1
|
Stein N, Goswami A, Goel R. Anaerobic sequencing batch reactor for concurrent removal of multiple recalcitrant munition compounds. BIORESOURCE TECHNOLOGY 2025; 423:132244. [PMID: 39971104 DOI: 10.1016/j.biortech.2025.132244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Large-scale production, use, and disposal of munitions has resulted in widespread environmental contamination. A laboratory-scale anaerobic sequencing batch reactor (AnSBR) was initiated in this study to investigate the concurrent removal of multiple energetic compounds that comprise modern munition formulations. The AnSBR achieved high removal efficiencies of 2,4-dinitroanisole (DNAN, >99%) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, 84 ± 16%), along with the partial removal of 1-nitroguanidine (NQ, 30 ± 27%). Specific DNAN, RDX, and NQ removal rates of 17.0 ± 0.1 µmol DNAN/g VSS/d, 22.0 ± 0.8 µmol RDX/g VSS/d, and 2.0 ± 0.3 µmol NQ/g VSS/d were recorded in the AnSBR under steady-state conditions, respectively. Long-term operation of the AnSBR selected Actinobacteria (2 - 58%) and uncultured Actinomycetaceae (1 - 58%) as the most abundant phylum and genus, respectively. Results from this study provide valuable insights into the development of anaerobic bioreactors for the remediation of sites impacted by modern munitions.
Collapse
Affiliation(s)
- Nathan Stein
- OVIVO USA LLC, 4246 S Riverboat Rd Ste 300, Salt Lake City, UT 84123, USA
| | - Anjan Goswami
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84102, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84102, USA.
| |
Collapse
|
2
|
Fuller ME, Thakur N, Hedman PC, Zhao Y, Chiu PC. Combined sorption-biodegradation for removal of energetic compounds from stormwater runoff. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136595. [PMID: 39615382 DOI: 10.1016/j.jhazmat.2024.136595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 11/18/2024] [Indexed: 01/28/2025]
Abstract
Munition constituents (MC) in stormwater runoff have the potential to move these pollutants into receiving bodies at military installations. Here we present further evaluation of a passive and sustainable biofilter technology for removal of dissolved MC from simulated surface runoff by combined sorption-biodegradation processes under dynamic flow conditions. Columns were packed with MC sorbents Sphagnum peat moss and cationized (CAT) pine shavings with and without wood-based biochar. Some columns also received biodegradable polymers as a slow-release carbon source and MC degrading bacterial cultures. MC removal was greater under combined sorption-biodegradation conditions than under sorption only conditions, ranging from 2.5-fold for 2,4,6-trinitrotoluene (TNT) to > 25-fold for hexahydro-1,3,5-trinitro-s-triazine (RDX). Biochar improved removal for some MC, which was attributed to it acting as a buffer by its ability to sorb/degrade these compounds, thus delaying their elution from the columns until the biodegradation activity increased. It was also found that labile carbon source availability, rather than microbial culture viability, was responsible for the apparent reduction in energetic removal over time. These results provide a foundation for further development of technologies for remediation of energetic compounds in military range stormwater runoff.
Collapse
Affiliation(s)
- Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA.
| | - Nikita Thakur
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Paul C Hedman
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Yuwei Zhao
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Pei C Chiu
- University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Wang C, Fuller ME, Murillo-Gelvez J, Rezes RT, Hatzinger PB, Chiu PC, Heraty LJ, Sturchio NC. Carbon and Nitrogen Isotope Fractionations During Biotic and Abiotic Transformations of 2,4-Dinitroanisole (DNAN). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5996-6006. [PMID: 38504451 DOI: 10.1021/acs.est.3c10788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
2,4-Dinitroanisole (DNAN) is a main constituent in various new insensitive munition formulations. Although DNAN is susceptible to biotic and abiotic transformations, in many environmental instances, transformation mechanisms are difficult to resolve, distinguish, or apportion on the basis solely of analysis of concentrations. We used compound-specific isotope analysis (CSIA) to investigate the characteristic isotope fractionations of the biotic (by three microbial consortia and three pure cultures) and abiotic (by 9,10-anthrahydroquinone-2-sulfonic acid [AHQS]) transformations of DNAN. The correlations of isotope enrichment factors (ΛN/C) for biotic transformations had a range of values from 4.93 ± 0.53 to 12.19 ± 1.23, which is entirely distinct from ΛN/C values reported previously for alkaline hydrolysis, enzymatic hydrolysis, reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, and UV-driven phototransformations. The ΛN/C value associated with the abiotic reduction by AHQS was 38.76 ± 2.23, within the range of previously reported values for DNAN reduction by Fe2+-bearing minerals and iron-oxide-bound Fe2+, albeit the mean ΛN/C was lower. These results enhance the database of isotope effects accompanying DNAN transformations under environmentally relevant conditions, allowing better evaluation of the extents of biotic and abiotic transformations of DNAN that occur in soils, groundwaters, surface waters, and the marine environment.
