1
|
Luo J, Xu J, Li Q, Wu L, Pei J, Zhao L. Enhancing indican production in Escherichia coli through a multi-faceted experimental strategy. Bioorg Chem 2025; 161:108570. [PMID: 40373560 DOI: 10.1016/j.bioorg.2025.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/24/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Indican, abundant in plant stems and leaves, serves as a precursor for indigo and indirubin, possessing application potential in many industries. In this study, a multi-faceted experimental strategy for producing indican utilizing tryptophan as the starting material in E. coli was established. This system incorporated the synergistic action of TnaA, MeFMO, and PtUGT2M91A/S145A, a mutant with a 20 % increase in activity of glycosyltransferase PtUGT2, all co-expressed within the bacterial host. Both a UDP-glucose recycling system and an NADPH regeneration system were incorporated for donor regeneration. Finally, a co-culture system aimed at reducing metabolic burdens was designed. After optimization, a maximum yield of 1043 mg/L was achieved, with a molar conversion rate of 48.1 %, representing an almost 14-fold improvement over the performance of a single strain. This study offers a plant-independent synthesis process for indican, paving a new path for year-round indican production.
Collapse
Affiliation(s)
- Jianianhua Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahui Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
| | - Lulu Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jinpu Research Institute, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
2
|
Xiong T, Gao Q, Liu W, Li W, Fan G. Biosynthesis of 2-phenylethanol from styrene using engineered Escherichia coli whole cells. Enzyme Microb Technol 2025; 184:110582. [PMID: 39798251 DOI: 10.1016/j.enzmictec.2025.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
2-Phenylethanol, an aromatic alcohol with a rose scent, is widely used in the cosmetics, food, and pharmaceutical industries. We designed an efficient multi-enzyme cascade pathway for production of 2-phenylethanol from styrene as the substrate. Initially, 2-phenylethanol was produced by overexpression of styrene monooxygenase A (styA), styrene monooxygenase B (styB), styrene oxide isomerase (SOI), alcohol dehydrogenase (yahK), and glucose dehydrogenase (gdh) in Escherichia coli to give 6.28 mM 2-phenylethanol. Subsequently, plasmids with different copy numbers were employed to balance the expression of pathway enzymes to produce 10.28 mM 2-phenylethanol, resulting in a 63.7 % increase in the final yield. Furthermore, the pH and temperature of the whole-cell conversion reaction were optimized, the optimum pH and temperature are 7.5 and 35℃, respectively. Finally, whole-cell conversion experiment was conducted, and the production of 2-phenylethanol reached 48.17 mM within 10 h. This study provides a theoretical and practical foundation for production of 2-phenylethanol.
Collapse
Affiliation(s)
- Tianzhen Xiong
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Qiuyue Gao
- College of Social Science, Xinyang University, 7th New Avenue West, Xinyang, Henan 464000, China
| | - Wei Liu
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130000, China
| | - Wei Li
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Guangyan Fan
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
3
|
Ke X, Dong HD, Zhao XM, Wang XX, Liu ZQ, Zheng YG. Functional Expression and Construction of a Self-Sufficient Cytochrome P450 Chimera for Efficient Steroidal C14α Hydroxylation in Escherichia coli. Biotechnol Bioeng 2025; 122:724-735. [PMID: 39702940 DOI: 10.1002/bit.28911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
C14-functionalized steroids enabled diverse biological activities in anti-gonadotropin and anticancer therapy. However, access to C14-functionalized steroids was impeded by the deficiency of chemical synthetic methods. Recently, several membrane-bound fungal cytochrome P450s (CYPs) have been identified with steroid C14α-hydroxylation activity. However, the lack of efficient heterologous overexpression strategy hampered their further characterization and molecular engineering. In the present study, sequences of fungi-derived CYP genes encoding putative 14α-hydroxylase were selected and bioinformatically analyzed. Substitution of the N-terminal hydrophobic helix by a soluble maltose binding protein tag significantly enhanced the soluble expression level in Escherichia coli. A novel CYP originated from Bipolaris oryzae was discovered with high steroidal C14α-hydroxylation activity when coupled with the redox partner CPRlun. A catalytically self-sufficient chimeric CYP-CPR was built by intramolecular fusion, and the electronic transfer rate was improved. A coenzyme NADPH regeneration system was finally constructed by the co-expression of glucose dehydrogenase. The developed soluble multi-enzyme cascade biotransformation system supported the selective C14α-hydroxylation toward progesterone with a final titer of 34.54 mg/L, the highest level achieved in E. coli-based heterologous expression system. This study provides insightful ideas on the functional expression of fungi-derived CYPs and promises an efficient C14α-hydroxylation system for steroidal drugs through protein engineering.
