To the best of our knowledge, this is the first report on the biodegradation of PF and QP using Kosakonia oryzae. Bioremoval of PF and QP from aqueous solution was performed using the biofilm of VITPSCQ3 developed on selected substrates in a circulating Vertical-flow packed-bed biofilm (VFPBB) bioreactor. Charcoal, gravel and mushroom (Agaricus bisporus) were used as biofilm carriers. Mushroom showed strong biofilm formation with optimum biodegradation capacity of up to 96% for PF and 92% for QP within 120 min reaction time.
Collapse
Affiliation(s)
- Dipti Mayee Dash
- Department of Bioscience, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - W Jabez Osborne
- Department of Bioscience, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv Colloid Interface Sci 2020; 275:102061. [PMID: 31767119 DOI: 10.1016/j.cis.2019.102061] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022]
Abstract
Biosurfactants comprise a wide array of amphiphilic molecules synthesized by plants, animals, and microbes. The synthesis route dictates their molecular characteristics, leading to broad structural diversity and ensuing functional properties. We focus here on low molecular weight (LMW) and high molecular weight (HMW) biosurfactants of microbial origin. These are environmentally safe and biodegradable, making them attractive candidates for applications spanning cosmetics to oil recovery. Biosurfactants spontaneously adsorb at various interfaces and self-assemble in aqueous solution, resulting in useful physicochemical properties such as decreased surface and interfacial tension, low critical micellization concentrations (CMCs), and ability to solubilize hydrophobic compounds. This review highlights the relationships between biosurfactant molecular composition, structure, and their interfacial behavior. It also describes how environmental factors such as temperature, pH, and ionic strength can impact physicochemical properties and self-assembly behavior of biosurfactant-containing solutions and dispersions. Comparison between biosurfactants and their synthetic counterparts are drawn to illustrate differences in their structure-property relationships and potential benefits. Knowledge of biosurfactant properties organized along these lines is useful for those seeking to formulate so-called green or natural products with novel and useful properties.
Collapse
|
7
|
Uad I, Silva-Castro GA, Abrusci C, Catalina F, González-López J, Manzanera M, Calvo C. Production index: A new index to evaluate EPSs as surfactants and bioemulsifiers applied to Halomonas variabilis strain W10 for hydrocarbon bioremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:66-73. [PMID: 30889401 DOI: 10.1016/j.ecoenv.2019.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/11/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Imane Uad
- Department of Microbiology, Institute of Water Research, University of Granada, C/ Ramón y Cajal No. 4, 18071, Granada, Spain; Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud (PTS), Granada, Spain
| | - Gloria Andrea Silva-Castro
- Department of Microbiology, Institute of Water Research, University of Granada, C/ Ramón y Cajal No. 4, 18071, Granada, Spain
| | - Concepción Abrusci
- Department of Molecular Biology, Faculty of Science, Autonomous University of Madrid-UAM, Cantoblanco, 28049, Madrid, Spain
| | - Fernando Catalina
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, CSIC, C/ Juan de la Cierva, No. 3, 28006, Madrid, Spain
| | - Jesús González-López
- Department of Microbiology, Institute of Water Research, University of Granada, C/ Ramón y Cajal No. 4, 18071, Granada, Spain
| | - Maximino Manzanera
- Department of Microbiology, Institute of Water Research, University of Granada, C/ Ramón y Cajal No. 4, 18071, Granada, Spain
| | - Concepción Calvo
- Department of Microbiology, Institute of Water Research, University of Granada, C/ Ramón y Cajal No. 4, 18071, Granada, Spain.