Collapse
Affiliation(s)
- Chunlei Wang
- Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Mark E Fuller
- Biotechnology Development & Applications Group, APTIM, Lawrenceville, New Jersey 08648, United States
| | - Jimmy Murillo-Gelvez
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Rachael T Rezes
- Biotechnology Development & Applications Group, APTIM, Lawrenceville, New Jersey 08648, United States
| | - Paul B Hatzinger
- Biotechnology Development & Applications Group, APTIM, Lawrenceville, New Jersey 08648, United States
| | - Pei C Chiu
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Linnea J Heraty
- Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Neil C Sturchio
- Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Kim J, Fuller ME, Hatzinger PB, Chu KH. Isolation and characterization of nitroguanidine-degrading microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169184. [PMID: 38092196 DOI: 10.1016/j.scitotenv.2023.169184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Nitroguanidine (NQ) is a component of newly developed insensitive munition (IM) formulations which are more resistant to impact, friction, heat, or sparks than conventional explosives. NQ is also used to synthesize various organic compounds and herbicides, and has both human and environmental health impacts. Despite the wide application and associated health concerns, limited information is known regarding NQ biodegradation, and only one NQ-degrading pure culture identified as Variovorax strain VC1 has been characterized. Here, we present results for three new NQ-degrading bacterial strains isolated from soil, sediment, and a lab-scale aerobic membrane bioreactor (MBR), respectively. Each of these strains -utilizes NQ as a nitrogen (N) source rather than as a source of carbon or energy. The MBR strain, identified as Pseudomonas extremaustralis strain NQ5, is capable of degrading NQ at a rate of approximately 150 μmole L-1 h-1 under aerobic conditions with glucose as a sole carbon source - and NQ as a sole N source. The addition of NH4+ to strain NQ5 during active growth with NQ as a sole N source slowed the growth rate for several hours, and the strain released NH4+, presumably from NQ. When NO3- was added as an alternate N source under similar conditions, the NO3- was not consumed, but NH4+ release into the culture medium was again observed. Strain NQ5 was also able to utilize guanylurea, guanidine, and ethyl allophanate as N sources, and - tolerate salt concentrations as high as 4 % (as NaCl). The other two stains, NQ4 and NQ7, both identified as Arthrobacter spp., grew significantly slower than strain NQ5 under similar culture conditions and tolerated only ∼1 % NaCl. In addition, neither strain NQ4 nor strain NQ7 was able to degrade guanlyurea or ethyl allophanate, but each degraded guanidine. These strains, particularly strain NQ5, may have practical applications for in-situ and ex-situ NQ bioremediation.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Paul B Hatzinger
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
5
|
Fuller ME, Hedman PC, Chu KH, Webster TS, Hatzinger PB. Evaluation of a sequential anaerobic-aerobic membrane bioreactor system for treatment of traditional and insensitive munitions constituents. CHEMOSPHERE 2023; 340:139887. [PMID: 37604336 DOI: 10.1016/j.chemosphere.2023.139887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
New energetic formulations containing insensitive high explosives (IHE), such as 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazole-5-one (NTO), and nitroguanidine (NQ) are being developed to provide safer munitions. The addition of IHE to munitions formulations results in complex wastewaters from explosives manufacturing, load and pour operations and demilitarization activities. New technologies are required to treat those wastewaters. The core objective of this research effort was to develop and optimize a dual anaerobic-aerobic membrane bioreactor (MBR) system for treatment of wastewater containing variable mixtures of traditional energetics, IHE, and anions. The combined system proved highly effective for treatment of traditional explosives (TNT, RDX, HMX), IHE (DNAN, NTO, NQ) and anions commonly used as military oxidants (ClO4-, NO3-). The anaerobic MBR, which was operated for more than 500 d, was observed to completely degrade mg L-1 concentrations of TNT, DNAN, ClO4- and NO3- under all operational conditions, including at the lowest hydraulic residence time (HRT) tested (2.2 d). The combined system generally resulted in complete treatment of mg L-1 concentrations of RDX and HMX to <20 μg L-1, with most of the degradation occurring in the anaerobic MBR and polishing in the aerobic system. No common daughter products of DNAN, TNT, RDX, or HMX were detected in the effluent. NTO was completely transformed in the anaerobic MBR, but residual 3-amino-1,2,4-triazole-5-one (ATO) was detected in system effluent. The ATO rapidly decomposed when bleach solution was added to the final effluent. NQ was initially recalcitrant in the system, but microbial populations eventually developed that could degrade >90% of the ∼10 mg L-1 NQ entering the anaerobic MBR, with the remainder degraded to <50 μg L-1 in the aerobic system. The dual MBR system proved to be capable of complete degradation of a wide mixture of munitions constituents and was resilient to changing influent composition.
Collapse
Affiliation(s)
- Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ, 08648, USA
| | - Paul C Hedman
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ, 08648, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Todd S Webster
- Envirogen Technologies, Inc., 9360 Santa Anita Ave., Suite 107, Rancho Cucamonga, CA, 91730, USA
| | - Paul B Hatzinger
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ, 08648, USA.
| |
Collapse
|
6
|
Stein N, Podder A, Goel R. Biodegradation of insensitive munition (IM) formulations: IMX-101 and IMX-104 using aerobic granule technology. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130942. [PMID: 36801711 DOI: 10.1016/j.jhazmat.2023.130942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
A laboratory-scale aerobic granular sludge (AGS) sequencing batch bioreactor (SBR) was initiated in this study for the biodegradation of hazardous insensitive munition (IM) formulation constituents; 2,4-dinitroanisole (DNAN), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 1-nitroguanidine (NQ), and 3-nitro-1,2,4-triazol-5-one (NTO). Efficient (bio)transformation of the influent DNAN and NTO was achieved throughout reactor operation with removal efficiencies greater than 95%. An average removal efficiency of 38.4 ± 17.5% was recorded for RDX. NQ was only slightly removed (3.96 ± 4.15%) until alkalinity was provided in the influent media, which subsequently increased the NQ removal efficiency up to an average of 65.8 ± 24.4%. Batch experiments demonstrated a competitive advantage for aerobic granular biofilms over flocculated biomass for the (bio)transformation DNAN, RDX, NTO, and NQ, as aerobic granules were capable of reductively (bio)transforming each IM compound under bulk aerobic conditions while flocculated biomass could not, thus demonstrating the contribution of inner oxygen-free zones within aerobic granules. A variety of catalytic enzymes were identified in the extracellular polymeric matrix of the AGS biomass. 16 S rDNA amplicon sequencing found Proteobacteria (27.2-81.2%) to be the most abundant phyla, with many genera associated with nutrient removal as well as genera previously described in relation to the biodegradation of explosives or related compounds.