Collapse
Affiliation(s)
- Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hong-Duo Dong
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xi-Man Zhao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Xiong T, Li X, Liu W, Yue H, Liu J, Bai D, Li W, Fan G. Multienzyme cascade for synthesis of hydroxytyrosol via engineered Escherichia coli. Sci Rep 2025; 15:471. [PMID: 39748076 PMCID: PMC11696566 DOI: 10.1038/s41598-024-84624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025] Open
Abstract
Hydroxytyrosol, a fine chemical, is widely utilized in food and pharmaceutical industries. In this study, we constructed a pathway to produce hydroxytyrosol by co-expressing tyrosin-phenol lyase (TPL), L-amino acid dehydrogenase (aadL), α-keto acid decarboxylase (KAD), aldehyde reductase (yahK) and glucose dehydrogenase (gdh). We changed combinations between plasmids with different copy numbers and target genes, resulting in 84% increase in hydroxytyrosol production. The yield of hydroxytyrosol was further increased 89.3% by optimizing the temperature and pH. Finally, 55.3 mM hydroxytyrosol was produced within 14 h by fed-batch biotransformation. This study provides a novel approach for hydroxytyrosol production.
Collapse
Affiliation(s)
- Tianzhen Xiong
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China.
- Henan Key Laboratory of Tea Plant Biology, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China.
- Henan International Joint Laboratory of Tea-oil tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China.
- Xinyang Normal University, 237 Nanhu Road, Xinyang, 464000, Henan, China.
| | - Xinmeng Li
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
- Henan Key Laboratory of Tea Plant Biology, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Wei Liu
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130000, Jilin, China
| | - Huidie Yue
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
- Henan Key Laboratory of Tea Plant Biology, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Junling Liu
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
- Henan Key Laboratory of Tea Plant Biology, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Dingyuan Bai
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
- Henan Key Laboratory of Tea Plant Biology, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Wei Li
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
- Henan Key Laboratory of Tea Plant Biology, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Guangyan Fan
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
- Henan Key Laboratory of Tea Plant Biology, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China
| |
Collapse
|
5
|
Liu X, Li L, Zhao G, Xiong P. Optimization strategies for CO 2 biological fixation. Biotechnol Adv 2024; 73:108364. [PMID: 38642673 DOI: 10.1016/j.biotechadv.2024.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Global sustainable development faces a significant challenge in effectively utilizing CO2. Meanwhile, CO2 biological fixation offers a promising solution. CO2 has the highest oxidation state (+4 valence state), whereas typical multi‑carbon chemicals have lower valence states. The Gibbs free energy (ΔG) changes of CO2 reductive reactions are generally positive and this renders it necessary to input different forms of energy. Although biological carbon fixation processes are friendly to operate, the thermodynamic obstacles must be overcome. To make this reaction occur favorably and efficiently, diverse strategies to enhance CO2 biological fixation efficiency have been proposed by numerous researchers. This article reviews recent advances in optimizing CO2 biological fixation and intends to provide new insights into achieving efficient biological utilization of CO2. It first outlines the thermodynamic characteristics of diverse carbon fixation reactions and proposes optimization directions for CO2 biological fixation. A comprehensive overview of the catalytic mechanisms, optimization strategies, and challenges encountered by common carbon-fixing enzymes is then provided. Subsequently, potential routes for improving the efficiency of biological carbon fixation are discussed, including the ATP supply, reducing power supply, energy supply, reactor design, and carbon enrichment system modules. In addition, effective artificial carbon fixation pathways were summarized and analyzed. Finally, prospects are made for the research direction of continuously improving the efficiency of biological carbon fixation.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China.
| | - Linqing Li
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China.
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, 255000 Zibo, China; International Joint Laboratory on Extremophilic Bacteria and Biological Synthesis, Shandong University of Technology, 255000 Zibo, China.
| |
Collapse
|
6
|
Wang H, Wang L, Chen J, Hu M, Fang F, Zhou J. Promoting FADH 2 Regeneration of Hydroxylation for High-Level Production of Hydroxytyrosol from Glycerol in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16681-16690. [PMID: 37877749 DOI: 10.1021/acs.jafc.3c05477] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Hydroxytyrosol is a natural polyphenolic compound widely used in the food and drug industries. The current commercial production of hydroxytyrosol relies mainly on plant extracts, which involve long extraction cycles and various raw materials. Microbial fermentation has potential value as an environmentally friendly and low-cost method. Here, a de novo biosynthetic pathway of hydroxytyrosol has been designed and constructed in an Escherichia coli strain with released tyrosine feedback inhibition. By introduction of hpaBC from E. coli and ARO10 and ADH6 from Saccharomyces cerevisiae, the de novo biosynthesis of hydroxytyrosol was achieved. An important finding in cofactor engineering is that the introduction of L-amino acid deaminase (LAAD) promotes not only cofactor regeneration but also metabolic flow redistribution. To further enhance the hydroxylation process, different 4-hydroxyphenylacetate 3-monooxygenase (hpaB) mutants and HpaBC proteins from different sources were screened. Finally, after optimization of the carbon source, pH, and seed medium, the optimum engineered strain produced 9.87 g/L hydroxytyrosol in a 5 L bioreactor. This represents the highest titer reported to date for de novo biosynthesis of hydroxytyrosol in microorganisms.