| |
Collapse
|
8
|
Bhattacharya M, Guchhait S, Biswas D, Singh R. Evaluation of a microbial consortium for crude oil spill bioremediation and its potential uses in enhanced oil recovery. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Pathiraja G, Egodawatta P, Goonetilleke A, Te'o VSJ. Solubilization and degradation of polychlorinated biphenyls (PCBs) by naturally occurring facultative anaerobic bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2197-2207. [PMID: 30326452 DOI: 10.1016/j.scitotenv.2018.10.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
A combination of solubilization and degradation is essential for the bioremediation of environments contaminated with complex polychlorinated biphenyls (PCB) mixtures. However, the application of facultative anaerobic microorganisms that can both solubilize and breakdown hydrophobic PCBs in aqueous media under both anaerobic and aerobic conditions, has not been reported widely. In this comprehensive study, four bacteria discovered from soil and sediments and identified as Achromobacter sp. NP03, Ochrobactrum sp. NP04, Lysinibacillus sp. NP05 and Pseudomonas sp. NP06, were investigated for their PCB degradation efficiencies. Aroclor 1260 (50 mg/L), a commercial and highly chlorinated PCB mixture was exposed to the different bacterial strains under aerobic, anaerobic and two stage anaerobic-aerobic conditions. The results confirmed that all four facultative anaerobic microorganisms were capable of degrading PCBs under both anaerobic and aerobic conditions. The highest chlorine removal (9.16 ± 0.8 mg/L), PCB solubility (14.7 ± 0.93 mg/L) and growth rates as OD600 (2.63 ± 0.22) were obtained for Lysinibacillus sp. NP05 under two stage anaerobic-aerobic conditions. The presence of biosurfactants in the culture medium suggested their role in solubility of PCBs. Overall, the positive results obtained suggest that high PCB hydrolysis can be achieved using suitable facultative anaerobic microorganisms under two stage anaerobic-aerobic conditions. Such facultative microbial strains capable of solubilization as well as degradation of PCBs under both anaerobic and aerobic conditions provide an efficient and effective alternative to commonly used bioaugmentation methods utilizing specific obligate aerobic and anaerobic microorganisms, separately.
Collapse
Affiliation(s)
- Gathanayana Pathiraja
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane 4001, Queensland, Australia.
| | - Prasanna Egodawatta
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane 4001, Queensland, Australia.
| | - Ashantha Goonetilleke
- School of Civil Engineering and Built Environment, Queensland University of Technology (QUT), Brisbane 4001, Queensland, Australia.
| | - Valentino S Junior Te'o
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane 4001, Queensland, Australia.
| |
Collapse
|
10
|
Genome-Guided Characterization of Ochrobactrum sp. POC9 Enhancing Sewage Sludge Utilization-Biotechnological Potential and Biosafety Considerations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071501. [PMID: 30013002 PMCID: PMC6069005 DOI: 10.3390/ijerph15071501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
Abstract
Sewage sludge is an abundant source of microorganisms that are metabolically active against numerous contaminants, and thus possibly useful in environmental biotechnologies. However, amongst the sewage sludge isolates, pathogenic bacteria can potentially be found, and such isolates should therefore be carefully tested before their application. A novel bacterial strain, Ochrobactrum sp. POC9, was isolated from a sewage sludge sample collected from a wastewater treatment plant. The strain exhibited lipolytic, proteolytic, cellulolytic, and amylolytic activities, which supports its application in biodegradation of complex organic compounds. We demonstrated that bioaugmentation with this strain substantially improved the overall biogas production and methane content during anaerobic digestion of sewage sludge. The POC9 genome content analysis provided a deeper insight into the biotechnological potential of this bacterium and revealed that it is a metalotolerant and a biofilm-producing strain capable of utilizing various toxic compounds. The strain is resistant to rifampicin, chloramphenicol and β-lactams. The corresponding antibiotic resistance genes (including blaOCH and cmlA/floR) were identified in the POC9 genome. Nevertheless, as only few genes in the POC9 genome might be linked to pathogenicity, and none of those genes is a critical virulence factor found in severe pathogens, the strain appears safe for application in environmental biotechnologies.
Collapse
|
11
|
Zarinviarsagh M, Ebrahimipour G, Sadeghi H. Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application. Lipids Health Dis 2017; 16:177. [PMID: 28923075 PMCID: PMC5604193 DOI: 10.1186/s12944-017-0565-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 01/11/2023] Open
Abstract
Background Alkaline thermostable lipase and biosurfactant producing bacteria are very interested at detergent applications, not only because of their eco-friendly characterize, but alsoproduction lipase and biosurfactant by using cheap materials. Ochrobactrum intermedium strain MZV101 was isolated as washing powder resistant, alkaline thermostable lipase and biosurfactant producing bacterium in order to use at detergent applications. Methods O. intermedium strain MZV101 produces was lipase and biosurfactant in the same media with pH 10 and temperature of 60 °C. Washing test and some detergent compatibility character of lipase enzyme and biosurfactant were assayed. The antimicrobial activity evaluated against various bacteria and fungi. Results Lipase and biosurfactant produced by O. intermedium strain MZV101 exhibited high stability at pH 10–13 and temperature of 70–90 °C, biosurfactant exhibits good stability at pH 9–13 and thermostability in all range. Both lipase and biosurfactant were found to be stable in the presence of different metal ions, detergents and organic solvents. The lipase enzyme extracted using isopropanol with yield of 69.2% and biosurfactant with ethanol emulsification index value of 70.99% and yield of 9.32 (g/l). The single band protein after through from G-50 Sephadex column on SDS-PAGE was calculated to be 99.42 kDa. Biosurfactant O. intermedium strain MZV101 exhibited good antimicrobial activity against Gram-negative bacteria and against various bacterial pathogens. Based upon washing test biosurfactant and lipase O. intermedium strain MZV101considered being strong oil removal. Conclusion The results of this study indicate that isolated lipase and biosurfactant with strong oil removal, antimicrobial activity and good stability could be useful for detergent applications. Graphical abstract ![]()
Collapse
Affiliation(s)
- Mina Zarinviarsagh
- Department of Microbiology and Microbial Biotechnology, Faculty of Biological Sciences and Technology, University of Shahid-Beheshty, Daneshjou Blvd. Evin St.1983969411, Tehran, Iran.