Collapse
Affiliation(s)
- Nathan Stein
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Schroer HW, Londono E, Li X, Lehmler HJ, Arnold W, Just CL. Photolysis of 3-Nitro-1,2,4-triazol-5-one: Mechanisms and Products. ACS ES&T WATER 2023; 3:783-792. [PMID: 36936519 PMCID: PMC10012174 DOI: 10.1021/acsestwater.2c00567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Insensitive munitions formulations that include 3-nitro-1,2,4-triazol-5-one (NTO) are replacing traditional explosive compounds. While these new formulations have superior safety characteristics, the compounds have greater environmental mobility, raising concern over potential contamination and cleanup of training and manufacturing facilities. Here, we examine the mechanisms and products of NTO photolysis in simulated sunlight to further inform NTO degradation in sunlit surface waters. We demonstrate that NTO produces singlet oxygen and that dissolved oxygen increases the NTO photolysis rate in deionized water. The rate of NTO photolysis is independent of concentration and decreases slightly in the presence of Suwannee River Natural Organic Matter. The apparent quantum yield of NTO generally decreases as pH increases, ranging from 2.0 × 10-5 at pH 12 to 1.3 × 10-3 at pH 2. Bimolecular reaction rate constants for NTO with singlet oxygen and hydroxyl radical were measured to be (1.95 ± 0.15) × 106 and (3.28 ± 0.23) × 1010 M-1 s-1, respectively. Major photolysis reaction products were ammonium, nitrite, and nitrate, with nitrite produced in nearly stoichiometric yield upon the reaction of NTO with singlet oxygen. Environmental half-lives are predicted to span from 1.1 to 5.7 days. Taken together, these data enhance our understanding of NTO photolysis under environmentally relevant conditions.
Collapse
Affiliation(s)
- Hunter W. Schroer
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| | - Esteban Londono
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| | - Xueshu Li
- Occupational
& Environmental Health, The University
of Iowa, Iowa City, Iowa52246, United States
| | - Hans-Joachim Lehmler
- Occupational
& Environmental Health, The University
of Iowa, Iowa City, Iowa52246, United States
| | - William Arnold
- Department
of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota55455, United States
| | - Craig L. Just
- Civil
& Environmental Engineering, The University
of Iowa, Iowa City, Iowa52242, United States
| |
Collapse
|
8
|
Rios-Valenciana EE, Menezes O, Romero J, Blubaum C, Krzmarzick MJ, Sierra-Alvarez R, Field JA. Elucidating the mechanisms associated with the anaerobic biotransformation of the emerging contaminant nitroguanidine. WATER RESEARCH 2023; 229:119496. [PMID: 36535085 DOI: 10.1016/j.watres.2022.119496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Nitroguanidine (NQ) is a constituent of gas generators for automobile airbags, smokeless pyrotechnics, insecticides, propellants, and new insensitive munitions formulations applied by the military. During its manufacture and use, NQ can easily spread in soils, ground, and surface waters due to its high aqueous solubility. Very little is known about the microbial biotransformation of NQ. This study aimed to elucidate important mechanisms operating during NQ anaerobic biotransformation. To achieve this goal, we developed an anaerobic enrichment culture able to reduce NQ to nitrosoguanidine (NsoQ), which was further abiotically transformed to cyanamide. Effective electron donors for NQ biotransformation were lactate and, to a lesser extent, pyruvate. The results demonstrate that the enrichment process selected a sulfate-reducing culture that utilized lactate as its electron donor and sulfate as its electron acceptor while competing with NQ as an electron sink. A unique property of the culture was its requirement for exogenous nitrogen (e.g., from yeast extract or NH4Cl) for NQ biotransformation since NQ itself did not serve as a nitrogen source. The main phylogenetic groups associated with the NQ-reducing culture were sulfate-reducing and fermentative bacteria, namely Cupidesulfovibrio oxamicus (63.1% relative abundance), Dendrosporobacter spp. (12.0%), and Raoultibacter massiliens (10.9%). The molecular ecology results corresponded to measurable physiological properties of the most abundant members. The results establish the conditions for NQ anaerobic biotransformation and the microbial community associated with the process, improving our present comprehension of NQ environmental fate and assisting the development of NQ remediation strategies.
