1
|
Palucha N, Quataert K, Vlaeminck E, Schröder E, De Winter K, Soetaert W. High-throughput screening of acetogenic strains for growth and metabolite profiles on readily available biomass. BIORESOURCE TECHNOLOGY 2025; 419:132026. [PMID: 39755158 DOI: 10.1016/j.biortech.2024.132026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO2 losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolize variety of substrates derived from 2G and 3G feedstocks and industrial waste streams. Our findings demonstrate metabolic versatility of acetogens in converting biomass-derived substrates into a wide array of products while also exhibiting resilience to common fermentation inhibitors. These unique capabilities position acetogens as promising alternatives that could potentially outperform conventional production hosts in achieving 100% biomass valorization while underscoring the need for further research into critical areas, such as the utilization of mixed substrates under industrially relevant conditions.
Collapse
Affiliation(s)
- Natálie Palucha
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| | - Koen Quataert
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| | - Elodie Vlaeminck
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| | - Eliot Schröder
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium.
| |
Collapse
|
2
|
Böer T, Engelhardt L, Lüschen A, Eysell L, Yoshida H, Schneider D, Angenent LT, Basen M, Daniel R, Poehlein A. Isolation and characterization of novel acetogenic Moorella strains for employment as potential thermophilic biocatalysts. FEMS Microbiol Ecol 2024; 100:fiae109. [PMID: 39118367 PMCID: PMC11328732 DOI: 10.1093/femsec/fiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Thermophilic acetogenic bacteria have attracted attention as promising candidates for biotechnological applications such as syngas fermentation, microbial electrosynthesis, and methanol conversion. Here, we aimed to isolate and characterize novel thermophilic acetogens from diverse environments. Enrichment of heterotrophic and autotrophic acetogens was monitored by 16S rRNA gene-based bacterial community analysis. Seven novel Moorella strains were isolated and characterized by genomic and physiological analyses. Two Moorella humiferrea isolates showed considerable differences during autotrophic growth. The M. humiferrea LNE isolate (DSM 117358) fermented carbon monoxide (CO) to acetate, while the M. humiferrea OCP isolate (DSM 117359) transformed CO to hydrogen and carbon dioxide (H2 + CO2), employing the water-gas shift reaction. Another carboxydotrophic hydrogenogenic Moorella strain was isolated from the covering soil of an active charcoal burning pile and proposed as the type strain (ACPsT) of the novel species Moorella carbonis (DSM 116161T and CCOS 2103T). The remaining four novel strains were affiliated with Moorella thermoacetica and showed, together with the type strain DSM 2955T, the production of small amounts of ethanol from H2 + CO2 in addition to acetate. The physiological analyses of the novel Moorella strains revealed isolate-specific differences that considerably increase the knowledge base on thermophilic acetogens for future applications.
Collapse
Affiliation(s)
- Tim Böer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Lisa Engelhardt
- Microbiology, Institute of Biological Sciences, University Rostock, 18059 Rostock, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Lena Eysell
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Hiroki Yoshida
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University Rostock, 18059 Rostock, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Robazza A, Baleeiro FCF, Kleinsteuber S, Neumann A. Two-stage conversion of syngas and pyrolysis aqueous condensate into L-malate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:85. [PMID: 38907325 PMCID: PMC11191387 DOI: 10.1186/s13068-024-02532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Hybrid thermochemical-biological processes have the potential to enhance the carbon and energy recovery from organic waste. This work aimed to assess the carbon and energy recovery potential of multifunctional processes to simultaneously sequestrate syngas and detoxify pyrolysis aqueous condensate (PAC) for short-chain carboxylates production. To evaluate relevant process parameters for mixed culture co-fermentation of syngas and PAC, two identical reactors were run under mesophilic (37 °C) and thermophilic (55 °C) conditions at increasing PAC loading rates. Both the mesophilic and the thermophilic process recovered at least 50% of the energy in syngas and PAC into short-chain carboxylates. During the mesophilic syngas and PAC co-fermentation, methanogenesis was completely inhibited while acetate, ethanol and butyrate were the primary metabolites. Over 90% of the amplicon sequencing variants based on 16S rRNA were assigned to Clostridium sensu stricto 12. During the thermophilic process, on the other hand, Symbiobacteriales, Syntrophaceticus, Thermoanaerobacterium, Methanothermobacter and Methanosarcina likely played crucial roles in aromatics degradation and methanogenesis, respectively, while Moorella thermoacetica and Methanothermobacter marburgensis were the predominant carboxydotrophs in the thermophilic process. High biomass concentrations were necessary to maintain stable process operations at high PAC loads. In a second-stage reactor, Aspergillus oryzae converted acetate, propionate and butyrate from the first stage into L-malate, confirming the successful detoxification of PAC below inhibitory levels. The highest L-malate yield was 0.26 ± 2.2 molL-malate/molcarboxylates recorded for effluent from the mesophilic process at a PAC load of 4% v/v. The results highlight the potential of multifunctional reactors where anaerobic mixed cultures perform simultaneously diverse process roles, such as carbon fixation, wastewater detoxification and carboxylates intermediate production. The recovered energy in the form of intermediate carboxylates allows for their use as substrates in subsequent fermentative stages.