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Biological Sciences and Technology, University of Shahid-Beheshty, Daneshjou Blvd. Evin St.1983969411, Tehran, Iran
| | - Hossein Sadeghi
- Department of Microbiology and Microbial Biotechnology, Faculty of Biological Sciences and Technology, University of Shahid-Beheshty, Daneshjou Blvd. Evin St.1983969411, Tehran, Iran
| |
Collapse
|
12
|
Screening of Halophilic Bacteria Able to Degrade Crude Oil Contamination from Alborz Oil Field, Qom, Iran. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Shift in microbial group during remediation by enhanced natural attenuation (RENA) of a crude oil-impacted soil: a case study of Ikarama Community, Bayelsa, Nigeria. 3 Biotech 2017; 7:152. [PMID: 28597163 DOI: 10.1007/s13205-017-0782-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/15/2017] [Indexed: 10/19/2022] Open
Abstract
Acute and chronic pollution of environments with crude oil does not bode well for biota living within the vicinity of polluted environments. This is due to environmental and public health concerns on the negative impact of crude oil pollution on living organisms. Enhancing microbial activities by adding nutrients and other amendments had proved effective in pollutant removal during bioremediation. This study was carried out to determine how microbial group respond during remediation by enhanced natural attenuation (RENA) during a field-scale bioremediation. Crude oil-polluted soil samples were collected (before, during, and after remediation) from a site undergoing remediation by enhanced natural attenuation (RENA) at Ikarama Community, Bayelsa State, Nigeria, and were analyzed for total petroleum hydrocarbon (TPH), polyaromatic hydrocarbon (PAH), and a shift in microbial community. The gas chromatography-flame ionization detector (GC-FID) results showed that the pollutant concentrations (TPH and PAH) reduced by 98 and 85%, respectively, after the remediation. Culturable hydrocarbon utilizing bacteria (CHUB) was highest (8.3 × 104 cfu/g) for sample collected during the remediation studies, whilst sample collected after remediation had low CHUB (6.1 × 104 cfu/g) compared to that collected before remediation (7.7 × 104 cfu/g). Analysis of 16S rRNA of the isolated CHUB showed they belonged to eight bacterial genera namely: Achromobacter, Alcaligenes, Azospirillus, Bacillus, Lysinibacillus, Ochrobactrum, Proteus, and Pusillimonas, with Alcaligenes as the dominant genus. In this study, it was observed that the bacterial community shifted from mixed group (Gram-positive and -negative) before and during the remediation, to only the latter group after the remediation studies. The betaproteobacteria groups were the dominant isolated bacterial phylotype. This study showed that RENA is an effective method of reducing pollutant concentration in crude oil-polluted sites, and could be applied to other polluted sites in the Niger Delta region of Nigeria to mitigate the devastating effects of crude oil pollution.