Collapse
Affiliation(s)
- Erika E Rios-Valenciana
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ 85721, United States
| | - Osmar Menezes
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ 85721, United States
| | - Jonathan Romero
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ 85721, United States
| | - Corey Blubaum
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ 85721, United States
| | - Mark J Krzmarzick
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK 74078, United States
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ 85721, United States
| | - Jim A Field
- Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ 85721, United States.
| |
Collapse
|
9
|
Ariyarathna T, Twarz S, Tobias C. Adsorption and Removal Kinetics of 2,4-Dinitroanisole and Nitrotriazolone in Contrasting Freshwater Sediments: Batch Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:46-59. [PMID: 36342340 DOI: 10.1002/etc.5509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Environmental release of 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) is of great concern due to high migration potential in the environment. In the present study we evaluated the adsorption and microbially-mediated removal kinetics of dissolved DNAN and NTO in contrasting freshwater sediments with different total organic carbon (TOC) content. River sand (low TOC), pond silt (high TOC), clay-rich lake sediment (low TOC), wetland silt (high TOC), carbonate sand (low TOC), and iron-rich clay (low TOC) were evaluated. Separate abiotic and biotic bench-top sediment slurry incubations were carried out at 23, 15, and 4 °C for DNAN and NTO. Experiments were conducted over 3 weeks. Time series aqueous samples and sediment samples collected at the end of the experiment were analyzed for DNAN and NTO concentrations. The DNAN compound equilibrated with sediment within the first 2 h after addition whereas NTO showed no adsorption. 2,4-Dinitroanisole adsorbed more onto fine-grained organic-rich sediments (Kd = 2-40 L kg-1 sed-1 ) than coarse-grained organic-poor sediments (Kd = 0.2-0.6 L kg-1 sed-1 ), and the TOC content and cation exchange capacity of sediment were reliable predictors for abiotic DNAN adsorption. Adsorption rate constants and equilibrium partitioning constants for DNAN were inversely proportional to temperature in all sediment types. The biotic removal half-life of DNAN was faster (t1/2 = 0.1-58 h) than that of NTO (t1/2 = 5-347 h) in all sediment slurries. Biotic removal rates (t1/2 = 0.1-58 h) were higher than abiotic rates (t1/2 = 0.3-107 h) for DNAN at 23 °C. Smaller grain size coupled with higher TOC content enhanced biotic NTO and DNAN removal in freshwater environments. Environ Toxicol Chem 2023;42:46-59. © 2022 SETAC.
Collapse
Affiliation(s)
- Thivanka Ariyarathna
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
- Department of Environmental Sciences, Rowan University, Glassboro, New Jersey, USA
| | - Sydney Twarz
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Craig Tobias
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
10
|
Karls B, Meding SM, Li L, Polyakov V, Kadoya W, Beal S, Dontsova K. A laboratory rill study of IMX-104 transport in overland flow. CHEMOSPHERE 2023; 310:136866. [PMID: 36270523 DOI: 10.1016/j.chemosphere.2022.136866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The deposition of explosive contaminants in particulate form onto the soil surface during low-order detonations can lead to ground and surface water contamination. The vertical fate and transport of insensitive munitions formulation IMX-104 through soil has been thoroughly studied, however the lateral transport of explosive particles on the surface is less known. The objective of this research was to understand the impact of overland flow on the transport of IMX-104 constituent compounds 3-nitro-1,2,4-triazol-5-one (NTO), 2,4-dinitroanisole (DNAN), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The effect of overland flow was examined in a rill flume using several flow rates (165-, 265-, and 300-mL min-1) and IMX-104 particle sizes (4.75-9.51 mm, 2.83-4.75 mm, 2-2.83 mm, and <2 mm). We found that the smaller particles were transported more in solution and with the sediment compared to the larger particles, which had a higher percent mass remaining on the surface. As flow rate increased, there was an increase in the percent mass found in solution and sediment and a decrease in the percent mass remaining on the surface. NTO fate was dominated by transport in solution, while DNAN, RDX and HMX were predominantly transported with the sediment. This research provides evidence of the role of overland flow in the fate of energetic compounds.
Collapse
Affiliation(s)
- Benjamin Karls
- University of Arizona Department of Environmental Science, 1177 E. 4th Street, Tucson, AZ, 85721, USA.
| | | | - Li Li
- Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, Wuhan, 430010, China
| | - Viktor Polyakov
- USDA Southwest Watershed Research Center, 2000 E Allen RD, Tucson, AZ, 85719, USA
| | - Warren Kadoya
- U.S. Army Engineer Research and Development Center (ERDC), Cold Regions Research and Engineering Laboratory (CRREL), 72 Lyme Road, Hanover, NH, 03755-1290, USA
| | - Samuel Beal
- U.S. Army Engineer Research and Development Center (ERDC), Cold Regions Research and Engineering Laboratory (CRREL), 72 Lyme Road, Hanover, NH, 03755-1290, USA
| | - Katerina Dontsova
- University of Arizona Biosphere 2, 32540 S Biosphere Rd, Oracle, AZ, 85739, USA.
