1
|
Bhalla TC, Thakur N, Kumar V. Arylacetonitrilases: Potential Biocatalysts for Green Chemistry. Appl Biochem Biotechnol 2024; 196:1769-1785. [PMID: 37453025 DOI: 10.1007/s12010-023-04643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Nitrilases are the enzymes that catalyze the hydrolysis of nitriles to corresponding carboxylic acid and ammonia. They are broadly categorized into aromatic, aliphatic, and arylacetonitrilases based on their substrate specificity. Most of the studies pertaining to these enzymes in the literature have focused on aromatic and aliphatic nitrilases. However, arylacetonitrilases have attracted the attention of academia and industry in the last several years due to their aryl specificity and enantioselectivity. They have emerged as interesting biocatalytic tools in green chemistry to synthesize useful aryl acids such as mandelic acid and derivatives of phenylacetic acid. The aim of the present review is to collate information on the arylacetonitrilases and their catalytic properties including enantioselectivity and potential applications in organic synthesis.
Collapse
Affiliation(s)
- Tek Chand Bhalla
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005, India.
| | - Neerja Thakur
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005, India
- Department of Biotechnology and Microbiology, Himachal Pradesh, Rajkiya Kanya Mahavidyalaya, Longwood, Shimla, 171001, India
| | - Vijay Kumar
- Department of Biotechnology, Himachal Pradesh University, Himachal Pradesh, Gyan-Path, Shimla, 171005, India
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Singh RV, Sambyal K. Green synthesis aspects of (R)-(-)-mandelic acid; a potent pharmaceutically active agent and its future prospects. Crit Rev Biotechnol 2023; 43:1226-1235. [PMID: 36154348 DOI: 10.1080/07388551.2022.2109004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
(R)-(-)-mandelic acid is an important carboxylic acid known for its numerous potential applications in the pharmaceutical industry as it is an ideal starting material for the synthesis of antibiotics, antiobesity drugs and antitumor agents. In past few decades, the synthesis of (R)-(-)-mandelic acid has been undertaken mainly through the chemical route. However, chemical synthesis of optically pure (R)-(-)-mandelic acid is difficult to achieve at an industrial scale. Therefore, its microbe mediated production has gained considerable attention as it exhibits many merits over the chemical approaches. The present review focuses on various biotechnological strategies for the production of (R)-(-)-mandelic acid through microbial biotransformation and enzymatic catalysis; in particular, an analysis and comparison of the synthetic methods and different enzymes. The wild type as well as recombinant microbial strains for the production of (R)-(-)-mandelic acid have been elucidated. In addition, different microbial strategies used for maximum bioconversion of mandelonitrile into (R)-(-)-mandelic acid are discussed in detail with regard to higher substrate tolerance and maximum bioconversion.HighlightsMandelonitrile, mandelamide and o-chloromandelonitrile can be used as substrates to produce (R)-(-)-mandelic acid by enzymes.Three enzymes (nitrilase, nitrile hydratase and amidase) are systematically introduced for production of (R)-(-)-mandelic acid.Microbial transformation is able to produce optically pure (R)-(-)-mandelic acid with 100% productive yield.