Collapse
|
14
|
Sathiyanarayanan G, Dineshkumar K, Yang YH. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol 2017; 43:731-752. [DOI: 10.1080/1040841x.2017.1306689] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Krishnamoorthy Dineshkumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
- Marine and Lake Biogeochemistry Group, Institute F.-A. Forel, Earth and Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| |
Collapse
|
15
|
Markande AR, Nerurkar AS. Microcosm-based interaction studies between members of two ecophysiological groups of bioemulsifier producer and a hydrocarbon degrader from the Indian intertidal zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14462-14471. [PMID: 27068903 DOI: 10.1007/s11356-016-6625-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Isolates were obtained from intertidal zone site samples from all five western and one eastern coastal states of India and were screened. These ecophysiological groups of aerobic, mesophilic, heterotrophic, sporulating, and bioemulsifier-producing bacteria were from Planococcaceae and Bacillaceae. This is the first report of bioemulsifier production by Sporosarcina spp., Lysinibacillus spp., B. thuringiensis, and B. flexus. In this group, Solibacillus silvestris AM1 was found to produce the highest emulsification activity (62.5 %EI) and the sample that yielded it was used to isolate the ecophysiological group of non-bioemulsifier-producing, hydrocarbon-degrading bacteria (belonging to Chromatiales and Bacillales). These yielded hitherto unreported degrader, Rheinheimera sp. CO6 which was selected for the interaction studies (in a microcosm) with bioemulsifier-producing S. silvestris AM1. The gas chromatographic study of these microcosm experiments revealed increased degradation of benzene, toluene, and xylene (BTX) and the growth of Rheinheimera sp. CO6 in the presence of bioemulsifier produced by S. silvestris AM1. Enhancement of the growth of S. silvestris AM1 in the presence of Rheinheimera sp. CO6 was observed possibly due to reduced toxicity of BTX suggesting mutualistic association between the two. This study elucidates the presence and interaction between enhancers and degraders in a hydrocarbon-contaminated intertidal zone and contributes to the knowledge during application of the two in remediation processes.
Collapse
Affiliation(s)
- A R Markande
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002.
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Gujarat, India, 394 350.
| | - A S Nerurkar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| |
Collapse
|
16
|
Mangwani N, Shukla SK, Kumari S, Das S, Rao TS. Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation. RSC Adv 2016. [DOI: 10.1039/c6ra12824f] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study with ten marine isolates demonstrates that the attached phenotypes of the marine bacteria showed significant variation in biofilm architecture and, in turn, biodegradation of PAHs.
Collapse
Affiliation(s)
- Neelam Mangwani
- Laboratory of Environmental Microbiology and Ecology
- Department of Life Science
- National Institute of Technology
- Rourkela-769 008
- India
| | - Sudhir K. Shukla
- Biofouling & Biofilm Processes Section
- Water & Steam Chemistry Division
- BARC
- Kalpakkam-603 102
- India
| | - Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology
- Department of Life Science
- National Institute of Technology
- Rourkela-769 008
- India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology
- Department of Life Science
- National Institute of Technology
- Rourkela-769 008
- India
| | - T. Subba Rao
- Biofouling & Biofilm Processes Section
- Water & Steam Chemistry Division
- BARC
- Kalpakkam-603 102
- India
| |
Collapse
|
17
|
Martínez-Pascual E, Grotenhuis T, Solanas AM, Viñas M. Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:135-143. [PMID: 26177489 DOI: 10.1016/j.jhazmat.2015.06.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Coupling chemical oxidation with bioremediation could be a cost-effective system to cope with soil and groundwater pollution. However, the effects of chemical oxidation on autochthonous microbial communities are scarcely known. A detailed analysis that considers both the efficiency of the two technologies and the response of the microbial communities was performed on a linear alkylbenzene-polluted soil and groundwater samples. The impacts of a modified Fenton's reaction (MFR) at various dosages and of permanganate on the microbiota over 4 weeks were assessed. The permanganate and MFR negatively affected microbial abundance and activity. However, the resilience of certain microbial populations was observed, with a final increase in potential hydrocarbon-degrading populations as determined by both the alkB gene abundance and the predominance of well-known hydrocarbon-degrading phylotypes such as Rhodococcus, Ochrobactrum, Acinetobacter and Cupriavidus genera as determined by 16S rRNA-based DGGE fingerprinting. The assessment of the chemical oxidant impact on autochthonous microbiota should be considered for the optimization of coupled field remediation technologies.