| |
Collapse
|
11
|
Gutierrez-Carazo E, Dowle J, Coulon F, Temple T, Ladyman M. Predicting the transport of 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) in sandy and sandy loam soils. Heliyon 2022; 8:e11758. [DOI: 10.1016/j.heliyon.2022.e11758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
|
12
|
Rios-Valenciana EE, Menezes O, Niu XZ, Romero J, Root RA, Chorover J, Sierra-Alvarez R, Field JA. Reductive transformation of the insensitive munitions compound nitroguanidine by different iron-based reactive minerals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119788. [PMID: 35843454 DOI: 10.1016/j.envpol.2022.119788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Nitroguanidine (NQ) is an emerging contaminant being used by the military as a constituent of new insensitive munitions. NQ is also used in rocket propellants, smokeless pyrotechnics, and vehicle restraint systems. Its uncontrolled transformation in the environment can generate toxic and potentially mutagenic products, posing hazards that need to be remediated. NQ transformation has only been investigated to a limited extent. Thus, it is crucial to expand the narrow spectrum of NQ remediation strategies and understand its transformation pathways and end products. Iron-based reactive minerals should be investigated for NQ treatment because they are successfully used in existing technologies, such as permeable reactive barriers, for treating a wide range of organic pollutants. This study tested the ability of micron-sized zero-valent iron (m-ZVI), mackinawite, and commercial FeS, to transform NQ under anoxic conditions. NQ transformation followed pseudo-first-order kinetics. The reaction rate constants decreased as follows: commercial FeS > mackinawite > m-ZVI. For the assessed minerals, the NQ transformation started with the reduction of the nitro group forming nitrosoguanidine (NsoQ). Then, aminoguanidine (AQ) was accumulated during the reaction of NQ with m-ZVI, accounting for 86% of the nitrogen mass recovery. When NQ was reacted with commercial FeS, 45% and 20% of nitrogen were recovered as AQ and guanidine, respectively, after 24 h. Nonetheless, NsoQ persisted, contributing to the N-balance. When mackinawite was present, NsoQ disappeared, but AQ was not detected, and guanidine accounted for 11% of the nitrogen recovery. AQ was ultimately transformed into cyanamide, whose dimerization triggered the formation of cyanoguanidine. Alternatively, NsoQ was transformed into guanidine, which reacted with cyanamide to form biguanide. This is the first report systematically investigating the NQ transformation by different iron-based reactive minerals. The evidence indicates that these minerals are attractive alternatives for developing NQ remediation strategies.
Collapse
Affiliation(s)
- Erika E Rios-Valenciana
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, P.O. Box 210011, AZ, 85721, USA
| | - Osmar Menezes
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, P.O. Box 210011, AZ, 85721, USA
| | - Xi-Zhi Niu
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, P.O. Box 210011, AZ, 85721, USA
| | - Jonathan Romero
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, P.O. Box 210011, AZ, 85721, USA
| | - Robert A Root
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jon Chorover
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, P.O. Box 210011, AZ, 85721, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, P.O. Box 210011, AZ, 85721, USA.
| |
Collapse
|
13
|
Pal Y, Mayilraj S, Krishnamurthi S. Uncovering the structure and function of specialist bacterial lineages in environments routinely exposed to explosives. Lett Appl Microbiol 2022; 75:1433-1448. [PMID: 35972393 DOI: 10.1111/lam.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Environmental contamination by hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), and Octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX), the two most widely used compounds for military operations, is a long-standing problem at the manufacturing and decommissioning plants. Since explosives contamination has previously been shown to favour the growth of specific bacterial communities, the present study attempts to identify the specialist bacterial communities and their potential functional and metabolic roles by using amplicon targeted and whole-metagenome sequencing approaches (WMS) in samples collected from two distinct explosives manufacturing sites. We hypothesize that the community structure and functional attributes of bacterial population are substantially altered by the concentration of explosives and physicochemical conditions. The results highlight the predominance of Planctomycetes in contrast to previous reports from similar habitats. The detailed phylogenetic analysis revealed the presence of OTU's related to bacterial members known for their explosives degradation. Further, the functional and metabolic analyses highlighted the abundance of putative genes and unidentified taxa possibly associated with xenobiotic biodegradation. Our findings suggest that microbial species capable of utilizing explosives as a carbon, energy, or electron source are favoured by certain selective pressures based on the prevailing physicochemical and geographical conditions.
Collapse
Affiliation(s)
- Yash Pal
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036.,Director of Research, Bentoli AgriNutrition, India Pvt Ltd., 3F2, Third Floor, Front Block, Metro Tower, Building No.115, Poonamallee, High Road, Chennai, - 600 084
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036
| |
Collapse
|
14
|
Menezes O, Owens C, Rios-Valenciana EE, Sierra-Alvarez R, Field JA, Spain JC. Designing bacterial consortia for the complete biodegradation of insensitive munitions compounds in waste streams. Biotechnol Bioeng 2022; 119:2437-2446. [PMID: 35706349 DOI: 10.1002/bit.28160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Insensitive munitions compounds (IMCs), such as 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO), are replacing conventional explosives in munitions formulations. Manufacture and use of IMCs generate waste streams in manufacturing plants and load/assemble/pack facilities. There is a lack of practical experience in executing biodegradation strategies to treat IMCs waste streams. This study establishes a proof-of-concept that bacterial consortia can be designed to mineralize IMCs and co-occurring nitroaromatics in waste streams. First, DNAN, 4-nitroanisole (4-NA), and 4-chloronitrobenzene (4-CNB) in a synthetic DNAN-manufacturing waste stream were biodegraded using an aerobic fluidized-bed reactor (FBR) inoculated with Nocardioides sp. JS 1661 (DNAN degrader), Rhodococcus sp. JS 3073 (4-NA degrader), and Comamonadaceae sp. LW1 (4-CNB degrader). No biodegradation was detected when the FBR was operated under anoxic conditions. Second, DNAN and NTO were biodegraded in a synthetic load/assemble/pack waste stream during a sequential treatment comprising: (i) aerobic DNAN biodegradation in the FBR; (ii) anaerobic NTO biotransformation to 3-amino-1,2,4-triazol-5-one (ATO) by an NTO-respiring enrichment; and (iii) aerobic ATO mineralization by an ATO-oxidizing enrichment. Complete biodegradation relied on switching redox conditions. The results provide the basis for designing consortia to treat mixtures of IMCs and related waste products by incorporating microbes with the required catabolic capabilities.
