1
|
Sürmeli Y, Şanlı-Mohamed G. Engineering of xylanases for the development of biotechnologically important characteristics. Biotechnol Bioeng 2023; 120:1171-1188. [PMID: 36715367 DOI: 10.1002/bit.28339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Xylanases are the main biocatalysts used for the reduction of the xylan backbone from hemicellulose, randomly splitting off β-1,4-glycosidic linkages between xylopyranosyl residues. Xylanase market has been annually estimated at 500 million US Dollars and they are potentially used in broad industrial process ranges such as paper pulp biobleaching, xylo-oligosaccharide production, and biofuel manufacture from lignocellulose. The highly stable xylanases are preferred in the downstream procedure of industrial processes because they can tolerate severe conditions. Almost all native xylanases can not endure adverse conditions thus they are industrially not proper to be utilized. Protein engineering is a powerful technology for developing xylanases, which can effectively work in adverse conditions and can meet requirements for industrial processes. This study considered state-of-the-art strategies of protein engineering for creating the xylanase gene diversity, high-throughput screening systems toward upgraded traits of the xylanases, and the prediction and comprehensive analysis of the target mutations in xylanases by in silico methods. Also, key molecular factors have been elucidated for industrial characteristics (alkaliphilic enhancement, thermal stability, and catalytic performance) of GH11 family xylanases. The present review explores industrial characteristics improved by directed evolution, rational design, and semi-rational design as protein engineering approaches for pulp bleaching process, xylooligosaccharides production, and biorefinery & bioenergy production.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | | |
Collapse
|
2
|
Almeida N, Meyer V, Burnet A, Boucher J, Talens-Perales D, Pereira S, Ihalainen P, Levée T, Polaina J, Petit-Conil M, Camarero S, Pinto P. Use of a Novel Extremophilic Xylanase for an Environmentally Friendly Industrial Bleaching of Kraft Pulps. Int J Mol Sci 2022; 23:13423. [PMID: 36362210 PMCID: PMC9654485 DOI: 10.3390/ijms232113423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 10/05/2023] Open
Abstract
Xylanases can boost pulp bleachability in Elemental Chlorine Free (ECF) processes, but their industrial implementation for producing bleached kraft pulps is not straightforward. It requires enzymes to be active and stable at the extreme conditions of alkalinity and high temperature typical of this industrial process; most commercial enzymes are unable to withstand these conditions. In this work, a novel highly thermo and alkaline-tolerant xylanase from Pseudothermotoga thermarum was overproduced in E. coli and tested as a bleaching booster of hardwood kraft pulps to save chlorine dioxide (ClO2) during ECF bleaching. The extremozyme-stage (EXZ) was carried out at 90 °C and pH 10.5 and optimised at lab scale on an industrial oxygen-delignified eucalyptus pulp, enabling us to save 15% ClO2 to reach the mill brightness, and with no detrimental effect on paper properties. Then, the EXZ-assisted bleaching sequence was validated at pilot scale under industrial conditions, achieving 25% ClO2 savings and reducing the generation of organochlorinated compounds (AOX) by 18%, while maintaining pulp quality and papermaking properties. Technology reproducibility was confirmed with another industrial kraft pulp from a mix of hardwoods. The new enzymatic technology constitutes a realistic step towards environmentally friendly production of kraft pulps through industrial integration of biotechnology.
