1
|
Lu X, Hao X, Lv W, Zhuge B, Zong H. 25SrRNA Methyltransferase CgBMT5 From Candida glycerinogenes Improves Tolerance and Fermentation Performance of Saccharomyces cerevisiae and Yarrowia lipolytica From Undetoxified Cellulose Hydrolysate. Biotechnol J 2024; 19:e202400397. [PMID: 39380498 DOI: 10.1002/biot.202400397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024]
Abstract
The hydrolysis of cellulose generates inhibitors like acetate, suppressing fermentation performance. Here, 25SrRNA methyltransferase CgBMT5 from stress-tolerant yeast Candida glycerinogenes was used as an anti-stress gene element in Saccharomyces cerevisiae and Yarrowia lipolytica. Expression of CgBMT5 in S. cerevisiae increased cell tolerance to acetate, high osmolarity, and heat stress and rescued the delay in cell growth under acetate stress. Ethanol productivity was improved from 0.52 g·(L/h) to 0.69 g·(L/h). CgBMT5 improved GFP expression. The transcription factor ARG81 binds to the promoter of CgBMT5. CgBMT5 upregulated HOG1, GPD1, HAA1, and PMA1 and reduced ROS level, thereby improving cell resistance to acetate. CgBMT5 also improved resistance of Y. lipolytica Po1g to multiple-stress. The lipid titer was improved by 37% in the typical medium. Y. lipolytica-CgBMT5 produced 94 mg/L lipid in the undetoxified cellulose hydrolysate.
Collapse
Affiliation(s)
- Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoqing Hao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wen Lv
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Li YC, Xie CY, Yang BX, Tang YQ, Wu B, Sun ZY, Gou M, Xia ZY. Comparative Transcriptome Analysis of Recombinant Industrial Saccharomyces cerevisiae Strains with Different Xylose Utilization Pathways. Appl Biochem Biotechnol 2019; 189:1007-1019. [DOI: 10.1007/s12010-019-03060-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/22/2019] [Indexed: 01/03/2023]
|
3
|
Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 2018; 50:85-108. [DOI: 10.1016/j.ymben.2018.04.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
|
4
|
Kobayashi Y, Sahara T, Ohgiya S, Kamagata Y, Fujimori KE. Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. AMB Express 2018; 8:139. [PMID: 30151682 PMCID: PMC6111014 DOI: 10.1186/s13568-018-0670-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/22/2018] [Indexed: 01/31/2023] Open
Abstract
The pentose phosphate pathway (PPP) plays an important role in the synthesis of ribonucleotides and aromatic amino acids. During bioethanol production from cellulosic biomass composed mainly of d-glucose and d-xylose, the PPP is also involved in xylose metabolism by engineered Saccharomyces cerevisiae. Although the activities and thermostabilities of the four PPP enzymes (transaldolase: TAL1, transketolase: TKL1, ribose-5-phosphate ketol-isomerase: RKI1 and d-ribulose-5-phosphate 3-epimerase: RPE1) can affect the efficiency of cellulosic ethanol production at high temperatures, little is known about the suitable expression levels of these PPP genes. Here, we overexpressed PPP genes from S. cerevisiae and the thermotolerant yeast Kluyveromyces marxianus either singly or in combination in recombinant yeast strains harboring a mutant of xylose isomerase (XI) and evaluated xylose consumption and ethanol production of these yeast transformants in glucose/xylose mixed media at 36 °C. Among the PPP genes examined, we found that: (1) strains that overexpressed S. cerevisiae TKL1 exhibited the highest rate of xylose consumption relative to strains that overexpressed other PPP genes alone; (2) overexpression of RKI1 and TAL1 derived from K. marxianus with S. cerevisiae TKL1 increased the xylose consumption rate by 1.87-fold at 24 h relative to the control strain (from 0.55 to 1.03 g/L/h); (3) the strains with XI showed higher ethanol yield than strains with xylose reductase and xylitol dehydrogenase and (4) PHO13 disruption did not improve xylose assimilation under the experimental conditions. Together these results indicated that optimization of PPP activity improves xylose metabolism in genetically engineered yeast strains, which could be useful for commercial production of ethanol from cellulosic material.
Collapse
|
5
|
Xiong L, Zeng Y, Tang RQ, Alper HS, Bai FW, Zhao XQ. Condition-specific promoter activities in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:58. [PMID: 29631591 PMCID: PMC5891911 DOI: 10.1186/s12934-018-0899-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/26/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is widely studied for production of biofuels and biochemicals. To improve production efficiency under industrially relevant conditions, coordinated expression of multiple genes by manipulating promoter strengths is an efficient approach. It is known that gene expression is highly dependent on the practically used environmental conditions and is subject to dynamic changes. Therefore, investigating promoter activities of S. cerevisiae under different culture conditions in different time points, especially under stressful conditions is of great importance. RESULTS In this study, the activities of various promoters in S. cerevisiae under stressful conditions and in the presence of xylose were characterized using yeast enhanced green fluorescent protein (yEGFP) as a reporter. The stresses include toxic levels of acetic acid and furfural, and high temperature, which are related to fermentation of lignocellulosic hydrolysates. In addition to investigating eight native promoters, the synthetic hybrid promoter P3xC-TEF1 was also evaluated. The results revealed that P TDH3 and the synthetic promoter P3xC-TEF1 showed the highest strengths under almost all the conditions. Importantly, these two promoters also exhibited high stabilities throughout the cultivation. However, the strengths of P ADH1 and P PGK1 , which are generally regarded as 'constitutive' promoters, decreased significantly under certain conditions, suggesting that cautions should be taken to use such constitutive promoters to drive gene expression under stressful conditions. Interestingly, P HSP12 and P HSP26 were able to response to both high temperature and acetic acid stress. Moreover, P HSP12 also led to moderate yEGFP expression when xylose was used as the sole carbon source, indicating that this promoter could be used for inducing proper gene expression for xylose utilization. CONCLUSION The results here revealed dynamic changes of promoter activities in S. cerevisiae throughout batch fermentation in the presence of inhibitors as well as using xylose. These results provide insights in selection of promoters to construct S. cerevisiae strains for efficient bioproduction under practical conditions. Our results also encouraged applications of synthetic promoters with high stability for yeast strain development.