Collapse
Affiliation(s)
- Osmar Menezes
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Cameron Owens
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida, USA
| | - Erika E Rios-Valenciana
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, Florida, USA.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Elijah Akanbi O, Kim I, Cha DK, Attavane AA, Hubbard BP, Chiu PC. A Synergistic Nano‐Zerovalent Iron‐Hydrogen Peroxide Technology for Insensitive Munitions Wastewater Treatment. PROPELLANTS EXPLOSIVES PYROTECHNICS 2022. [DOI: 10.1002/prep.202100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Inyoung Kim
- Department of Civil and Environmental Engineering University of Delaware Newark DE 19716 USA
| | - Daniel K. Cha
- Department of Civil and Environmental Engineering University of Delaware Newark DE 19716 USA
| | - Adithya A. Attavane
- U. S. Army Combat Capabilities Development Command Armaments Center Picatinny Arsenal NJ 07806 USA
| | - Brian P. Hubbard
- U. S. Army Joint Program Executive Office Armaments & Ammunition Picatinny Arsenal NJ 07806 USA
| | - Pei C. Chiu
- Department of Civil and Environmental Engineering University of Delaware Newark DE 19716 USA
| |
Collapse
|
16
|
Fuller ME, Farquharson EM, Hedman PC, Chiu P. Removal of munition constituents in stormwater runoff: Screening of native and cationized cellulosic sorbents for removal of insensitive munition constituents NTO, DNAN, and NQ, and legacy munition constituents HMX, RDX, TNT, and perchlorate. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127335. [PMID: 34798548 DOI: 10.1016/j.jhazmat.2021.127335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Technologies are needed to address contamination with energetic compounds at military installations. This research developed and evaluated novel and sustainable materials that can be used to remove munition constituents (MC) from stormwater runoff. Initial work focused on 3-nitro-1,2,4-triazol-5-one (NTO), as it is both highly soluble and ionized at environmentally relevant pH values. Screening cellulosic materials indicated that cationized (CAT) versions of pine shavings (pine, henceforth) and burlap (jute) demonstrated >70% removal of NTO from artificial surface runoff. CAT materials also demonstrated >90% removal of the anionic propellant perchlorate. NTO removal (~80%) by CAT pine was similar across initial pH values from 4 to 8.5 S.U. An inverse relationship was observed between NTO removal and the concentration of the major anions chloride, nitrate, and sulfate due to competition for anion binding sites. Sorption isotherms were performed using a mixture of the three primary legacy explosives (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), hexahydro-1,3,5-trinitro-s-triazine (RDX), 2,4,6-trinitrotoluene (TNT)), the three insensitive MC (nitroguanidine (NQ), NTO, 2,4-dinitroanisole (DNAN)), and perchlorate. Isotherm results indicated that effective removal of both legacy and insensitive MC would best be achieved using a mixture of peat moss plus one or more of the cationized cellulosic materials.
Collapse
Affiliation(s)
- Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA.
| | | | - Paul C Hedman
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Pei Chiu
- University of Delaware, Newark, DE 19716
| |
Collapse
|
17
|
Murillo-Gelvez J, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Reductive Transformation of 3-Nitro-1,2,4-triazol-5-one (NTO) by Leonardite Humic Acid and Anthraquinone-2,6-disulfonate (AQDS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12973-12983. [PMID: 34533928 DOI: 10.1021/acs.est.1c03333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
3-Nitro-1,2,4-triazol-5-one (NTO) is a major and the most water-soluble constituent in the insensitive munition formulations IMX-101 and IMX-104. While NTO is known to undergo redox reactions in soils, its reaction with soil humic acid has not been evaluated. We studied NTO reduction by anthraquinone-2,6-disulfonate (AQDS) and Leonardite humic acid (LHA) reduced with dithionite. Both LHA and AQDS reduced NTO to 3-amino-1,2,4-triazol-5-one (ATO), stoichiometrically at alkaline pH and partially (50-60%) at pH ≤ 6.5. Due to NTO and hydroquinone speciation, the pseudo-first-order rate constants (kObs) varied by 3 orders of magnitude from pH 1.5 to 12.5 but remained constant from pH 4 to 10. This distinct pH dependency of kObs suggests that NTO reactivity decreases upon deprotonation and offsets the increasing AQDS reactivity with pH. The reduction of NTO by LHA deviated continuously from first-order behavior for >600 h. The extent of reduction increased with pH and LHA electron content, likely due to greater reactivity of and/or accessibility to hydroquinone groups. Only a fraction of the electrons stored in LHA was utilized for NTO reduction. Electron balance analysis and LHA redox potential profile suggest that the physical conformation of LHA kinetically limited NTO access to hydroquinone groups. This study demonstrates the importance of carbonaceous materials in controlling the environmental fate of NTO.