Collapse
Affiliation(s)
- Alberto Robazza
- Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology - KIT, 76131, Karlsruhe, Germany
| | - Flávio C F Baleeiro
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Anke Neumann
- Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology - KIT, 76131, Karlsruhe, Germany.
| |
Collapse
|
4
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
5
|
Karmainski T, Dielentheis-Frenken MRE, Lipa MK, Phan ANT, Blank LM, Tiso T. High-quality physiology of Alcanivorax borkumensis SK2 producing glycolipids enables efficient stirred-tank bioreactor cultivation. Front Bioeng Biotechnol 2023; 11:1325019. [PMID: 38084272 PMCID: PMC10710537 DOI: 10.3389/fbioe.2023.1325019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 05/09/2025] Open
Abstract
Glycine-glucolipid, a glycolipid, is natively synthesized by the marine bacterium Alcanivorax borkumensis SK2. A. borkumensis is a Gram-negative, non-motile, aerobic, halophilic, rod-shaped γ-proteobacterium, classified as an obligate hydrocarbonoclastic bacterium. Naturally, this bacterium exists in low cell numbers in unpolluted marine environments, but during oil spills, the cell number significantly increases and can account for up to 90% of the microbial community responsible for oil degradation. This growth surge is attributed to two remarkable abilities: hydrocarbon degradation and membrane-associated biosurfactant production. This study aimed to characterize and enhance the growth and biosurfactant production of A. borkumensis, which initially exhibited poor growth in the previously published ONR7a, a defined salt medium. Various online analytic tools for monitoring growth were employed to optimize the published medium, leading to improved growth rates and elongated growth on pyruvate as a carbon source. The modified medium was supplemented with different carbon sources to stimulate glycine-glucolipid production. Pyruvate, acetate, and various hydrophobic carbon sources were utilized for glycolipid production. Growth was monitored via online determined oxygen transfer rate in shake flasks, while a recently published hyphenated HPLC-MS method was used for glycine-glucolipid analytics. To transfer into 3 L stirred-tank bioreactor, aerated batch fermentations were conducted using n-tetradecane and acetate as carbon sources. The challenge of foam formation was overcome using bubble-free membrane aeration with acetate as the carbon source. In conclusion, the growth kinetics of A. borkumensis and glycine-glucolipid production were significantly improved, while reaching product titers relevant for applications remains a challenge.
Collapse
Affiliation(s)
| | | | | | | | | | - Till Tiso
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Jia D, Deng W, Hu P, Jiang W, Gu Y. Thermophilic Moorella thermoacetica as a platform microorganism for C1 gas utilization: physiology, engineering, and applications. BIORESOUR BIOPROCESS 2023; 10:61. [PMID: 38647965 PMCID: PMC10992200 DOI: 10.1186/s40643-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 04/25/2024] Open
Abstract
In the context of the rapid development of low-carbon economy, there has been increasing interest in utilizing naturally abundant and cost-effective one-carbon (C1) substrates for sustainable production of chemicals and fuels. Moorella thermoacetica, a model acetogenic bacterium, has attracted significant attention due to its ability to utilize carbon dioxide (CO2) and carbon monoxide (CO) via the Wood-Ljungdahl (WL) pathway, thereby showing great potential for the utilization of C1 gases. However, natural strains of M. thermoacetica are not yet fully suitable for industrial applications due to their limitations in carbon assimilation and conversion efficiency as well as limited product range. Over the past decade, progresses have been made in the development of genetic tools for M. thermoacetica, accelerating the understanding and modification of this acetogen. Here, we summarize the physiological and metabolic characteristics of M. thermoacetica and review the recent advances in engineering this bacterium. Finally, we propose the future directions for exploring the real potential of M. thermoacetica in industrial applications.