Collapse
Affiliation(s)
- Nazaré Almeida
- RAIZ—Forest and Paper Research Institute, Rua José Estevão 221, Eixo, 3800-783 Aveiro, Portugal
| | - Valérie Meyer
- Centre Technique du Papier—The French Pulp and Paper Technical Centre, Domaine Universitaire, CS90251, CEDEX 9, 38044 Grenoble, France
| | - Auphélia Burnet
- Centre Technique du Papier—The French Pulp and Paper Technical Centre, Domaine Universitaire, CS90251, CEDEX 9, 38044 Grenoble, France
| | - Jeremy Boucher
- Fibre Excellence Saint-Gaudens—Rue du President Saragat, 31800 Saint-Gaudens, France
| | - David Talens-Perales
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Susana Pereira
- RAIZ—Forest and Paper Research Institute, Rua José Estevão 221, Eixo, 3800-783 Aveiro, Portugal
| | | | - Thomas Levée
- MetGen Oy, Rakentajantie 26, 20780 Kaarina, Finland
| | - Julio Polaina
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Michel Petit-Conil
- Centre Technique du Papier—The French Pulp and Paper Technical Centre, Domaine Universitaire, CS90251, CEDEX 9, 38044 Grenoble, France
| | - Susana Camarero
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Paula Pinto
- RAIZ—Forest and Paper Research Institute, Rua José Estevão 221, Eixo, 3800-783 Aveiro, Portugal
| |
Collapse
|
3
|
Li Y, Li C, Huang H, Rao S, Zhang Q, Zhou J, Li J, Du G, Liu S. Significantly Enhanced Thermostability of Aspergillus niger Xylanase by Modifying Its Highly Flexible Regions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4620-4630. [PMID: 35404048 DOI: 10.1021/acs.jafc.2c01343] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, the thermostability of an acid-resistant GH11 xylanase (xynA) from Aspergillus niger AG11 was enhanced through systematic modification of its four highly flexible regions (HFRs) predicted using MD simulations. Among them, HFR I (residues 92-100) and HFR II (residues 121-130) were modified by iterative saturation mutagenesis (ISM), yielding mutants G92F/G97S/G100K and T121V/A124P/I126V/T129L/A130N, respectively. For HFR III, the N-(residues 1-37) and C-termini (residues 179-188) were, respectively, substituted with the corresponding sequences from thermophilic EvXyn11TS and Nesterenkonia xinjiangensis xylanase. N-Glycosylation was introduced into HFR IV (residues 50-70) through site-directed mutation (A55N/D57S/S61N) and the recombinant expression in A. niger AG11. Combining these positive mutations from each HFR yielded the variant xynAm1 with 137.6- and 1.3-fold increases in half-life at 50 °C and specific activity compared to the wild-type xynA, respectively. With the highest thermostability at 80 and 90 °C in reports, xynAm1 could be a robust candidate for industrial applications in functional foods, feed products, and bioethanol production.
Collapse
Affiliation(s)
- Yangyang Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cen Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Huang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 214122, China
| | - Quan Zhang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116000, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
4
|
Malhotra G, Chapadgaonkar SS. Partial purification and characterization of a thermostable xylanase from Bacillus licheniformis isolated from hot water geyser. J Genet Eng Biotechnol 2022; 20:50. [PMID: 35348915 PMCID: PMC8964892 DOI: 10.1186/s43141-022-00333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022]
Abstract
Background Thermo-alkali stable xylanases were purified from the extracellular broth of newly isolated Bacillus licheniformis strain produced in a 5-L stirred-tank bioreactor with wheat bran as a carbon source. Results A high degree of purity was achieved using size exclusion chromatography resulting in 16-fold purification and 69% recovery for fraction 5 which had the highest activity. The recovery obtained after pooling fractions 5 and 6 was 99%. The Km value of xylanase was calculated as 0.05 mM, and Vmax was 125 μmol/min/mg protein. Conclusion Purified xylanase had a high thermal and pH stability. Xylanase was found to be suitable for application in the de-inking of paper and for saccharification of lignocellulosic waste biomass.