Collapse
Affiliation(s)
- Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Minglong Hu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Fang Fang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Li L, Ma C, Chai H, He YC. Biological valorization of lignin-derived vanillin to vanillylamine by recombinant E. coli expressing ω-transaminase and alanine dehydrogenase in a petroleum ether-water system. BIORESOURCE TECHNOLOGY 2023:129453. [PMID: 37406835 DOI: 10.1016/j.biortech.2023.129453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Vanillylamine, as an important drug precursor and fine chemical intermediate, has great economic value. By constructing a strategy of double enzyme co-expression, one newly constructed recombinant E. coli HNIQLE-AlaDH expressing ω-transaminase from Aspergillus terreus and alanine dehydrogenase from Bacillus subtilis was firstly used aminate lignin-derived vanillin to vanillylamine by using a relatively low dosage of amine donors (vanillin:L-alanine:isopropylamine = 1:1:1, mol/mol/mol). In addition, in a two-phase system (water:petroleum ether = 80:20 v/v), the bioconversion of vanillin to vanillylamine was catalyzed by HNIQLE-AlaDH cell under the ambient condition, and the vanillylamine yield was 71.5%, respectively. This double-enzyme HNIQLE-AlaDH catalytic strategy was applied to catalyze the bioamination of furfural and 5-hydroxymethylfurfural with high amination efficiency. It showed that the double-enzyme catalytic strategy in this study promoted L-alanine to replace D-Alanine to participate in bioamination of vanillin and its derivatives, showing a great prospect in the green biosynthesis of biobased chemicals from biomass.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Haoyu Chai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China
| | - Yu-Cai He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei Province, PR China; School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
8
|
Wang L, Wang L, Wang R, Wang Z, Wang J, Yuan H, Su J, Li Y, Yang S, Han T. Efficient Biosynthesis of 10-Hydroxy-2-decenoic Acid Using a NAD(P)H Regeneration P450 System and Whole-Cell Catalytic Biosynthesis. ACS OMEGA 2022; 7:17774-17783. [PMID: 35664602 PMCID: PMC9161381 DOI: 10.1021/acsomega.2c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
10-Hydroxy-2-decenoic acid (10-HDA) is an α,β-unsaturated medium-chain carboxylic acid containing a terminal hydroxyl group. It has various unique properties and great economic value. We improved the two-step biosynthesis method of 10-HDA. The conversion rate of the intermediate product trans-2-decenoic acid in the first step of 10-HDA synthesis could reach 93.1 ± 1.3% by combining transporter overexpression and permeation technology strategies. Moreover, the extracellular trans-2-decenoic acid content was five times greater than the intracellular content when 2.0% (v/v) triton X-100 and 1.2% (v/v) tween-80 were each used. In the second step of 10-HDA synthesis, we regenerated NAD(P)H by overexpressing a glucose dehydrogenase with the P450 enzyme (CYP153A33/M228L-CPRBM3) in Escherichia coli, improving the catalytic performance of the trans-2-decenoic acid terminal hydroxylation. Finally, the yield of 10-HDA was 486.5 mg/L using decanoic acid as the substrate with two-step continuous biosynthesis. Our research provides a simplified production strategy to promote the two-step continuous whole-cell catalytic biosynthesis of 10-HDA and other α,β-unsaturated carboxylic acid derivatives.
Collapse
Affiliation(s)
- Li Wang
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Leilei Wang
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Ruiming Wang
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Zhaoyun Wang
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Junqing Wang
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Haibo Yuan
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Jing Su
- State
Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong 250353, China
- Key
Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Yan Li
- Shandong
Freda Biotech Co., Ltd, Jinan, Shandong 250101, China
| | - Suzhen Yang
- Shandong
Freda Biotech Co., Ltd, Jinan, Shandong 250101, China
| | - Tingting Han
- Shandong
Freda Biotech Co., Ltd, Jinan, Shandong 250101, China
| |
Collapse
|
9
|
One-pot synthesis of dihydro-β-ionone from carotenoids using carotenoid cleavage dioxygenase and enoate reductase. Bioprocess Biosyst Eng 2022; 45:891-900. [PMID: 35244776 DOI: 10.1007/s00449-022-02707-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/07/2022] [Indexed: 11/02/2022]
Abstract
Dihydro-β-ionone is a characteristic aroma compound of Osmanthus fragrans and is widely applied in the flavor & fragrance industry. However, the main focus is on chemical synthesis due to the metabolic pathways of dihydro-β-ionone is still unclear. Here, we explored the one-pot synthesis system for dihydro-β-ionone production using carotenoid cleavage dioxygenase (CCD) and enoate reductase. After screening the CCD enzyme, PhCCD1 from the Petunia hybrid was identified as the suitable enzyme for the first step of dihydro-β-ionone synthesis due to the high enzyme activity for carotenoid. The PhCCD1 was expressed in Escherichia coli and further characterized. The optimal activity of PhCCD1 was observed at pH 6.8 and 45 °C. The enzyme was stable over the pH range of 6.0-8.0 and had good thermal stability below 40 °C. Then, we optimized the coupled reaction conditions for dihydro-β-ionone production by PhCCD1 and enoate reductase AaDBR1 from Artemisia annua. Furthermore, we introduced the NADPH regeneration system with a 1.5-fold enhancement for dihydro-β-ionone production. Collectively, approximately 13.34 mg/L dihydro-β-ionone was obtained by the one-pot biosystem with a corresponding molar conversion of 85.8%. For the first time, we successfully designed and constructed a new synthesis pathway for dihydro-β-ionone production in vitro. The coupled catalysis reported herein illustrates the feasibility of producing dihydro-β-ionone from carotenoids and guides further engineering in the food industry.