Collapse
Affiliation(s)
| | - Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| |
Collapse
|
3
|
Huang Q, Tao Y, Li H, Guo L, Wang L, Ban C, Shen G. (R,S)-Mandelic acid in pure and binary solvents solubility measurement and its correlation with thermodynamic models. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Scott ME, Wang X, Humphreys LD, Geier MJ, Kannan B, Chan J, Brown G, Dourado DFAR, Gray D, Mix S, Pukin A. Enzyme Optimization and Process Development for a Scalable Synthesis of (R)-2-Methoxymandelic Acid. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark E. Scott
- Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta, Canada, T6S 1A1
| | - Xiaotian Wang
- Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta, Canada, T6S 1A1
| | - Luke D. Humphreys
- Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta, Canada, T6S 1A1
| | - Michael J. Geier
- Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta, Canada, T6S 1A1
| | - Balamurali Kannan
- Gilead Alberta ULC, 1021 Hayter Road NW, Edmonton, Alberta, Canada, T6S 1A1
| | - Johann Chan
- Gilead Sciences, Inc, 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gareth Brown
- Almac Sciences, 20 Seagoe Industrial Est., Craigavon BT63 5QD, U.K
| | | | - Darren Gray
- Almac Sciences, 20 Seagoe Industrial Est., Craigavon BT63 5QD, U.K
| | - Stefan Mix
- Almac Sciences, 20 Seagoe Industrial Est., Craigavon BT63 5QD, U.K
| | - Aliaksei Pukin
- Almac Sciences, 20 Seagoe Industrial Est., Craigavon BT63 5QD, U.K
| |
Collapse
|
5
|
Shen JD, Cai X, Liu ZQ, Zheng YG. Nitrilase: a promising biocatalyst in industrial applications for green chemistry. Crit Rev Biotechnol 2020; 41:72-93. [PMID: 33045860 DOI: 10.1080/07388551.2020.1827367] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nitrilases are widely distributed in nature and are able to hydrolyze nitriles into their corresponding carboxylic acids and ammonia. In industry, nitrilases have been used as green biocatalysts for the production of high value-added products. To date, biocatalysts are considered to be important alternatives to chemical catalysts due to increasing environmental problems and resource scarcity. This review provides an overview of recent advances of nitrilases in aspects of distribution, enzyme screening, molecular structure and catalytic mechanism, protein engineering, and their potential applications in industry.
Collapse
Affiliation(s)
- Ji-Dong Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Xue Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
6
|
Mareya TM, Coady TM, O'Reilly C, Kinsella M, Coffey L, Lennon CM. Process Optimisation Studies and Aminonitrile Substrate Evaluation of Rhodococcus erythropolis SET1, A Nitrile Hydrolyzing Bacterium. ChemistryOpen 2020; 9:512-520. [PMID: 32346499 PMCID: PMC7184877 DOI: 10.1002/open.202000088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 11/16/2022] Open
Abstract
A comprehensive series of optimization studies including pH, solvent and temperature were completed on the nitrile hydrolyzing Rhodococcus erythropolis bacterium SET1 with the substrate 3-hydroxybutyronitrile. These identified temperature of 25 °C and pH of 7 as the best conditions to retain enantioselectivity and activity. The effect of the addition of organic solvents to the biotransformation mixture was also determined. The results of the study suggested that SET1 is suitable for use in selected organo-aqueous media at specific ratios only. The functional group tolerance of the isolate with unprotected and protected β-aminonitriles, structural analogues of β-hydroxynitriles was also investigated with disappointingly poor isolated yields and selectivity obtained. The isolate was further evaluated with the α- aminonitrile phenylglycinonitrile generating acid in excellent yield and ee (>99 % (S) - isomer and 50 % yield). A series of pH studies with this substrate indicated pH 7 to be the optimum pH to avoid product and substrate degradation.
Collapse
Affiliation(s)
- Tatenda M. Mareya
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Tracey M. Coady
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Catherine O'Reilly
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Michael Kinsella
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Lee Coffey
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| | - Claire M. Lennon
- Department of ScienceWaterford Institute of TechnologyCork RoadWaterfordX91K0EKIreland
| |
Collapse
|
7
|
Tang CD, Shi HL, Jia YY, Li X, Wang LF, Xu JH, Yao LG, Kan YC. High level and enantioselective production of L-phenylglycine from racemic mandelic acid by engineered Escherichia coli using response surface methodology. Enzyme Microb Technol 2020; 136:109513. [PMID: 32331718 DOI: 10.1016/j.enzmictec.2020.109513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
L-Phenylglycine (L-PHG) is a member of unnatural amino acids, and becoming more and more important as intermediate for pharmaceuticals, food additives and agrochemicals. However, the existing synthetic methods for L-PHG mainly rely on toxic cyanide chemistry and multistep processes. To provide green, safe and high enantioselective alternatives, we envisaged cascade biocatalysis for the one-pot synthesis of L-PHG from racemic mandelic acid. A engineered E. coli strain was established to co-express mandelate racemase, D-mandelate dehydrogenase and L-leucine dehydrogenase and catalyze a 3-step reaction in one pot, enantioselectively transforming racemic mandelic acid to give L-PHG (e.e. >99 %). After the conditions for biosynthesis of L-PHG optimized by response surface methodology, the yield and space-time yield of L-PHG can reach 87.89 % and 79.70 g·L-1·d-1, which was obviously improved. The high-yielding and enantioselective synthetic methods use cheap and green reagents, and E. coli whole-cell catalysts, thus providing green and useful alternative methods for manufacturing L-PHG.