Collapse
Affiliation(s)
- Dechen Jia
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wangshuying Deng
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Hu
- Shanghai GTLB Biotech Co., Ltd, 1688 North Guoquan Road, Shanghai, 200438, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
7
|
Harahap BM, Ahring BK. Acetate Production from Syngas Produced from Lignocellulosic Biomass Materials along with Gaseous Fermentation of the Syngas: A Review. Microorganisms 2023; 11:microorganisms11040995. [PMID: 37110418 PMCID: PMC10143712 DOI: 10.3390/microorganisms11040995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Biotransformation of lignocellulose-derived synthetic gas (syngas) into acetic acid is a promising way of creating biochemicals from lignocellulosic waste materials. Acetic acid has a growing market with applications within food, plastics and for upgrading into a wide range of biofuels and bio-products. In this paper, we will review the microbial conversion of syngas to acetic acid. This will include the presentation of acetate-producing bacterial strains and their optimal fermentation conditions, such as pH, temperature, media composition, and syngas composition, to enhance acetate production. The influence of syngas impurities generated from lignocellulose gasification will further be covered along with the means to alleviate impurity problems through gas purification. The problem with mass transfer limitation of gaseous fermentation will further be discussed as well as ways to improve gas uptake during the fermentation.
Collapse
Affiliation(s)
- Budi Mandra Harahap
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Science, and Engineering Laboratory, Washington State University Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA
- Department of Biological System Engineering, Washington State University, L. J. Smith Hall, Pullman, WA 99164, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Wegner Hall, Pullman, WA 99164, USA
| |
Collapse
|
8
|
Martins-Vieira JC, Lachos-Perez D, Draszewski CP, Celante D, Castilhos F. Sugar, Hydrochar and Bio-oil Production by Sequential Hydrothermal Processing of Corn Cob. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Current Status and Prospects of Valorizing Organic Waste via Arrested Anaerobic Digestion: Production and Separation of Volatile Fatty Acids. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Volatile fatty acids (VFA) are intermediary degradation products during anaerobic digestion (AD) that are subsequently converted to methanogenic substrates, such as hydrogen (H2), carbon dioxide (CO2), and acetic acid (CH3COOH). The final step of AD is the conversion of these methanogenic substrates into biogas, a mixture of methane (CH4) and CO2. In arrested AD (AAD), the methanogenic step is suppressed to inhibit VFA conversion to biogas, making VFA the main product of AAD, with CO2 and H2. VFA recovered from the AAD fermentation can be further converted to sustainable biofuels and bioproducts. Although this concept is known, commercialization of the AAD concept has been hindered by low VFA titers and productivity and lack of cost-effective separation methods for recovering VFA. This article reviews the different techniques used to rewire AD to AAD and the current state of the art of VFA production with AAD, emphasizing recent developments made for increasing the production and separation of VFA from complex organic materials. Finally, this paper discusses VFA production by AAD could play a pivotal role in producing sustainable jet fuels from agricultural biomass and wet organic waste materials.
Collapse
|
10
|
Nipa Sap Can Be Both Carbon and Nutrient Source for Acetic Acid Production by Moorella thermoacetica (f. Clostridium thermoaceticum) and Reduced Minimal Media Supplements. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nipa sap is an excellent microbial nutrient and carbon source since it contains essential minerals and vitamins, in addition to sugars. In this study, nipa sap was successfully fermented to acetic acid by the industrially important Moorella thermoacetica without additional trace metals, without inorganics, or without yeast extract. Although microbial growth kinetics differed from one nutrient condition to another, acetic acid concentrations obtained without trace metals, without inorganics, and without yeast extract supplements were in the same range as that with full nutrient, confirming that nipa sap is a good nutrient source for M. thermoacetica. Fermentations in vials and fermenters showed comparable acetic acid production trends but acetic acid concentrations were higher in fermenters. Upon economic analysis, it was found that the most profitable nutrient condition was without yeast extract. It reduced the cost of culture medium from $1.7 to only $0.3/L, given that yeast extract costs $281/kg, while nipa sap can be available from $0.08/kg. Minimal medium instead of the traditional complex nutrient simplifies the process. This work also opens opportunities for profitable anaerobic co-digestion and co-fermentation of nipa sap with other biomass resources where nipa sap will serve as an inexpensive nutrient source and substrate.