Collapse
Affiliation(s)
| | - Tim Grotenhuis
- Department of Environmental Technology, Wageningen University, Wageningen, The Netherlands
| | - Anna M Solanas
- Department of Microbiology, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain
| | - Marc Viñas
- GIRO Joint Research Unit IRTA-UPC, IRTA, Torre Marimon, E-08140 Caldes de Montbui, Spain.
| |
Collapse
|
18
|
Bhattacharya M, Biswas D, Sana S, Datta S. Biodegradation of waste lubricants by a newly isolated Ochrobactrum sp. C1. 3 Biotech 2015; 5:807-817. [PMID: 28324536 PMCID: PMC4569622 DOI: 10.1007/s13205-015-0282-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 02/03/2015] [Indexed: 12/03/2022] Open
Abstract
A potential degrader of paraffinic and aromatic hydrocarbons was isolated from oil-contaminated soil from steel plant effluent area in Burnpur, India. The strain was investigated for degradation of waste lubricants (waste engine oil and waste transformer oil) that often contain EPA (Environmental Protection Agency, USA) classified priority pollutants and was identified as Ochrobactrum sp. C1 by 16S rRNA gene sequencing. The strain C1 was found to tolerate unusually high waste lubricant concentration along with emulsification capability of the culture broth, and its degradation efficiency was 48.5 ± 0.5 % for waste engine oil and 30.47 ± 0.25 % for waste transformer oil during 7 days incubation period. In order to get optimal degradation efficiency, a three level Box-Behnken design was employed to optimize the physical parameters namely pH, temperature and waste oil concentration. The results indicate that at temperature 36.4 °C, pH 7.3 and with 4.6 % (v/v) oil concentration, the percentage degradation of waste engine oil will be 57 % within 7 days. At this optimized condition, the experimental values (56.7 ± 0.25 %) are in a good agreement with the predicted values with a calculated R 2 to be 0.998 and significant correlation between biodegradation and emulsification activity (E 24 = 69.42 ± 0.32 %) of the culture broth toward engine oil was found with a correlation coefficient of 0.972. This is the first study showing that an Ochrobactrum sp. strain is capable of degrading waste lubricants, which might contribute to the bioremediation of waste lubricating oil-contaminated soil.
Collapse
Affiliation(s)
- Munna Bhattacharya
- Department of Chemical Technology, University of Calcutta, 92, A.P.C Road, Kolkata, 700009, West Bengal, India
| | - Dipa Biswas
- Department of Chemical Technology, University of Calcutta, 92, A.P.C Road, Kolkata, 700009, West Bengal, India.
| | - Santanu Sana
- Department of Chemical Technology, University of Calcutta, 92, A.P.C Road, Kolkata, 700009, West Bengal, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, 92, A.P.C Road, Kolkata, 700009, West Bengal, India
| |
Collapse
|
19
|
Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study. Bioprocess Biosyst Eng 2015; 38:2095-106. [PMID: 26271337 DOI: 10.1007/s00449-015-1449-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
The growth kinetics and biodegradation of two waste lubricating oil samples including waste engine oil (WEO) and waste transformer oil (WTO) were studied using pure isolates and mixed culture of Ochrobactrum sp. C1 and Bacillus sp. K1. The mixed culture significantly influenced degradation efficiency of the pure isolates through bioaugmentation process. In particular, the mixed culture was capable of growing on various n-alkanes and polycyclic aromatic hydrocarbons and was able to tolerate unusually high concentrations of waste lubricants (WEO-86.0 g/L and WTO-81.5 g/L). The initial concentration of waste lubricating oils has been varied in the range of 1-10 % (v/v). Under this experimental range, the bacterial growth has been observed to follow Haldane-type kinetics characterizing the presence of substrate inhibition. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max = 0.078 h(-1), K S = 23.101 g/L, K i = 43.844 g/L for WEO; and μ max = 0.044 h(-1), K S = 10.662 g/L, K i = 58.310 g/L for WTO. The values of intrinsic kinetic parameters, like specific growth rate μ max, half saturation constant, K S, inhibition constant, K i and the maximum substrate concentration, S max and growth yield coefficient Y x/s , have been determined using each model hydrocarbon and their mixture as limiting substrate. Relative changes in the values of the kinetic parameters have been correlated to the number of carbon atoms present in n-alkanes. The metabolites from degradation of model hydrocarbon compounds have been identified by GC-MS to elucidate the possible pathway of waste lubricating oil degradation process.