Collapse
Affiliation(s)
- Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Hong-Ling Shi
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Yuan-Yuan Jia
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Xiang Li
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China
| | - Lin-Feng Wang
- State Key Laboratory of Automotive Biofuel Technology, 1 Tianguan Avenue, Nanyang, Henan, 473000, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China.
| | - Yun-Chao Kan
- Henan Provincial Engineering Laboratory of Insect Bio-Reactor and Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan, 473061, People's Republic of China.
| |
Collapse
|
8
|
Zhimin O, Ma L, Niu Y, Cui J. Preparation of (R)-(-)-mandelic acid by two-step biotransformation of ethyl benzoylformate. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1420063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ou Zhimin
- Pharmaceuticals College, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Lan Ma
- Pharmaceuticals College, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yangpin Niu
- Linan People’s Hospital, Hangzhou, Zhejiang, China
| | - Jian Cui
- Linan People’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Reconstitution of the In Vitro Activity of the Cyclosporine-Specific P450 Hydroxylase from Sebekia benihana and Development of a Heterologous Whole-Cell Biotransformation System. Appl Environ Microbiol 2015; 81:6268-75. [PMID: 26150455 DOI: 10.1128/aem.01353-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/27/2015] [Indexed: 01/09/2023] Open
Abstract
The cytochrome P450 enzyme CYP-sb21 from Sebekia benihana is capable of catalyzing the site-specific hydroxylation of the immunosuppressant cyclosporine (CsA), leading to the single product γ-hydroxy-N-methyl-l-Leu4-CsA (CsA-4-OH). Unlike authentic CsA, this hydroxylated CsA shows significantly reduced immunosuppressive activity while it retains a side effect of CsA, the hair growth stimulation effect. Although CYP-sb21 was previously identified to be responsible for CsA-specific hydroxylation in vivo, the in vitro activity of CYP-sb21 has yet to be established for a deeper understanding of this P450 enzyme and further reaction optimization. In this study, we reconstituted the in vitro activity of CYP-sb21 by using surrogate redox partner proteins of bacterial and cyanobacterial origins. The highest CsA site-specific hydroxylation activity by CYP-sb21 was observed when it was partnered with the cyanobacterial redox system composed of seFdx and seFdR from Synechococcus elongatus PCC 7942. The best bioconversion yields were obtained in the presence of 10% methanol as a cosolvent and an NADPH regeneration system. A heterologous whole-cell biocatalyst using Escherichia coli was also constructed, and the permeability problem was solved by using N-cetyl-N,N,N-trimethylammonium bromide (CTAB). This work provides a useful example for reconstituting a hybrid P450 system and developing it into a promising biocatalyst for industrial application.
Collapse
|
10
|
He YC, Tao ZC, Ding Y, Zhang DP, Wu YQ, Lu Y, Liu F, Xue YF, Wang C, Xu JH. Effective biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate by supplementation of l-glutamine, d-xylose and β-cyclodextrin in n-butyl acetate–water media. J Biotechnol 2015; 203:62-7. [DOI: 10.1016/j.jbiotec.2015.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/15/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
11
|
Cloning, purification and evaluation of the enzymatic properties of a novel arylacetonitrilase from Luminiphilus syltensis NOR5-1B: a potential biocatalyst for the synthesis of mandelic acid and its derivatives. Biotechnol Lett 2015; 37:1655-61. [PMID: 25854992 DOI: 10.1007/s10529-015-1830-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/27/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine nitrilase-mediated hydrolysis of nitriles to produce optically pure α-hydroxycarboxylic acids. RESULTS A novel nitrilase, GPnor51, from Luminiphilus syltensis NOR5-1B was discovered by genomic data mining. It could hydrolyze racemic o-chloromandelonitrile to (R)-o-chloromandelic acid with high enantioselectivity (ee 98.2 %). GPnor51 was overexpressed in Escherichia coli BL21 (DE3), purified, and its catalytic properties studied. GPnor51 had a broad substrate acceptance toward various nitriles with structure diversity. It was an arylacetonitrilase that uses arylacetonitriles as optimal substrates. The V max and K m of GPnor51 towards o-chloromandelonitrile were 1.9 μmol min(-1) mg(-1) protein and 0.38 mM, respectively. GPnor51 also demonstrated high enantioselectivity toward mandelonitrile and other substituted mandelonitrile. CONCLUSION This enzyme has a great potential for commercial production of optically pure (R)-mandelic acid and its derivatives.