Collapse
|
11
|
Karekar SC, Srinivas K, Ahring BK. Batch screening of weak base ion exchange resins for optimized extraction of acetic acid under fermentation conditions. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Volatile Fatty Acid Production from Food Waste Leachate Using Enriched Bacterial Culture and Soil Bacteria as Co-Digester. SUSTAINABILITY 2021. [DOI: 10.3390/su13179606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The production of volatile fatty acids (VFAs) from waste stream has been recently getting attention as a cost-effective and environmentally friendly approach in mechanical–biological treatment plants. This is the first study to explore the use of a functional bacterium, AM5 isolated from forest soil, which is capable of enhancing the production of VFAs in the presence of soil bacteria as a co-digester in non-strict anaerobic fermentation processes of food waste leachates. Batch laboratory-scale trials were conducted under thermophilic conditions at 55 °C and different pH values ranging from approximately 5 to 11, as well as under uncontrolled pH for 15 days. Total solid content (TS) and volatile solid content (VS) were observed with 58.42% and 65.17% removal, respectively. An effluent with a VFA concentration of up to 33,849 mg/L (2365.57 mg/g VS; 2244.45 mg/g chemical oxygen demand (COD)-VFA VS; 1249 mg/g VSremoved) was obtained at pH 10.5 on the second day of the batch culture. The pH resulted in a significant effect on VFA concentration and composition at various values. Additionally, all types of VFAs were produced under pH no-adjustment (approximately 5) and at pH 10.5. This research might lead to interesting questions and ideas for further studies on the complex metabolic pathways of microbial communities in the mixture of a soil solution and food waste leachate.
Collapse
|
13
|
Doménech P, Duque A, Higueras I, Fernández JL, Manzanares P. Analytical Characterization of Water-Soluble Constituents in Olive-Derived By-Products. Foods 2021; 10:foods10061299. [PMID: 34198861 PMCID: PMC8229305 DOI: 10.3390/foods10061299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/24/2023] Open
Abstract
Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.
Collapse
|
14
|
Pawar PR, Rao P, Prakash G, Lali AM. Organic waste streams as feedstock for the production of high volume-low value products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11904-11914. [PMID: 32048194 DOI: 10.1007/s11356-020-07985-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Valorisation of organic wastes to produce industrially relevant commodity products is a sustainable, cost-effective and viable alternative providing a green platform for chemical production while simultaneously leading to waste disposal management. In the present study, organic wastes such as agricultural residue-derived sugars, oilseed meals, poultry waste and molasses were used for substituting expensive organic fermentation medium components. Moorella thermoacetica and Aurantiochytrium limacinum were adapted on these waste-derived hydrolysates to produce high volume-low value products such as bio-acetic acid (80% theoretical yields) and oil-rich fish/animal feed (more than 85% dry cell weight as compared with conventional nutrient sources) respectively. Use of these waste-derived nutrients led to ~ 75% and ~ 90% reduction in media cost for acetic acid and oil-rich biomass production respectively as compared with that of traditionally used high-priced medium components. The strategy will assist in the cost reduction for high volume-low value products while also ensuring waste recovery.
Collapse
Affiliation(s)
- Pratik R Pawar
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Poornima Rao
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Gunjan Prakash
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.