Collapse
Affiliation(s)
- Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
18
|
Lotufo GR, Boyd RE, Harmon AR, Bednar AJ, Smith JC, Simini M, Sunahara GI, Hawari J, Kuperman RG. Accumulation of Insensitive Munition Compounds in the Earthworm Eisenia andrei from Amended Soil: Methodological Considerations for Determination of Bioaccumulation Factors. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1713-1725. [PMID: 33646621 DOI: 10.1002/etc.5028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The present study investigates the bioaccumulation of the insensitive munition compounds 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO), developed for future weapons systems to replace current munitions containing sensitive explosives. The earthworm Eisenia andrei was exposed to sublethal concentrations of DNAN or NTO amended in Sassafras sandy loam. Chemical analysis indicated that 2- and 4-amino-nitroanisole (2-ANAN and 4-ANAN, respectively) were formed in DNAN-amended soils. The SumDNAN (sum of DNAN, 2-ANAN, and 4-ANAN concentrations) in soil decreased by 40% during the 14-d exposure period. The SumDNAN in the earthworm body residue increased until day 3 and decreased thereafter. Between days 3 and 14, there was a 73% decrease in tissue uptake that was greater than the 23% decrease in the soil concentration, suggesting that the bioavailable fraction may have decreased over time. By day 14, the DNAN concentration accounted for only 45% of the SumDNAN soil concentration, indicating substantial DNAN transformation in the presence of earthworms. The highest bioaccumulation factor (BAF; the tissue-to-soil concentration ratio) was 6.2 ± 1.0 kg/kg (dry wt) on day 3 and decreased to 3.8 ± 0.8 kg/kg by day 14. Kinetic studies indicated a BAF of 2.3 kg/kg, based on the earthworm DNAN uptake rate of 2.0 ± 0.24 kg/kg/d, compared with the SumDNAN elimination rate of 0.87 d-1 (half-life = 0.79 d). The compound DNAN has a similar potential to bioaccumulate from soil compared with trinitrotoluene. The NTO concentration in amended soil decreased by 57% from the initial concentration (837 mg NTO/kg dry soil) during 14 d, likely due to the formation of unknown transformation products. The bioaccumulation of NTO was negligible (BAF ≤ 0.018 kg/kg dry wt). Environ Toxicol Chem 2021;40:1713-1725. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- G R Lotufo
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - R E Boyd
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - A R Harmon
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - A J Bednar
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - J C Smith
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - M Simini
- US Army Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | - G I Sunahara
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - J Hawari
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - R G Kuperman
- US Army Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| |
Collapse
|
19
|
Fuller ME, Rezes RT, Hedman PC, Jones JC, Sturchio NC, Hatzinger PB. Biotransformation of the insensitive munition constituents 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN) by aerobic methane-oxidizing consortia and pure cultures. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124341. [PMID: 33144007 DOI: 10.1016/j.jhazmat.2020.124341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
We present the first report of biotransformation of 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN), replacements for the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT), respectively, by methane-oxidizing cultures under aerobic conditions. Two consortia, dominated by Methylosinus spp., degraded both compounds with transient production of reduced NTO products, and non-stoichiometric production of reduced DNAN products. No release of inorganic nitrogen was observed with either compound, indicating that NTO and DNAN may be utilized as nitrogen sources by these consortia. The pure culture Methylosinus trichosporium OB3b also degraded both compounds. Degradation was observed in the presence of acetylene (a known inhibitor of methane monooxygenase; MMO) when methanol was supplied, indicating that MMO was not involved. Furthermore, studies with purified soluble MMO (sMMO) from OB3b indicated that neither compound was a substrate for sMMO. Degradation was inhibited by 2-iodosobenzoic acid, but not by dicoumarol, suggesting involvement of an oxygen- and dicoumarol-insensitive (nitro)reductase. These results indicate methanotrophs can aerobically degrade NTO and DNAN via one or more (nitro)reductases, with sMMO serving a supporting role deriving reducing equivalents from methane. This finding is important because methanotrophic bacteria are widely dispersed, and may represent a previously unrecognized route of NTO and DNAN biotransformation in aerobic environments.
Collapse
Affiliation(s)
- Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA.
| | - Rachael T Rezes
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Paul C Hedman
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | | | | | - Paul B Hatzinger
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| |
Collapse
|
20
|
Cárdenas-Hernández PA, Anderson KA, Murillo-Gelvez J, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Reduction of 3-Nitro-1,2,4-Triazol-5-One (NTO) by the Hematite-Aqueous Fe(II) Redox Couple. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12191-12201. [PMID: 32902277 DOI: 10.1021/acs.est.0c03872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3-Nitro-1,2,4-triazol-5-one (NTO) is an insensitive munition compound (MC) that has replaced legacy MC. NTO can be highly mobile in soil and groundwater due to its high solubility and anionic nature, yet little is known about the processes that control its environmental fate. We studied NTO reduction by the hematite-Fe2+ redox couple to assess the importance of this process for the attenuation and remediation of NTO. Fe2+(aq) was either added (type I) or formed through hematite reduction by dithionite (type II). In the presence of both hematite and Fe2+(aq), NTO was quantitatively reduced to 3-amino-1,2,4-triazol-5-one following first-order kinetics. The surface area-normalized rate constant (kSA) showed a strong pH dependency between 5.5 and 7.0 and followed a linear free energy relationship (LFER) proposed in a previous study for nitrobenzene reduction by iron oxide-Fe2+ couples, i.e., log kSA = -(pe + pH) + constant. Sulfite, a major dithionite oxidation product, lowered kSA in type II system by ∼10-fold via at least two mechanisms: by complexing Fe2+ and thereby raising pe, and by making hematite more negatively charged and hence impeding NTO adsorption. This study demonstrates the importance of iron oxide-Fe2+ in controlling NTO transformation, presents an LFER for predicting NTO reduction rate, and illustrates how solutes can shift the LFER by interacting with either iron species.