Collapse
Affiliation(s)
- Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yu Zeng
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui-Qi Tang
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hal S Alper
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism (SKLMM), School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues. ACTA ACUST UNITED AC 2017; 44:825-834. [DOI: 10.1007/s10295-017-1915-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 01/29/2017] [Indexed: 12/31/2022]
Abstract
Abstract
The plant cell wall is a source of fermentable sugars in second-generation bioethanol production. However, cellulosic biomass hydrolysis remains an obstacle to bioethanol production in an efficient and low-cost process. Clostridium thermocellum has been studied as a model organism able to produce enzymatic blends that efficiently degrade lignocellulosic biomass, and also as a fermentative microorganism in a consolidated process for the conversion of lignocellulose to bioethanol. In this study, a C. thermocellum strain (designated B8) isolated from goat rumen was characterized for its ability to grow on sugarcane straw and cotton waste, and to produce cellulosomes. We also evaluated C. thermocellum gene expression control in the presence of complex lignocellulosic biomasses. This isolate is capable of growing in the presence of microcrystalline cellulose, sugarcane straw and cotton waste as carbon sources, producing free enzymes and residual substrate-bound proteins (RSBP). The highest growth rate and cellulase/xylanase production were detected at pH 7.0 and 60 °C, after 48 h. Moreover, this strain showed different expression levels of transcripts encoding cellulosomal proteins and proteins with a role in fermentation and catabolic repression.
Collapse
|
7
|
Becker E, Com E, Lavigne R, Guilleux MH, Evrard B, Pineau C, Primig M. The protein expression landscape of mitosis and meiosis in diploid budding yeast. J Proteomics 2017; 156:5-19. [DOI: 10.1016/j.jprot.2016.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022]
|
8
|
Brink DP, Borgström C, Tueros FG, Gorwa-Grauslund MF. Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling. Microb Cell Fact 2016; 15:183. [PMID: 27776527 PMCID: PMC5078928 DOI: 10.1186/s12934-016-0580-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background The sugar sensing and carbon catabolite repression in Baker’s yeast Saccharomyces cerevisiae is governed by three major signaling pathways that connect carbon source recognition with transcriptional regulation. Here we present a screening method based on a non-invasive in vivo reporter system for real-time, single-cell screening of the sugar signaling state in S. cerevisiae in response to changing carbon conditions, with a main focus on the response to glucose and xylose. Results The artificial reporter system was constructed by coupling a green fluorescent protein gene (yEGFP3) downstream of endogenous yeast promoters from the Snf3p/Rgt2p, SNF1/Mig1p and cAMP/PKA signaling pathways: HXT1p/2p/4p; SUC2p, CAT8p; TPS1p/2p and TEF4p respectively. A panel of eight biosensors strains was generated by single copy chromosomal integration of the different constructs in a W303-derived strain. The signaling biosensors were validated for their functionality with flow cytometry by comparing the fluorescence intensity (FI) response in the presence of high or nearly depleted glucose to the known induction/repression conditions of the eight different promoters. The FI signal correlated with the known patterns of the selected promoters while maintaining a non-invasive property on the cellular phenotype, as was demonstrated in terms of growth, metabolites and enzyme activity. Conclusions Once verified, the sensors were used to evaluate the signaling response to varying conditions of extracellular glucose, glycerol and xylose by screening in 96-well microtiter plates. We show that these yeast strains, which do not harbor any recombinant pathways for xylose utilization, are lacking a signaling response for extracellular xylose. However, for the HXT2p/4p sensors, a shift in the flow cytometry population dynamics indicated that internalized xylose does affect the signaling. These results suggest that the previously observed effects of this pentose on the S. cerevisiae physiology and gene regulation can be attributed to xylose and not only to a lack of glucose. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0580-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden.
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Felipe G Tueros
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| |
Collapse
|
9
|
Yaacob N, Mohamad Ali MS, Salleh AB, Abdul Rahman NA. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati. PeerJ 2016; 4:e1751. [PMID: 26989608 PMCID: PMC4793307 DOI: 10.7717/peerj.1751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/12/2016] [Indexed: 12/05/2022] Open
Abstract
Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2 expression, showing the highest expression when glucose was depleted and ethanol-acetic acid was increased. Meanwhile, S. cerevisiae showed a constitutive ADH2 expression throughout the fermentation process. Discussion. ADH2 expression in L. fermentati may be subjected to changes in the presence of non-fermentative carbon source. The nucleotide sequence showed that ADH2 transcription could be influenced by other transcription genes of glycolysis oriented due to the lack of specific activation sites for Adr1. Our study suggests that if Adr1 is not capable of promoting LfeADH2 activation, the transcription can be controlled by Rap1 and Sp1 due to their inherent roles. Therefore in future, it is interesting to observe ADH2 gene being highly regulated by these potential transcription factors and functioned as a promoter for yeast under high volume of ethanol and organic acids.
Collapse
Affiliation(s)
- Norhayati Yaacob
- Department of Biochemistry, Universiti Putra Malaysia, Malaysia; Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Department of Biochemistry, Universiti Putra Malaysia, Malaysia; Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abu Bakar Salleh
- Department of Biochemistry, Universiti Putra Malaysia, Malaysia; Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, Serdang, Malaysia
| | | |
Collapse
|