Collapse
|
10
|
Gu N, Qiu C, Zhao L, Zhang L, Pei J. Enhancing UDP-Rhamnose Supply for Rhamnosylation of Flavonoids in Escherichia coli by Regulating the Modular Pathway and Improving NADPH Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9513-9523. [PMID: 32693583 DOI: 10.1021/acs.jafc.0c03689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UDP-rhamnose is the main type of sugar donor and endows flavonoids with special activity, selectivity, and pharmacological properties by glycosylation. In this study, several UDP-glucose synthesis pathways and UDP-rhamnose synthases were screened to develop an efficient UDP-rhamnose biosynthesis pathway in Escherichia coli. Maximal UDP-rhamnose production reached 82.2 mg/L in the recombinant strain by introducing the cellobiose phosphorolysis pathway and Arabidopsis thaliana UDP-rhamnose synthase (AtRHM). Quercitrin production of 3522 mg/L was achieved in the recombinant strain by coupling the UDP-rhamnose generation system with A. thaliana rhamnosyltransferase (AtUGT78D1) to recycle UDP-rhamnose. To further increase UDP-rhamnose supply, an NADPH-independent fusion enzyme was constructed, the UTP supply was improved, and NADPH regenerators were overexpressed in vivo. Finally, by optimizing the bioconversion conditions, the highest quercitrin production reached 7627 mg/L with the average productivity of 141 mg/(L h), which is the highest yield of quercitrin and efficiency of UDP-rhamnose supply reported to date in E. coli. Therefore, the method described herein for the regeneration of UDP-rhamnose from cellobiose may be widely used for the rhamnosylation of flavonoids and other bioactive substances.
Collapse
Affiliation(s)
- Na Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Lihu Zhang
- Department of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224006, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| |
Collapse
|
11
|
Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem 2020; 295:833-849. [PMID: 31811088 PMCID: PMC6970918 DOI: 10.1074/jbc.rev119.008758] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 enzymes (P450s) are broadly distributed among living organisms and play crucial roles in natural product biosynthesis, degradation of xenobiotics, steroid biosynthesis, and drug metabolism. P450s are considered as the most versatile biocatalysts in nature because of the vast variety of substrate structures and the types of reactions they catalyze. In particular, P450s can catalyze regio- and stereoselective oxidations of nonactivated C-H bonds in complex organic molecules under mild conditions, making P450s useful biocatalysts in the production of commodity pharmaceuticals, fine or bulk chemicals, bioremediation agents, flavors, and fragrances. Major efforts have been made in engineering improved P450 systems that overcome the inherent limitations of the native enzymes. In this review, we focus on recent progress of different strategies, including protein engineering, redox-partner engineering, substrate engineering, electron source engineering, and P450-mediated metabolic engineering, in efforts to more efficiently produce pharmaceuticals and other chemicals. We also discuss future opportunities for engineering and applications of the P450 systems.
Collapse
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| |
Collapse
|
12
|
|
13
|
Xiong T, Jiang J, Bai Y, Fan TP, Zhao Y, Zheng X, Cai Y. Biosynthesis of D-danshensu from L-DOPA using engineered Escherichia coli whole cells. Appl Microbiol Biotechnol 2019; 103:6097-6105. [PMID: 31187210 DOI: 10.1007/s00253-019-09947-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/25/2018] [Indexed: 10/26/2022]
Abstract
D-Danshensu (D-DSS), a traditional Chinese medicine, is used to treat cardiovascular and cerebrovascular diseases. However, current isolation protocols for D-DSS both natural and synthetic are not ideal; therefore, in this study, we have developed a whole-cell biotransformation method to produce D-DSS from L-DOPA. This was done by co-expressing L-amino acid deaminase (aadL), D-lactate dehydrogenase (ldhD), and glucose dehydrogenase (gdh). To begin to optimize the production of D-DSS, varying copy number plasmids were used to express each of the required genes. The resulting strain, Escherichia coli ALG7, which strongly overexpressed aadL, ldhD, and weakly overexpressed gdh, yielded a 378% increase in D-DSS production compared to E. coli ALG1. Furthermore, the optimal reaction conditions for the production of D-DSS were found to be a pH of 7.5, temperature at 35 °C, and 50 g/L wet cells for 12 h. Under these optimized conditions, the D-DSS amount achieved 119.1 mM with an excellent ee (> 99.9%) and a productivity of 9.9 mM/h.