Collapse
Affiliation(s)
- Paula A Cárdenas-Hernández
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Katelyn A Anderson
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Jog KV, Sierra-Alvarez R, Field JA. Rapid biotransformation of the insensitive munitions compound, 3-nitro-1,2,4-triazol-5-one (NTO), by wastewater sludge. World J Microbiol Biotechnol 2020; 36:67. [DOI: 10.1007/s11274-020-02843-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/15/2020] [Indexed: 02/03/2023]
|
22
|
Madeira CL, Jog KV, Vanover ET, Brooks MD, Taylor DK, Sierra-Alvarez R, Waidner LA, Spain JC, Krzmarzick MJ, Field JA. Microbial Enrichment Culture Responsible for the Complete Oxidative Biodegradation of 3-Amino-1,2,4-triazol-5-one (ATO), the Reduced Daughter Product of the Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12648-12656. [PMID: 31553579 DOI: 10.1021/acs.est.9b04065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
3-Nitro-1,2,4-triazol-5-one (NTO) is one of the main ingredients of many insensitive munitions, which are being used as replacements for conventional explosives. As its use becomes widespread, more research is needed to assess its environmental fate. Previous studies have shown that NTO is biologically reduced to 3-amino-1,2,4-triazol-5-one (ATO). However, the final degradation products of ATO are still unknown. We have studied the aerobic degradation of ATO by enrichment cultures derived from the soil. After multiple transfers, ATO degradation was monitored in closed bottles through measurements of inorganic carbon and nitrogen species. The results indicate that the members of the enrichment culture utilize ATO as the sole source of carbon and nitrogen. As ATO was mineralized to CO2, N2, and NH4+, microbial growth was observed in the culture. Co-substrates addition did not increase the ATO degradation rate. Quantitative polymerase chain reaction analysis revealed that the organisms that enriched using ATO as carbon and nitrogen source were Terrimonas spp., Ramlibacter-related spp., Mesorhizobium spp., Hydrogenophaga spp., Ralstonia spp., Pseudomonas spp., Ectothiorhodospiraceae, and Sphingopyxis. This is the first study to report the complete mineralization of ATO by soil microorganisms, expanding our understanding of natural attenuation and bioremediation of the explosive NTO.
Collapse
Affiliation(s)
- Camila L Madeira
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721-0011 , United States
| | - Kalyani V Jog
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721-0011 , United States
| | - Erica T Vanover
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721-0011 , United States
| | - Matthew D Brooks
- School of Civil and Environmental Engineering , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - David K Taylor
- School of Civil and Environmental Engineering , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721-0011 , United States
| | - Lisa A Waidner
- Center for Environmental Diagnostics & Bioremediation , University of West Florida , Pensacola , Florida 32514 , United States
| | - Jim C Spain
- School of Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0355 , United States
- Center for Environmental Diagnostics & Bioremediation , University of West Florida , Pensacola , Florida 32514 , United States
| | - Mark J Krzmarzick
- School of Civil and Environmental Engineering , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Jim A Field
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721-0011 , United States
| |
Collapse
|
23
|
Halasz A, Hawari J, Perreault NN. New Insights into the Photochemical Degradation of the Insensitive Munition Formulation IMX-101 in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:589-596. [PMID: 29244492 DOI: 10.1021/acs.est.7b04878] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study describes photolysis of the insensitive munition formulation IMX-101 [2,4-dinitroanisole (DNAN), NQ (nitroguanidine), and 3-nitro-1,2,4-triazol-5-one (NTO)] in aqueous solutions using a solar simulating photoreactor. Due to a large variance in the water solubility of the three constituents DNAN (276 mg L-1), NQ (5,000 mg L-1), and NTO (16,642 mg L-1), two solutions of IMX-101 were prepared: one with low concentration (109.3 mg L-1) and another with high concentration (2831 mg L-1). The degradation rate constants of DNAN, NQ, and NTO (0.137, 0.075, and 0.202 d-1, respectively) in the low concentration solution were lower than those of the individually photolyzed components (0.262, 1.181, and 0.349 d-1, respectively). In the high concentration solution, the molar loss of NTO was 4.3 times higher than that of NQ after 7 days of irradiation, although NQ was two times more concentrated and that NQ alone degraded faster than NTO. In addition to the known degradation products, DNAN removal in IMX-101 was accompanied by multiple productions of methoxydinitrophenols, which were not observed during photolysis of DNAN alone. One route for the formation of methoxydinitrophenols was suggested to involve photonitration of the DNAN photoproduct methoxynitrophenol during simultaneous photodenitration of NQ and NTO in IMX-101. Indeed, when DNAN was photolyzed in the presence of 15NO2-labeled explosive CL-20, we detected methoxydinitrophenols with an increase of 1 mass unit, indicating that denitration of DNAN and renitration of products simultaneously occurred. As was the case with DNAN, we found that guanidine, a primary degradation product of NQ, also underwent renitration in the presence of NTO and the photocatalyst TiO2. We concluded that the three constituents of IMX-101 can be photodegraded in surface water and that fate and primary degradation products of IMX-101 can be influenced by the interactions between the formulation ingredients and their degradation products.
Collapse
Affiliation(s)
- Annamaria Halasz
- National Research Council Canada , 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Jalal Hawari
- National Research Council Canada , 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Nancy N Perreault
- National Research Council Canada , 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|