Collapse
|
20
|
Characterization and upregulation of bifunctional phosphoglucomutase/phosphomannomutase enzyme in an exobiopolymer overproducing strain of Acinetobacter haemolyticus. Microbiol Res 2015; 181:8-14. [PMID: 26640047 DOI: 10.1016/j.micres.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 11/24/2022]
Abstract
Several members of the Acinetobacter spp. produce exobiopolymer (EBP) of considerable biotechnological interest. In a previous study, we reported phosphate removal capacity of EBP produced by Acinetobacter haemolyticus. Insertional mutagenesis was attempted to develop EBP-overproducing strains of A. haemolyticus and mutant MG606 was isolated. In order to understand the underlying mechanism of overproduction, the EBP overproducing mutant MG606 was analyzed and compared with the wild type counterpart for its key EBP synthetic enzymes. The EBP produced by MG606 mutant was 650 mg/L compared to 220 mg/L in its wild type counterpart. Significantly high (p<0.05) levels of phosphoglucomutase/phosphomannomutase (PGM/PMM) in MG606 mutant was noted, whereas activities of other enzymes responsible for EBP synthesis showed no significant change (p>0.05). The up-regulation of PGM/PMM expression in mutant was further confirmed by real time reverse transcriptase (RT)-PCR of PGM/PMM transcripts. The optimal conditions for PGM/PMM activity were found to be 35 °C and pH 7.5; PGM/PMM activity was inhibited by ions such as lithium, zinc, nickel. Further, incubation of cells with a PGM inhibitor (lithium) resulted in a concentration-dependent decrease in EBP production further confirming the role of PGM/PMM overexpression in enhanced EBP production by the mutant. Overall the results of our study indicate a key role of PGM/PMM in enhanced EBP production, as evident from enhanced enzyme activity, increased PGM/PMM transcripts and reduction in EBP synthesis by a PGM inhibitor. We envisage a potential exploitation of the insights so obtained to effectively engineer strains of Acinetobacter for overproducing phosphate binding EBP.
Collapse
|
21
|
Biodegradation of naphthenic acid surrogates by axenic cultures. Biodegradation 2015; 26:313-25. [DOI: 10.1007/s10532-015-9736-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 06/08/2015] [Indexed: 02/02/2023]
|
22
|
Bhattacharya M, Biswas D, Sana S, Datta S. Utilization of waste engine oil by Ochrobactrum pseudintermedium strain C1 that secretes an exopolysaccharide as a bioemulsifier. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Lu L, Huggins T, Jin S, Zuo Y, Ren ZJ. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4021-9. [PMID: 24628095 DOI: 10.1021/es4057906] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This study demonstrates that electrodes in a bioelectrochemical system (BES) can potentially serve as a nonexhaustible electron acceptor for in situ bioremediation of hydrocarbon contaminated soil. The deployment of BES not only eliminates aeration or supplement of electron acceptors as in contemporary bioremediation but also significantly shortens the remediation period and produces sustainable electricity. More interestingly, the study reveals that microbial metabolism and community structure distinctively respond to the bioelectrochemically enhanced remediation. Tubular BESs with carbon cloth anode (CCA) or biochar anode (BCA) were inserted into raw water saturated soils containing petroleum hydrocarbons for enhancing in situ remediation. Results show that total petroleum hydrocarbon (TPH) removal rate almost doubled in soils close to the anode (63.5-78.7%) than that in the open circuit positive controls (37.6-43.4%) during a period of 64 days. The maximum current density from the BESs ranged from 73 to 86 mA/m(2). Comprehensive microbial and chemical characterizations and statistical analyses show that the residual TPH has a strongly positive correlation with hydrocarbon-degrading microorganisms (HDM) numbers, dehydrogenase activity, and lipase activity and a negative correlation with soil pH, conductivity, and catalase activity. Distinctive microbial communities were identified at the anode, in soil with electrodes, and soil without electrodes. Uncommon electrochemically active bacteria capable of hydrocarbon degradation such as Comamonas testosteroni, Pseudomonas putida, and Ochrobactrum anthropi were selectively enriched on the anode, while hydrocarbon oxidizing bacteria were dominant in soil samples. Results from genus or phylum level characterizations well agree with the data from cluster analysis. Data from this study suggests that a unique constitution of microbial communities may play a key role in BES enhancement of petroleum hydrocarbons biodegradation in soils.