Collapse
Affiliation(s)
- Tianzhen Xiong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jing Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1T, UK
| | - Ye Zhao
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
14
|
Xiong T, Jia P, Jiang J, Bai Y, Fan TP, Zheng X, Cai Y. One-pot, three-step cascade synthesis of D-danshensu using engineered Escherichia coli whole cells. J Biotechnol 2019; 300:48-54. [PMID: 31125578 DOI: 10.1016/j.jbiotec.2019.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
D-danshensu (D-DSS), extracted from the plant Salvia miltiorrhiza (Danshen), is widely used to treat cardiovascular and cerebrovascular diseases. Here we engineered Escherichia coli strains to produce D-DSS from catechol, pyruvate and ammonia by one-pot biotransformation. Tyrosin-phenol lyase (TPL), L-amino acid deaminase (aadL), D-lactate dehydrogenase (ldhD) and glucose dehydrogenase (gdh) genes were overexpressed in Escherichia coli strain. First, the expression of genes was regulated by different copy number plasmids combination, the result of E. coli TALG6, with strong overexpression of TPL, aadL, ldhD and moderate overexpression of gdh, exhibited 253.7% increase D-DSS production compared to E. coli TALG1. Second, the optimum concentration of catechol was found to be 50 mM. Finally, a fed-batch biotransformation strategy was proposed, namely the amount of catechol was added to 50 mM every 2 h. The total production of D-DSS reached 55.35 mM within 14 h, which was 1.7 times that without feeding.
Collapse
Affiliation(s)
- Tianzhen Xiong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Pu Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
15
|
Zhang Z, Li F, Cao Y, Tian Y, Li J, Zong Y, Song H. Electricity-driven 7α-hydroxylation of a steroid catalyzed by a cytochrome P450 monooxygenase in engineered yeast. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01288e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Schematic diagram of the cytochrome P450 monooxygenase-catalyzed BES.
Collapse
Affiliation(s)
- Ziyin Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Yao Tian
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Jiansheng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Yongchao Zong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
16
|
Peng L, Wen Y, Chen Y, Yuan Z, Zhou Y, Cheng X, Chen Y, Yang J. Biocatalytic Preparation of Chiral Sulfoxides through Asymmetric Reductive Resolution by Methionine Sulfoxide Reductase A. ChemCatChem 2018. [DOI: 10.1002/cctc.201800279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Liaotian Peng
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Yuanmei Wen
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Yu Chen
- Generic Drug Research Centre of Guizhou Province, Green Pharmaceuticals Engineering, Research Centre of Guizhou Province; School of Pharmacy; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Zhimei Yuan
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Yang Zhou
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Xiaoling Cheng
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Yongzheng Chen
- Generic Drug Research Centre of Guizhou Province, Green Pharmaceuticals Engineering, Research Centre of Guizhou Province; School of Pharmacy; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Jiawei Yang
- Department of Biochemistry; Zunyi Medical University; Zunyi 563000 P.R. China
| |
Collapse
|
17
|
Marques Netto CGC, Palmeira DJ, Brondani PB, Andrade LH. Enzymatic reactions involving the heteroatoms from organic substrates. AN ACAD BRAS CIENC 2018; 90:943-992. [PMID: 29742205 DOI: 10.1590/0001-3765201820170741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/01/2018] [Indexed: 11/22/2022] Open
Abstract
Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis. Herein, we describe the historical background along with the progress of biocatalyzed reactions involving the heteroatom(S, Se, B, P and Si) from hetero-organic substrates.