Collapse
Affiliation(s)
- Girisha Malhotra
- Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | | |
Collapse
|
5
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
6
|
Liu MQ, Li JY, Rehman AU, Xu X, Gu ZJ, Wu RC. Laboratory Evolution of GH11 Endoxylanase Through DNA Shuffling: Effects of Distal Residue Substitution on Catalytic Activity and Active Site Architecture. Front Bioeng Biotechnol 2019; 7:350. [PMID: 31824938 PMCID: PMC6883096 DOI: 10.3389/fbioe.2019.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/06/2019] [Indexed: 11/15/2022] Open
Abstract
Endoxylanase with high specific activity, thermostability, and broad pH adaptability is in huge demand. The mutant library of GH11 endoxylanase was constructed via DNA shuffling by using the catalytic domain of Bacillus amyloliquefaciens xylanase A (BaxA) and Thermomonospora fusca TF xylanase A (TfxA) as parents. A total of 2,250 colonies were collected and 756 of them were sequenced. Three novel mutants (DS153: N29S, DS241: S31R and DS428: I51V) were identified and characterized in detail. For these mutants, three residues of BaxA were substituted by the corresponding one of TfxA_CD. The specific activity of DS153, DS241, and DS428 in the optimal condition was 4.54, 4.35, and 3.9 times compared with the recombinant BaxA (reBaxA), respectively. The optimum temperature of the three mutants was 50°C. The optimum pH for DS153, DS241, and DS428 was 6.0, 7.0, and 6.0, respectively. The catalytic efficiency of DS153, DS241, and DS428 enhanced as well, while their sensitivity to recombinant rice xylanase inhibitor (RIXI) was lower than that of reBaxA. Three mutants have identical hydrolytic function as reBaxA, which released xylobiose–xylopentaose from oat spelt, birchwood, and beechwood xylan. Furthermore, molecular dynamics simulations were performed on BaxA and three mutants to explore the precise impact of gain-of-function on xylanase activity. The tertiary structure of BaxA was not altered under the substitution of distal residues (N29S, S31R, and I51V); it induced slightly changes in active site architecture. The distal impact rescued the BaxA from native conformation (“closed state”) through weakening interactions between “gate” residues (R112, N35 in DS241 and DS428; W9, P116 in DS153) and active site residues (E78, E172, Y69, and Y80), favoring conformations with an “open state” and providing improved activity. The current findings would provide a better and more in-depth understanding of how distal single residue substitution improved the catalytic activity of xylanase at the atomic level.
Collapse
Affiliation(s)
- Ming-Qi Liu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jia-Yi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Xu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhu-Jun Gu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruo-Chen Wu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
7
|
Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A. Thermostable xylanases from thermophilic fungi and bacteria: Current perspective. BIORESOURCE TECHNOLOGY 2019; 277:195-203. [PMID: 30679061 DOI: 10.1016/j.biortech.2019.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Thermostable xylanases from thermophilic fungi and bacteria have a wide commercial acceptability in feed, food, paper and pulp and bioconversion of lignocellulosics with an estimated annual market of USD 500 Million. The genome wide analysis of thermophilic fungi clearly shows the presence of elaborate genetic information coding for multiple xylanases primarily coding for GH10, GH11 in addition to GH7 and GH30 xylanases. The transcriptomics and proteome profiling has given insight into the differential expression of these xylanases in some of the thermophilic fungi. Bioprospecting has resulted in identification of novel thermophilic xylanases that have been endorsed by the industrial houses for heterologous over- expression and formulations. The future use of xylanases is expected to increase exponentially for their role in biorefineries. The discovery of new and improvement of existing xylanases using molecular tools such as directed evolution is expected to be the mainstay to meet increasing demand of thermostable xylanases.
Collapse
Affiliation(s)
- B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India.
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India.
| |
Collapse
|
8
|
Characterization of CBM36-containing GH11 endoxylanase NtSymX11 from the hindgut metagenome of higher termite Nasutitermes takasagoensis displaying prominent catalytic activity. Carbohydr Res 2019; 474:1-7. [DOI: 10.1016/j.carres.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 11/17/2022]
|
9
|
He J, Tang F, Chen D, Yu B, Luo Y, Zheng P, Mao X, Yu J, Yu F. Design, expression and functional characterization of a thermostable xylanase from Trichoderma reesei. PLoS One 2019; 14:e0210548. [PMID: 30650138 PMCID: PMC6334952 DOI: 10.1371/journal.pone.0210548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/27/2018] [Indexed: 11/19/2022] Open
Abstract
Xylanases isolated from microorganisms such as the Trichoderma reesei have attracted considerable research interest because of their potential in various industrial applications. However, naturally isolated xylanases cannot withstand harsh conditions such as high temperature and basic pH. In this study, we performed structural analysis of the major T. reesei xylanase (Xyn2), and novel flexible regions of the enzyme were identified based on B-factor, a molecular dynamics (MD) parameter. To improve thermostability of the Xyn2, disulfide bonds were introduced into the unstable flexible region by using site-directed mutagenesis and two recombinant xylanases, XM1 (Xyn2Cys12-52) and XM2 (Xyn2Cys59-149) were successfully expressed in Pichia pastoris. Secreted recombinant Xyn2 was estimated by SDS-PAGE to be 24 kDa. Interestingly, the half-lives of XM1 and XM2 at 60°C were 2.5- and 1.8- fold higher, respectively than those of native Xyn2. The XM1 also exhibited improved pH stability and maintained more than 60% activity over pH values ranging from 2.0 to 10.0. However, the specific activity and catalytic efficiency of XM1 was decreased as compared to those of XM2 and native Xyn2. Our results will assist not only in elucidating of the interactions between protein structure and function, but also in rational target selection for improving the thermostability of enzymes.