| | - Arvind M Lali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
15
|
Szacherska K, Oleskowicz-Popiel P, Ciesielski S, Mozejko-Ciesielska J. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production. Polymers (Basel) 2021; 13:polym13030321. [PMID: 33498279 PMCID: PMC7863920 DOI: 10.3390/polym13030321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Waste of industrial origin produced from synthetic materials are a serious threat to the natural environment. The ending resources of fossil raw materials and increasingly restrictive legal standards for the management of plastic waste have led to research on the use of biopolymers, which, due to their properties, may be an ecological alternative to currently used petrochemical polymers. Polyhydroxyalkanoates (PHAs) have gained much attention in recent years as the next generation of environmentally friendly materials. Currently, a lot of research is being done to reduce the costs of the biological process of PHA synthesis, which is the main factor limiting the production of PHAs on the industrial scale. The volatile fatty acids (VFAs) produced by anaerobic digestion from organic industrial and food waste, and various types of wastewater could be suitable carbon sources for PHA production. Thus, reusing the organic waste, while reducing the future fossil fuel, originated from plastic waste. PHA production from VFAs seem to be a good approach since VFAs composition determines the constituents of PHAs polymer and is of great influence on its properties. In order to reduce the overall costs of PHA production to a more reasonable level, it will be necessary to design a bioprocess that maximizes VFAs production, which will be beneficial for the PHA synthesis. Additionally, a very important factor that affects the profitable production of PHAs from VFAs is the selection of a microbial producer that will effectively synthesize the desired bioproduct. PHA production from VFAs has gained significant interest since VFAs composition determines the constituents of PHA polymer. Thus far, the conversion of VFAs into PHAs using pure bacterial cultures has received little attention, and the majority of studies have used mixed microbial communities for this purpose. This review discusses the current state of knowledge on PHAs synthesized by microorganisms cultured on VFAs.
Collapse
Affiliation(s)
- Karolina Szacherska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
- Correspondence:
| |
Collapse
|
16
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
17
|
Kiefer D, Merkel M, Lilge L, Henkel M, Hausmann R. From Acetate to Bio-Based Products: Underexploited Potential for Industrial Biotechnology. Trends Biotechnol 2020; 39:397-411. [PMID: 33036784 DOI: 10.1016/j.tibtech.2020.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Currently, most biotechnological products are based on microbial conversion of carbohydrate substrates that are predominantly generated from sugar- or starch-containing plants. However, direct competitive uses of these feedstocks in the food and feed industry represent a dilemma, so using alternative carbon sources has become increasingly important in industrial biotechnology. A promising alternative carbon source that may be generated in substantial amounts from lignocellulosic biomass and C1 gases is acetate. This review discusses the underexploited potential of acetate to become a next-generation platform substrate in future industrial biotechnology and summarizes alternative sources and routes for acetate production. Furthermore, biotechnological aspects of microbial acetate utilization and the state of the art of biotechnological acetate conversion into value-added bioproducts are highlighted.
Collapse
Affiliation(s)
- Dirk Kiefer
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Manuel Merkel
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Lars Lilge
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany.
| | - Rudolf Hausmann
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| |
Collapse
|
18
|
Techno-Economic Analysis of Producing Glacial Acetic Acid from Poplar Biomass via Bioconversion. Molecules 2020; 25:molecules25184328. [PMID: 32967253 PMCID: PMC7571159 DOI: 10.3390/molecules25184328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
Most of the current commercial production of glacial acetic acid (GAA) is by petrochemical routes, primarily methanol carbonylation. GAA is an intermediate in the production of plastics, textiles, dyes, and paints. GAA production from biomass might be an economically viable and sustainable alternative to petroleum-derived routes. Separation of acetic acid from water is a major expense and requires considerable energy. This study evaluates and compares the technical and economic feasibility of GAA production via bioconversion using either ethyl acetate or alamine in diisobutylkerosene (DIBK) as organic solvents for purification. Models of a GAA biorefinery with a production of 120,650 tons/year were simulated in Aspen software. This biorefinery follows the path of pretreatment, enzymatic hydrolysis, acetogen fermentation, and acid purification. Estimated capital costs for different scenarios ranged from USD 186 to 245 million. Recovery of GGA using alamine/DIBK was a more economical process and consumed 64% less energy, due to lower steam demand in the recovery distillation columns. The estimated average minimum selling prices of GGA were USD 756 and 877/ton for alamine/DIBK and ethyl acetate scenarios, respectively. This work establishes a feasible and sustainable approach to produce GGA from poplar biomass via fermentation.