Collapse
Affiliation(s)
- Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | | | |
Collapse
|
24
|
Nutrients and oxygen alter reservoir biochemical characters and enhance oil recovery during biostimulation. World J Microbiol Biotechnol 2013; 29:2045-54. [DOI: 10.1007/s11274-013-1367-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/29/2013] [Indexed: 11/26/2022]
|
25
|
Silva-Castro GA, Rodelas B, Perucha C, Laguna J, González-López J, Calvo C. Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: assays in a pilot plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 445-446:347-55. [PMID: 23354375 DOI: 10.1016/j.scitotenv.2012.12.081] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/21/2012] [Accepted: 12/25/2012] [Indexed: 05/20/2023]
Abstract
The present study focuses on the remediation of diesel-polluted soil using modified Fenton treatment coupled with inorganic NPK fertilizer ("Fenton+NPK"). Studies were carried out in a pilot plant containing 1 m(3) of sandy soil contaminated with 20,000 mg kg(-1) of diesel, placed outdoors at a temperature ranging between 5 and 10 °C. Results showed that NPK-fertilizer as post-treatment stimulated culturable degrading bacteria and enhanced dehydrogenase activity. Fenton+NPK treatment increased total petroleum hydrocarbon (TPH) removal efficacy. Natural attenuation removed 49% of TPH in the surface layer, 23% of TPH in the non-saturated layer and 4% of the TPH in the saturated layer, while the percentage removed of TPH after Fenton+NPK treatment was 58%, 57% and 32% respectively. The results from our study showed that, immediately after soil contamination, occurred a specialization and differentiation of the bacterial community, but after this initial modification, no significant changes of bacterial diversity was observed under natural attenuation conditions. In contrast, when the Fenton's reagent was applied a reduction of the bacterial biodiversity was observed. However, the post-biostimulation did enhance the degrading microbiota and stimulated their degrading biological activity. In conclusion, biostimulation, as a post-treatment step in chemical oxidation, is an effective solution to remediate hydrocarbon-polluted sites.
Collapse
Affiliation(s)
- Gloria Andrea Silva-Castro
- Department of Microbiology, Institute of Water Research, University of Granada, Spain, C/Ramón y Cajal no 4, 18071 Granada, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Mishra S, Singh SN. Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes. BIORESOURCE TECHNOLOGY 2012; 111:148-154. [PMID: 22405754 DOI: 10.1016/j.biortech.2012.02.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 05/31/2023]
Abstract
In the present study, n-hexadecane degradation in MSM was investigated by three bacteria identified as Pseudomonas aeruginosa PSA5, Rhodococcus sp. NJ2 and Ochrobactrum intermedium P2, isolated from petroleum sludge. During 10 days of incubation, n-hexadecane was degraded to 99% by P. aeruginosa PSA5, 95% by Rhodococcus sp. NJ2 and 92% by O. intermedium P2. During degradation process, the induction of catabolic enzymes alkane hydroxylase, alcohol dehydrogenase and lipase were also examined. Among these enzymes, the highest activities of alkane hydroxylase (185 μmol mg(-1) protein) and alcohol dehydrogenase (75.78 μmol mg(-1) protein) were recorded in Rhodococcus sp. NJ2 while lipase activity was highly induced in P. aeruginosa PSA5 (48.71 μmol mg(-1) protein). Besides, accumulation of n-hexadecane in inclusion bodies was found to be maximum 60.8 g l(-1) in P. aeruginosa PSA5, followed by Rhodococcus sp. NJ2 (56.1 g l(-1)) and the least (51.6 g l(-1)) was found in O. intermedium P2. Biosurfactant production by bacterial strains was indicated by the reduction in surface tension and induction of cell surface hydrophobicity and pseudosolubilization which facilitated n-hexadecane degradation.
Collapse
Affiliation(s)
- Shweta Mishra
- Environmental Science Division, CSIR-National Botanical Research Institute (NBRI), Lucknow 226001, Uttar Pradesh, India
| | | |
Collapse
|
27
|
Eddouaouda K, Mnif S, Badis A, Younes SB, Cherif S, Ferhat S, Mhiri N, Chamkha M, Sayadi S. Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation. J Basic Microbiol 2011; 52:408-18. [PMID: 22052657 DOI: 10.1002/jobm.201100268] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/11/2011] [Indexed: 11/08/2022]
Abstract
A biosurfactant-producing bacterium (Staphylococcus sp. strain 1E) was isolated from an Algerian crude oil contaminated soil. Biosurfactant production was tested with different carbon sources using the surface tension measurement and the oil displacement test. Olive oil produced the highest reduction in surface tension (25.9 dynes cm(-1)). Crude oil presented the best substrate for 1E biosurfactant emulsification activity. The biosurfactant produced by strain 1E reduced the growth medium surface tension below 30 dynes cm(-1). This reduction was also obtained in cell-free filtrates. Biosurfactant produced by strain 1E showed stability in a wide range of pH (from 2 to 12), temperature (from 4 to 55 °C) and salinity (from 0 to 300 g l(-1)) variations. The biosurfactant produced by strain 1E belonged to lipopeptide group and also constituted an antibacterial activity againt the pathogenic bacteria such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis. Phenanthrene solubility in water was enhanced by biosurfactant addition. Our results suggest that the 1E biosurfactant has interesting properties for its application in bioremediation of hydrocarbons contaminated sites.