Collapse
Affiliation(s)
| | - Dayvson J Palmeira
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrícia B Brondani
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, SC, Brazil
| | - Leandro H Andrade
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
19
|
Cui ZM, Zhang JD, Fan XJ, Zheng GW, Chang HH, Wei WL. Highly efficient bioreduction of 2-hydroxyacetophenone to (S)- and (R)-1-phenyl-1,2-ethanediol by two substrate tolerance carbonyl reductases with cofactor regeneration. J Biotechnol 2017; 243:1-9. [DOI: 10.1016/j.jbiotec.2016.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
|
20
|
Yan Y, Xue XM, Guo YQ, Zhu YG, Ye J. Co-expression of Cyanobacterial Genes for Arsenic Methylation and Demethylation in Escherichia coli Offers Insights into Arsenic Resistance. Front Microbiol 2017; 8:60. [PMID: 28174568 PMCID: PMC5258700 DOI: 10.3389/fmicb.2017.00060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/10/2017] [Indexed: 11/15/2022] Open
Abstract
Arsenite [As(III)] and methylarsenite [MAs(III)] are the most toxic inorganic and methylated arsenicals, respectively. As(III) and MAs(III) can be interconverted in the unicellular cyanobacterium Nostoc sp. PCC 7120 (Nostoc), which has both the arsM gene (NsarsM), which is responsible for arsenic methylation, and the arsI gene (NsarsI), which is responsible for MAs(III) demethylation. It is not clear how the cells prevent a futile cycle of methylation and demethylation. To investigate the relationship between arsenic methylation and demethylation, we constructed strains of Escherichia coli AW3110 (ΔarsRBC) expressing NsarsM or/and NsarsI. Expression of NsarsI conferred MAs(III) resistance through MAs(III) demethylation. Compared to NsArsI, NsArsM conferred higher resistance to As(III) and lower resistance to MAs(III) by methylating both As(III) and MAs(III). The major species found in solution was dimethylarsenate [DMAs(V)]. Co-expression of NsarsM and NsarsI conferred As(III) resistance at levels similar to that with NsarsM alone, although the main species found in solution after As(III) biotransformation was methylarsenate [MAs(V)] rather than DMAs(V). Co-expression of NsarsM and NsarsI conferred a higher level of resistance to MAs(III) than found with expression of NsarsM alone but lower than expression of only NsarsI. Cells co-expressing both genes converted MAs(III) to a mixture of As(III) and DMAs(V). In Nostoc NsarsM is constitutively expressed, while NsarsI is inducible by either As(III) or MAs(III). Thus, our results suggest that at low concentrations of arsenic, NsArsM activity predominates, while NsArsI activity predominates at high concentrations. We propose that coexistence of arsM and arsI genes in Nostoc could be advantageous for several reasons. First, it confers a broader spectrum of resistance to both As(III) and MAs(III). Second, at low concentrations of arsenic, the MAs(III) produced by NsArsM will possibly have antibiotic-like properties and give the organism a competitive advantage. Finally, these results shed light on the role of cyanobacteria in the arsenic biogeochemical cycle.
Collapse
Affiliation(s)
- Yu Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment – Chinese Academy of SciencesXiamen, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xi-Mei Xue
- Key Lab of Urban Environment and Health, Institute of Urban Environment – Chinese Academy of SciencesXiamen, China
| | - Yu-Qing Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment – Chinese Academy of SciencesXiamen, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment – Chinese Academy of SciencesXiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences – Chinese Academy of SciencesBeijing, China
| | - Jun Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment – Chinese Academy of SciencesXiamen, China
| |
Collapse
|
21
|
Conversion of glycerol to 1,3-dihydroxyacetone by glycerol dehydrogenase co-expressed with an NADH oxidase for cofactor regeneration. Biotechnol Lett 2016; 38:1559-64. [PMID: 27233513 DOI: 10.1007/s10529-016-2130-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To investigate the efficiency of a cofactor regeneration enzyme co-expressed with a glycerol dehydrogenase for the production of 1,3-dihydroxyacetone (DHA). RESULTS In vitro biotransformation of glycerol was achieved with the cell-free extracts containing recombinant GlyDH (glycerol dehydrogenase from Escherichia coli), LDH (lactate dehydrogenase form Bacillus subtilis) or LpNox1 (NADH oxidase from Lactobacillus pentosus), giving DHA at 1.3 g l(-1) (GlyDH/LDH) and 2.2 g l(-1) (GlyDH/LpNox1) with total turnover number (TTN) of NAD(+) recycling of 6039 and 11100, respectively. Whole cells of E. coli (GlyDH-LpNox1) co-expressing both GlyDH and LpNox1 were constructed and converted 10 g glycerol l(-1) to DHA at 0.2-0.5 g l(-1) in the presence of zero to 2 mM exogenous NAD(+). The cell free extract of E. coli (GlyDH-LpNox) converted glycerol (2-50 g l(-1)) to DHA from 0.5 to 4.0 g l(-1) (8-25 % conversion) without exogenous NAD(+). CONCLUSIONS The disadvantage of the expensive consumption of NAD(+) for the production of DHA has been overcome.