Collapse
|
12
|
Zhang ZJ, Yu HL, Imanaka T, Xu JH. Efficient production of (R)-(−)-mandelic acid by isopropanol-permeabilized recombinant E. coli cells expressing Alcaligenes sp. nitrilase. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
He YC, Liu F, Zhang DP, Gao S, Li ZQ, Tao ZC, Ma CL. Biotransformation of 1,3-Propanediol Cyclic Sulfate and Its Derivatives to Diols by Toluene-Permeabilized Cells of Bacillus sp. CCZU11-1. Appl Biochem Biotechnol 2014; 175:2647-58. [DOI: 10.1007/s12010-014-1457-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022]
|
14
|
Chen P, Yang W. Kinetic resolution of mandelate esters via stereoselective acylation catalyzed by lipase PS-30. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Efficient production of (R)-(−)-mandelic acid using glutaraldehyde cross-linked Escherichia coli cells expressing Alcaligenes sp. nitrilase. Bioprocess Biosyst Eng 2013; 37:1241-8. [DOI: 10.1007/s00449-013-1096-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/13/2013] [Indexed: 10/25/2022]
|
16
|
He YC, Ma CL, Zhang X, Li L, Xu JH, Wu MX. Highly enantioselective oxidation of racemic phenyl-1,2-ethanediol to optically pure (R)-(-)-mandelic acid by a newly isolated Brevibacterium lutescens CCZU12-1. Appl Microbiol Biotechnol 2013; 97:7185-94. [PMID: 23760530 DOI: 10.1007/s00253-013-4989-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/06/2023]
Abstract
Enantioselective oxidation of racemic phenyl-1,2-ethanediol into (R)-(-)-mandelic acid by a newly isolated Brevibacterium lutescens CCZU12-1 was demonstrated. It was found that optically active (R)-(-)-mandelic acid (e.e.p > 99.9 %) is produced leaving the other enantiomer (S)-(+)-phenyl-1,2-ethanediol intact. Using fed-batch method, a total of 172.9 mM (R)-(-)-mandelic acid accumulated in the reaction mixture after the seventh feed. Moreover, oxidation of phenyl-1,2-ethanediol using calcium alginate-entrapped resting cells was carried out in the aqueous system, and efficient biocatalyst recycling was achieved as a result of cell immobilization in calcium alginate, with a product-to-biocatalyst ratio of 27.94 g (R)-(-)-mandelic acid g⁻¹ dry cell weight cell after 16 cycles of repeated use.
Collapse
Affiliation(s)
- Yu-Cai He
- Laboratory of Biochemical Engineering, College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou 213164, China.