Collapse
Affiliation(s)
- Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- * E-mail:
| | - Feng Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Feng Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
10
|
Effect of disulfide bridge on hydrolytic characteristics of xylanase from Penicillium janthinellum. Int J Biol Macromol 2018; 120:405-413. [PMID: 30145159 DOI: 10.1016/j.ijbiomac.2018.08.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/02/2018] [Accepted: 08/21/2018] [Indexed: 11/20/2022]
Abstract
Highly efficient and stable enzymes are required for application in biotechnology, to meet the technical, environmental, and economic industrial demands. Xylanases are hemicellulolytic enzymes that degrade the heteroxylan constituent of the lignocellulosic plant cell wall. In this study, an acidic xylanase designated Pjxyn (pH 4.0) from Penicillium janthinellum was engineered by the introduction of a disulfide bridge. This strategy exploited the influence of the bridge on hydrolysis characteristics and enhanced hydrolysis was achieved. Three mutants [PjxynS(27)S(39), PjxynS(27)S(186), and PjxynS(39)S(186)] produced more xylose and xylobiose as hydrolysis products compared with the wild-type Pjxyn, when commercial xylans and lab-prepared water-insoluble corncob-xylan were used as the substrates, especial for the PjxynS(27)S(39) mutant, the content of xylose and xylobiose was 87.62% (using beechwood xylan) and 69.91% (using oat-spelt xylan) higher than that in the hydrolysis products of Pjxyn. Moreover, each mutant combined with the xylanase mutant T-XynFM effectively decreased the production of xylose with an optimum xylobiose yield. The findings demonstrate the potential industrial value of engineering xylanase to improve its hydrolytic properties and thermostability.
Collapse
|
11
|
|
12
|
Improved thermostability of an acidic xylanase from Aspergillus sulphureus by combined disulphide bridge introduction and proline residue substitution. Sci Rep 2017; 7:1587. [PMID: 28484256 PMCID: PMC5431495 DOI: 10.1038/s41598-017-01758-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/03/2017] [Indexed: 12/27/2022] Open
Abstract
As a feed additive, xylanase has been widely applied in the feed of monogastric animals, which contains multiple plant polysaccharides. However, during feed manufacture, the high pelleting temperatures challenge wild-type xylanases. The aim of this study was to improve the thermostability of Aspergillus sulphureus acidic xylanase. According to the predicted protein structure, a series of disulphide bridges and proline substitutions were created in the xylanase by PCR, and the mutants were expressed in Pichia pastoris. Enzyme properties were evaluated following chromatographic purification. All the recombinant enzymes showed optima at pH 3.0 and 50 °C or 55 °C and better resistance to some chemicals except for CuSO4. The specific activity of the xylanase was decreased by introduction of the mutations. Compared to the wild-type enzyme, a combined mutant, T53C-T142C/T46P, with a disulphide bond at 53–142 and a proline substitution at 46, showed a 22-fold increase of half-life at 60 °C. In a 10-L fermentor, the maximal xylanase activity of T53C-T142C/T46P reached 1,684 U/mL. It was suggested that the T53C-T142C/T46P mutant xylanase had excellent thermostability characteristics and could be a prospective additive in feed manufacture.