Collapse
Affiliation(s)
- Kamel Eddouaouda
- Laboratoire des Bioprocédés Environnementaux, Pôle d'Excellence Régional AUF PER-LBPE, Centre de Biotechnologie de Sfax, Tunisie
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hua X, Wu Z, Zhang H, Lu D, Wang M, Liu Y, Liu Z. Degradation of hexadecane by Enterobacter cloacae strain TU that secretes an exopolysaccharide as a bioemulsifier. CHEMOSPHERE 2010; 80:951-956. [PMID: 20537678 DOI: 10.1016/j.chemosphere.2010.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/02/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
A Gram-negative rod-shaped bacterium, previously shown to utilize alkanes and polycyclic aromatic hydrocarbons (PAHs), was identified as Enterobacter cloacae (GenBank accession number, GQ426323) by 16S rRNA sequence analysis and was designated as strain TU. During growing on n-hexadecane as the sole carbon source, the strain TU extracellularly released an exopolysaccharide (EPS) exhibiting bioemulsifying activity into the surrounding medium. The EPS was found to be composed of glucose and galactose with molecular weight of 12.4+/-0.4 kDa. The structure of the EPS was postulated according to by 1D/2D NMR, as follows: -D-Glcp-(1 --> 3)-alpha-d-GlcpAc-(1 --> 3)-alpha-D-Galp-(1 --> 4)-alpha-D-Galp-(1 -->. While an enhanced emulsification and aqueous partitioning of n-hexadecane was displayed as functions of the EPS concentration, the EPS neutralized the zeta potential of E. cloacae TU cell and elevated the surface hydrophobicity of the cells, as determined by the microorganisms adhering to hydrocarbon assay (MATH). This was found to favor the bioavailability of n-hexadecane when it served as the sole carbon source for E. cloacae TU and thereby contributed to the accelerated degradation of this hydrocarbon.
Collapse
Affiliation(s)
- Xiufu Hua
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
29
|
The differential interaction of Brucella and ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens. PLoS One 2009; 4:e5893. [PMID: 19529776 PMCID: PMC2691993 DOI: 10.1371/journal.pone.0005893] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/19/2009] [Indexed: 12/13/2022] Open
Abstract
Background During evolution, innate immunity has been tuned to recognize pathogen-associated molecular patterns. However, some α-Proteobacteria are stealthy intracellular pathogens not readily detected by this system. Brucella members follow this strategy and are highly virulent, but other Brucellaceae like Ochrobactrum are rhizosphere inhabitants and only opportunistic pathogens. To gain insight into the emergence of the stealthy strategy, we compared these two phylogenetically close but biologically divergent bacteria. Methodology/Principal Findings In contrast to Brucella abortus, Ochrobactrum anthropi did not replicate within professional and non-professional phagocytes and, whereas neutrophils had a limited action on B. abortus, they were essential to control O. anthropi infections. O. anthropi triggered proinflammatory responses markedly lower than Salmonella enterica but higher than B. abortus. In macrophages and dendritic cells, the corresponding lipopolysaccharides reproduced these grades of activation, and binding of O. anthropi lipopolysaccharide to the TLR4 co-receptor MD-2 and NF-κB induction laid between those of B. abortus and enteric bacteria lipopolysaccharides. These differences correlate with reported variations in lipopolysaccharide core sugars, sensitivity to bactericidal peptides and outer membrane permeability. Conclusions/Significance The results suggest that Brucellaceae ancestors carried molecules not readily recognized by innate immunity, so that non-drastic variations led to the emergence of stealthy intracellular parasites. They also suggest that some critical envelope properties, like selective permeability, are profoundly altered upon modification of pathogen-associated molecular patterns, and that this represents a further adaptation to the host. It is proposed that this adaptive trend is relevant in other intracellular α-Proteobacteria like Bartonella, Rickettsia, Anaplasma, Ehrlichia and Wolbachia.
Collapse
|