Collapse
|
22
|
Yang JW, Zheng DJ, Cui BD, Yang M, Chen YZ. RNA-seq transcriptome analysis of a Pseudomonas strain with diversified catalytic properties growth under different culture medium. Microbiologyopen 2016; 5:626-36. [PMID: 27061463 PMCID: PMC4985596 DOI: 10.1002/mbo3.357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 11/11/2022] Open
Abstract
Biocatalysis is an emerging strategy for the production of enantio-pure organic molecules. However, lacking of commercially available enzymes restricts the widespread application of biocatalysis. In this study, we report a Pseudomonas strain which exhibited versatile oxidation activity to synthesize chiral sulfoxides when growing under M9-toluene medium and reduction activity to synthesize chiral alcohols when on Luria-Bertani (LB) medium, respectively. Further comparative transcriptome analysis on samples from these two cultural conditions has identified 1038 differentially expressed genes (DEG). Gene Ontology (GO) enrichment and KEGG pathways analysis demonstrate significant changes in protein synthesis, energy metabolism, and biosynthesis of metabolites when cells cultured under different conditions. We have identified eight candidate enzymes from this bacterial which may have the potential to be used for synthesis of chiral alcohol and sulfoxide chemicals. This work provides insights into the mechanism of diversity in catalytic properties of this Pseudomonas strain growth with different cultural conditions, as well as candidate enzymes for further biocatalysis of enantiomerically pure molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563003, China
| | - Dai-Jun Zheng
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Bao-Dong Cui
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563003, China
| | - Min Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yong-Zheng Chen
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
23
|
Pongtharangkul T, Chuekitkumchorn P, Suwanampa N, Payongsri P, Honda K, Panbangred W. Kinetic properties and stability of glucose dehydrogenase from Bacillus amyloliquefaciens SB5 and its potential for cofactor regeneration. AMB Express 2015; 5:68. [PMID: 26538191 PMCID: PMC4633474 DOI: 10.1186/s13568-015-0157-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 11/10/2022] Open
Abstract
Glucose dehydrogenases (GluDH) from Bacillus species offer several advantages over other NAD(P)H regeneration systems including high stability, inexpensive substrate, thermodynamically favorable reaction and flexibility to regenerate both NADH and NADPH. In this research, characteristics of GluDH from Bacillus amyloliquefaciens SB5 (GluDH-BA) was reported for the first time. Despite a highly similar amino acid sequence when comparing with GluDH from Bacillus subtilis (GluDH-BS), GluDH-BA exhibited significantly higher specific activity (4.7-fold) and stability when pH was higher than 6. While an optimum activity of GluDH-BA was observed at a temperature of 50 °C, the enzyme was stable only up to 42 °C. GluDH-BA exhibited an extreme tolerance towards n-hexane and its respective alcohols. The productivity of GluDH obtained in this study (8.42 mg-GluDH/g-wet cells; 1035 U/g-wet cells) was among the highest productivity reported for recombinant E. coli. With its low KM-value towards glucose (5.5 mM) and NADP+ (0.05 mM), GluDH-BA was highly suitable for in vivo applications. In this work, a recombinant solvent-tolerant B. subtilis BA overexpressing GluDH-BA was developed and evaluated by coupling with B. subtilis overexpressing an enzyme P450 BM3 F87V for a whole-cell hydroxylation of n-hexane. Significantly higher products obtained clearly proved that B. subtilis BA was an effective cofactor regenerator, a valuable asset for bioproduction of value-added chemicals.
Collapse
|
24
|
(6E) and (6Z)-9′-Aporhodoxanthinone, novel carotenoids produced in zeaxanthin-synthesizing-Escherichia coli by redox stress. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
26
|
Yu T, Li JF, Zhu LJ, Hu D, Deng C, Cai YT, Wu MC. Reduction of m-chlorophenacyl chloride coupled with regeneration of NADPH by recombinant Escherichia coli cells co-expressing both carbonyl reductase and glucose 1-dehydrogenase. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1114-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
27
|
Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation. Appl Microbiol Biotechnol 2014; 98:8191-200. [DOI: 10.1007/s00253-014-5706-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 11/25/2022]
|
28
|
|
29
|
Ni Y, Yu HL, Lin GQ, Xu JH. An ene reductase from Clavispora lusitaniae for asymmetric reduction of activated alkenes. Enzyme Microb Technol 2014; 56:40-5. [PMID: 24564901 DOI: 10.1016/j.enzmictec.2013.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/09/2013] [Accepted: 12/30/2013] [Indexed: 01/15/2023]
Abstract
A putative ene reductase gene from Clavispora lusitaniae was heterologously overexpressed in Escherichia coli, and the encoded protein (ClER) was purified and characterized for its biocatalytic properties. This NADPH-dependent flavoprotein was identified with reduction activities toward a diverse range of activated alkenes including conjugated enones, enals, maleimide derivative and α,β-unsaturated carboxylic esters. The purified ClER exhibited a relatively high activity of 7.3 U mg(prot)⁻¹ for ketoisophorone while a remarkable catalytic efficiency (k(cat)/K(m)=810 s⁻¹ mM⁻¹) was obtained for 2-methyl-cinnamaldehyde due to the high affinity. A series of prochiral activated alkenes were stereoselectively reduced by ClER furnishing the corresponding saturated products in up to 99% ee. The practical applicability of ClER was further evaluated for the production of (R)-levodione, a valuable chiral compound, from ketoisophorone. Using the crude enzyme of ClER and glucose dehydrogenase (GDH), 500 mM of ketoisophorone was efficiently converted to (R)-levodione with excellent stereoselectivity (98% ee) within 1h. All these positive features demonstrate a high synthetic potential of ClER in the asymmetric reduction of activated alkenes.