| | | | | | | | | | | |
Collapse
|
17
|
Xue YP, Xu M, Chen HS, Liu ZQ, Wang YJ, Zheng YG. A Novel Integrated Bioprocess for Efficient Production of (R)-(−)-Mandelic Acid with Immobilized Alcaligenes faecalis ZJUTB10. Org Process Res Dev 2013. [DOI: 10.1021/op3001993] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Ming Xu
- Zhejiang Laiyi Biotechnology Co., Ltd., Shengzhou 312400, Zhejiang, China
| | - Hong-Sheng Chen
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Zhi-Qiang Liu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Ya-Jun Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
- Engineering Research
Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou
310014, Zhejiang, China
| |
Collapse
|
18
|
He YC, Zhou Q, Ma CL, Cai ZQ, Wang LQ, Zhao XY, Chen Q, Gao DZ, Zheng M, Wang XD, Sun Q. Biosynthesis of benzoylformic acid from benzoyl cyanide by a newly isolated Rhodococcus sp. CCZU10-1 in toluene-water biphasic system. BIORESOURCE TECHNOLOGY 2012; 115:88-95. [PMID: 22033370 DOI: 10.1016/j.biortech.2011.09.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/17/2011] [Accepted: 09/20/2011] [Indexed: 05/31/2023]
Abstract
Benzoylformic acid was synthesized from the hydrolysis of benzoyl cyanide by a newly isolated Rhodococcus sp. CCZU10-1. In this study, an aqueous-toluene biphasic system was developed for highly efficient production of benzoylformic acid from the hydrolysis of benzoyl cyanide. In the aqueous-toluene biphasic system, the phase volume ratio, buffer pH and reaction temperature were optimized. Using fed-batch method, a total of 932 mM benzoylformic acid accumulated in the reaction mixture after the 10th feed. Moreover, enzymatic hydrolysis of benzoyl cyanide using calcium alginate entrapped resting cells was carried out in the aqueous-toluene biphasic system, and efficient biocatalyst recycling was achieved as a result of cell immobilization in calcium alginate, with a product-to-biocatalyst ratio of 14.26g benzoylformic acid g(-1) dry cell weight (DCW) cell after 20 cycles of repeated use.
Collapse
Affiliation(s)
- Yu-Cai He
- Laboratory of Biochemical Engineering, College of Pharmaceutical and Life Sciences, Changzhou University, Changzhou 213164, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Efficient Synthesis of (R)-2-Chloro-1-(3-chlorophenyl)ethanol by Permeabilized Whole Cells of Candida ontarioensis. CHINESE JOURNAL OF CATALYSIS 2012. [DOI: 10.1016/s1872-2067(11)60363-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Pawar SV, Meena VS, Kaushik S, Kamble A, Kumar S, Chisti Y, Banerjee UC. Stereo-selective conversion of mandelonitrile to (R)-(−)-mandelic acid using immobilized cells of recombinant Escherichia coli. 3 Biotech 2012. [PMCID: PMC3482447 DOI: 10.1007/s13205-012-0058-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Immobilized cells of a recombinant Escherichia coli expressing nitrilase from Pseudomonas putida were used to catalyze the hydrolysis of mandelonitrile (2-hydroxy-2-phenylacetonitrile) to (R)-(−)-mandelic acid. The cells had been immobilized by entrapment in an alginate matrix. Conditions for the hydrolysis reaction were optimized in shake flasks and in a packed bed reactor. In shake flasks the best conditions for the reaction were a temperature of 40 °C, pH 8, biocatalyst bead diameter of 4.3 mm, sodium alginate concentration in the gel matrix of 2 % (w/v, g/100 mL), a cell dry mass concentration in the bead matrix of 20 mg/mL, an initial substrate concentration of 50 mM and a reaction time of 60 min. Under these conditions, the conversion of mandelonitrile was nearly 95 %. In the packed bed reactor, a feed flow rate of 20 mL/h at a substrate concentration of 200 mM proved to be the best at 40 °C, pH 8, using 4.3 mm beads (2 % w/v sodium alginate in the gel matrix, 20 mg dry cell concentration per mL of gel matrix). This feed flow rate corresponded to a residence time of 0.975 h in the packed bed.
Collapse
Affiliation(s)
- Sandip V. Pawar
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, SAS Nagar, 160 062 Punjab, India
| | - Vachan Singh Meena
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, SAS Nagar, 160 062 Punjab, India
| | - Shubhangi Kaushik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, SAS Nagar, 160 062 Punjab, India
| | - Ashwini Kamble
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, SAS Nagar, 160 062 Punjab, India
| | - Sandeep Kumar
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, SAS Nagar, 160 062 Punjab, India
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - U. C. Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, SAS Nagar, 160 062 Punjab, India
| |
Collapse
|
21
|
Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Appl Microbiol Biotechnol 2012; 95:91-9. [DOI: 10.1007/s00253-012-3993-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/13/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
|
22
|
Ju X, Pan J, Yu HL, Li CX, Xu JH. Improving Pseudomonas sp. esterase performance by engineering approaches for kinetic resolution of 2-acetoxyphenylacetic acids. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|