Collapse
|
19
|
David A, Tripathi AK, Sani RK. Acetate Production from Cafeteria Wastes and Corn Stover Using a Thermophilic Anaerobic Consortium: A Prelude Study for the Use of Acetate for the Production of Value-Added Products. Microorganisms 2020; 8:E353. [PMID: 32131386 PMCID: PMC7143096 DOI: 10.3390/microorganisms8030353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
Efficient and sustainable biochemical production using low-cost waste assumes considerable industrial and ecological importance. Solid organic wastes (SOWs) are inexpensive, abundantly available resources and their bioconversion to volatile fatty acids, especially acetate, aids in relieving the requirements of pure sugars for microbial biochemical productions in industries. Acetate production from SOW that utilizes the organic carbon of these wastes is used as an efficient solid waste reduction strategy if the environmental factors are optimized. This study screens and optimizes influential factors (physical and chemical) for acetate production by a thermophilic acetogenic consortium using two SOWs-cafeteria wastes and corn stover. The screening experiment revealed significant effects of temperature, bromoethane sulfonate, and shaking on acetate production. Temperature, medium pH, and C:N ratio were further optimized using statistical optimization with response surface methodology. The maximum acetate concentration of 8061 mg L-1 (>200% improvement) was achieved at temperature, pH, and C:N ratio of 60 °C, 6, 25, respectively, and acetate accounted for more than 85% of metabolites. This study also demonstrated the feasibility of using acetate-rich fermentate (obtained from SOWs) as a substrate for the growth of industrially relevant yeast Yarrowia lipolytica, which can convert acetate into higher-value biochemicals.
Collapse
Affiliation(s)
- Aditi David
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.D.); (A.K.T.)
| | - Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.D.); (A.K.T.)
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.D.); (A.K.T.)
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| |
Collapse
|
20
|
Wainaina S, Lukitawesa, Kumar Awasthi M, Taherzadeh MJ. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019; 10:437-458. [PMID: 31570035 PMCID: PMC6802927 DOI: 10.1080/21655979.2019.1673937] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 11/07/2022] Open
Abstract
Anaerobic digestion (AD) is a well-established technology used for producing biogas or biomethane alongside the slurry used as biofertilizer. However, using a variety of wastes and residuals as substrate and mixed cultures in the bioreactor makes AD as one of the most complicated biochemical processes employing hydrolytic, acidogenic, hydrogen-producing, acetate-forming bacteria as well as acetoclastic and hydrogenoclastic methanogens. Hydrogen and volatile fatty acids (VFAs) including acetic, propionic, isobutyric, butyric, isovaleric, valeric and caproic acid and other carboxylic acids such as succinic and lactic acids are formed as intermediate products. As these acids are important precursors for various industries as mixed or purified chemicals, the AD process can be bioengineered to produce VFAs alongside hydrogen and therefore biogas plants can become biorefineries. The current review paper provides the theory and means to produce and accumulate VFAs and hydrogen, inhibit their conversion to methane and to extract them as the final products. The effects of pretreatment, pH, temperature, hydraulic retention time (HRT), organic loading rate (OLR), chemical methane inhibitions, and heat shocking of the inoculum on VFAs accumulation, hydrogen production, VFAs composition, and the microbial community were discussed. Furthermore, this paper highlights the possible techniques for recovery of VFAs from the fermentation media in order to minimize product inhibition as well as to supply the carboxylates for downstream procedures.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Lukitawesa
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Mukesh Kumar Awasthi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, PR China
| | | |
Collapse
|
21
|
Ghayur A, Verheyen TV. Modelling a biorefinery concept producing carbon fibre-polybutylene succinate composite foam. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Nissen LS, Basen M. The emerging role of aldehyde:ferredoxin oxidoreductases in microbially-catalyzed alcohol production. J Biotechnol 2019; 306:105-117. [DOI: 10.1016/j.jbiotec.2019.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
|
23
|
Mishra S, Kharkar PS, Pethe AM. Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016 - Till date). Carbohydr Polym 2019; 207:418-427. [PMID: 30600024 DOI: 10.1016/j.carbpol.2018.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
Nanocrystalline cellulose (NCC) has gained much popularity over the last decade as a preferred nanomaterial in varied applications, despite its laborious industrial production and higher cost. Its production methods have undergone a great deal of metamorphosis lately. The main emphasis has been on the environment-friendly and green processes, in addition to the sustainable and renewable feedstock. Globally, the researchers have explored biomass and waste cellulosic materials as renewable sources for NCC extraction. Newer and/or improved process alternatives, e.g., ultrasonication, enzymatic hydrolysis and mechanical treatments have been applied successfully for producing high-quality material. Detailed investigations on optimizing the overall yield from cheaper feedstock have yielded obvious benefits. This is still work in progress. The present review majorly focuses on the advances made in the NCC preparation field from biomass and waste cellulosic materials in last three years (2016 - till date). Collaborative efforts between chemical engineers and research scientists are crucial for the success of this really amazing nanomaterial.