Collapse
Affiliation(s)
- Yan Ni
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
30
|
Biocatalytic production of 5-hydroxy-2-adamantanone by P450cam coupled with NADH regeneration. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Engineering and application of P450 monooxygenases in pharmaceutical and metabolite synthesis. Curr Opin Chem Biol 2013; 17:271-5. [DOI: 10.1016/j.cbpa.2013.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 11/21/2022]
|
32
|
Lee WH, Kim MD, Jin YS, Seo JH. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol 2013; 97:2761-72. [PMID: 23420268 DOI: 10.1007/s00253-013-4750-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 11/30/2022]
Abstract
Efficient regeneration of NADPH is one of the limiting factors that constrain the productivity of biotransformation processes. In order to increase the availability of NADPH for enhanced biotransformation by engineered Escherichia coli, modulation of the pentose phosphate pathway and amplification of the transhydrogenases system have been conventionally attempted as primary solutions. Recently, other approaches for stimulating NADPH regeneration during glycolysis, such as replacement of native glyceradehdye-3-phosphate dehydrogenase (GAPDH) with NADP-dependent GAPDH from Clostridium acetobutylicum and introduction of NADH kinase catalyzing direct phosphorylation of NADH to NADPH from Saccharomyces cerevisiae, were attempted and resulted in remarkable impacts on NADPH-dependent bioprocesses. This review summarizes several metabolic engineering approaches used for improving the NADPH regenerating capacity in engineered E. coli for whole-cell-based bioprocesses and discusses the key features and progress of those attempts.
Collapse
Affiliation(s)
- Won-Heong Lee
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Korea
| | | | | | | |
Collapse
|
33
|
Xu GC, Yu HL, Zhang XY, Xu JH. Access to Optically Active Aryl Halohydrins Using a Substrate-Tolerant Carbonyl Reductase Discovered from Kluyveromyces thermotolerans. ACS Catal 2012. [DOI: 10.1021/cs300430g] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guo-Chao Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology,
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong
Road, Shanghai 200237, People’s Republic of China
| | - Hui-Lei Yu
- Laboratory of Biocatalysis and Synthetic Biotechnology,
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong
Road, Shanghai 200237, People’s Republic of China
| | - Xiao-Yan Zhang
- Laboratory of Biocatalysis and Synthetic Biotechnology,
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong
Road, Shanghai 200237, People’s Republic of China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology,
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong
Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
34
|
Urlacher VB, Girhard M. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 2012; 30:26-36. [DOI: 10.1016/j.tibtech.2011.06.012] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 01/14/2023]
|
35
|
Napan KL, Zeng J, Takemoto JY, Zhan J. A key cytochrome P450 hydroxylase in pradimicin biosynthesis. Bioorg Med Chem Lett 2011; 22:606-9. [PMID: 22082563 DOI: 10.1016/j.bmcl.2011.10.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
Abstract
Pradimicins A-C (1-3) are a group of antifungal and antiviral polyketides from Actinomadura hibisca. The sugar moieties in pradimicins are required for their biological activities. Consequently, the 5-OH that is used for glycosylation plays a critical role in pradimicin biosynthesis. A cytochrome P450 monooxygenase gene, pdmJ, was amplified from the genomic DNA of A. hibisca and expressed in Escherichia coli BL21(DE3). PdmJ introduced a hydroxyl group to G-2A (4), a key pradimicin biosynthetic intermediate, at C-5 to form JX134 (5). A d-Ala-containing pradimicin analog, JX137a (6) was tested as an alternative substrate, but no product was detected by LC-MS, indicating that PdmJ has strict substrate specificity. Kinetic studies revealed a typical substrate inhibition of PdmJ activity. The optimal substrate concentration for the highest velocity is 115μM under the test conditions. Moreover, the conversion rate of 4 to 5 was reduced by the presence of 6, likely due to competitive inhibition. Coexpression of PdmJ and a glucose 1-dehydrogenase in E. coli BL21(DE3) provides an efficient method to produce the important intermediate 5 from 4.
Collapse
Affiliation(s)
- Kandy L Napan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, United States
| | | | | | | |
Collapse
|
36
|
Ni Y, Li CX, Wang LJ, Zhang J, Xu JH. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Org Biomol Chem 2011; 9:5463-8. [DOI: 10.1039/c1ob05285c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|