Collapse
|
13
|
Tang F, Chen D, Yu B, Luo Y, Zheng P, Mao X, Yu J, He J. Improving the thermostability of Trichoderma reesei xylanase 2 by introducing disulfide bonds. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
DeCastro ME, Rodríguez-Belmonte E, González-Siso MI. Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Front Microbiol 2016; 7:1521. [PMID: 27729905 PMCID: PMC5037290 DOI: 10.3389/fmicb.2016.01521] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Microbial populations living in environments with temperatures above 50°C (thermophiles) have been widely studied, increasing our knowledge in the composition and function of these ecological communities. Since these populations express a broad number of heat-resistant enzymes (thermozymes), they also represent an important source for novel biocatalysts that can be potentially used in industrial processes. The integrated study of the whole-community DNA from an environment, known as metagenomics, coupled with the development of next generation sequencing (NGS) technologies, has allowed the generation of large amounts of data from thermophiles. In this review, we summarize the main approaches commonly utilized for assessing the taxonomic and functional diversity of thermophiles through metagenomics, including several bioinformatics tools and some metagenome-derived methods to isolate their thermozymes.
Collapse
Affiliation(s)
- María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| |
Collapse
|
15
|
Zhou CY, Li TB, Wang YT, Zhu XS, Kang J. Exploration of a N-terminal disulfide bridge to improve the thermostability of a GH11 xylanase from Aspergillus niger. J GEN APPL MICROBIOL 2016; 62:83-9. [DOI: 10.2323/jgam.62.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chen-Yan Zhou
- School of Life Science and Technology, Xinxiang Medical University
| | - Tong-Biao Li
- School of Life Science and Technology, Xinxiang Medical University
| | - Yong-Tao Wang
- The First Affiliated Hospital, Xinxiang Medical University
| | - Xin-Shu Zhu
- School of Life Science and Technology, Xinxiang Medical University
| | - Jing Kang
- School of Life Science and Technology, Xinxiang Medical University
| |
Collapse
|
16
|
Montella S, Amore A, Faraco V. Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development. Crit Rev Biotechnol 2015; 36:998-1009. [PMID: 26381035 DOI: 10.3109/07388551.2015.1083939] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The world economy is moving toward the use of renewable and nonedible lignocellulosic biomasses as substitutes for fossil sources in order to decrease the environmental impact of manufacturing processes and overcome the conflict with food production. Enzymatic hydrolysis of the feedstock is a key technology for bio-based chemical production, and the identification of novel, less expensive and more efficient biocatalysts is one of the main challenges. As the genomic era has shown that only a few microorganisms can be cultured under standard laboratory conditions, the extraction and analysis of genetic material directly from environmental samples, termed metagenomics, is a promising way to overcome this bottleneck. Two screening methodologies can be used on metagenomic material: the function-driven approach of expression libraries and sequence-driven analysis based on gene homology. Both techniques have been shown to be useful for the discovery of novel biocatalysts for lignocellulose conversion, and they enabled identification of several (hemi)cellulases and accessory enzymes involved in (hemi)cellulose hydrolysis. This review summarizes the latest progress in metagenomics aimed at discovering new enzymes for lignocellulose saccharification.
Collapse
Affiliation(s)
- Salvatore Montella
- a Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Naples , Italy
| | - Antonella Amore
- a Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Naples , Italy
| | - Vincenza Faraco
- a Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Naples , Italy
| |
Collapse
|
17
|
Chen CC, Ko TP, Huang JW, Guo RT. Heat- and Alkaline-Stable Xylanases: Application, Protein Structure and Engineering. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201400035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Joshi S, Satyanarayana T. In vitro engineering of microbial enzymes with multifarious applications: prospects and perspectives. BIORESOURCE TECHNOLOGY 2015; 176:273-283. [PMID: 25435065 DOI: 10.1016/j.biortech.2014.10.151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
The discovery of a novel enzyme from a microbial source takes anywhere between months to years, and therefore, there has been an immense interest in modifying the existing microbial enzymes to suit the present day needs of the industry. The redesigning of industrially useful enzymes for improving their performance has become a challenge because bioinformatics databases have been revealing new facts on a day-to-day basis. Modification of the existing enzymes has become a trend for fine tuning of biocatalysts in the biotech industry. Hydrolases are employed in pharmaceutical, biofuel, detergent, food and feed industries that significantly contribute to the global annual revenue, and therefore, the emphasis has been on engineering them. Although a large data is accumulating on making alterations in microbial enzymes, there is a lack of definite information on redesigning industrial enzymes. This review focuses on the recent developments in improving the characteristics of various biotechnologically important enzymes.
Collapse
Affiliation(s)
- Swati Joshi
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|