Collapse
Affiliation(s)
- Shweta Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India
| | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India
| | - Anil M Pethe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS (Deemed to be University), Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
24
|
Kinetic Study on Heterotrophic Growth of Acetobacterium woodii on Lignocellulosic Substrates for Acetic Acid Production. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extensive research has been done on examining the autotrophic growth of Acetobacterium woodii with gaseous substrates (hydrogen and carbon dioxide) to produce acetic acid. However, only limited work has been performed on the heterotrophic growth of A. woodii using pure sugars or lignocellulosic feedstocks-derived sugars as substrates. In this study, we examine the growth kinetics and acetic acid production of A. woodii on glucose and xylose. While good growth was observed with glucose as substrate, no significant growth was obtained on xylose. Kinetic studies were performed in batch culture using different concentrations of glucose, ranging from 5 g/L to 40 g/L. The highest acetate production of 6.919 g/L with a product yield of 0.76 g acetic acid/g glucose was observed with 10 g/L glucose as initial substrate concentration. When testing A. woodii on corn stover hydrolysate (CSH) and wheat straw hydrolysate (WSH) formed after pretreatment and enzymatic hydrolysis, we found that A. woodii showed acetic acid production of 7.64 g/L and a product yield of 0.70 g acetic acid/g of glucose on WSH, while the acetic acid production was 7.83 g/L with a product yield of 0.65 g acetic acid/g of glucose on CSH. These results clearly demonstrate that A. woodii performed similarly on pure substrates and hydrolysates, and that the processes were not inhibited by the heterogenous components present in the lignocellulosic feedstock hydrolysates.
Collapse
|
25
|
Veeravalli SS, Mathews AP. Exploitation of acid-tolerant microbial species for the utilization of low-cost whey in the production of acetic acid and propylene glycol. Appl Microbiol Biotechnol 2018; 102:8023-8033. [DOI: 10.1007/s00253-018-9174-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/30/2018] [Accepted: 06/10/2018] [Indexed: 11/29/2022]
|
26
|
|
27
|
Murali N, Fernandez S, Ahring BK. Fermentation of wet-exploded corn stover for the production of volatile fatty acids. BIORESOURCE TECHNOLOGY 2017; 227:197-204. [PMID: 28038397 DOI: 10.1016/j.biortech.2016.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 05/12/2023]
Abstract
Volatile fatty acids (VFA) have been used as platform molecules for production of biofuels and bioproducts. In the current study, we examine the VFA production from wet-exploded corn stover through anaerobic fermentation using rumen bacteria. The total VFA yield (acetic acid equivalents) was found to increase from 22.8g/L at 2.5% total solids (TS) to 40.8g/L at 5% TS. It was found that the acetic acid concentration increased from 10g/L to 22g/L at 2.5% and 5% TS, respectively. An increased propionic acid production was seen between day 10 and 20 at 5% TS. Valeric acid (4g/L) was produced at 5% TS and not at 2.5% TS. Composition analysis showed that 50% of the carbohydrates were converted to VFA at 5% TS and 33% at 2.5% TS. Our results show that rumen fermentation of lignocellulosic biomass after wet explosion can produce high concentrations of VFA without addition of external enzymes of importance for the process economics of lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Nanditha Murali
- Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, United States
| | - Sebastian Fernandez
- Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, United States
| | - Birgitte Kiaer Ahring
- Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, United States.
| |
Collapse
|
28
|
Budsberg E, Crawford JT, Morgan H, Chin WS, Bura R, Gustafson R. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:170. [PMID: 27525039 PMCID: PMC4982110 DOI: 10.1186/s13068-016-0582-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/27/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. RESULTS Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. CONCLUSION Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.
Collapse
Affiliation(s)
- Erik Budsberg
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA
| | - Jordan T. Crawford
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA
| | - Hannah Morgan
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA
| | - Wei Shan Chin
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA
| | - Renata Bura
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA
| | - Rick Gustafson
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA 98195-2100 USA
| |
Collapse
|