1
|
Kong G, Li R, Huang W, Yang Y, Guan T, Liu J, Li W, Hsiang T, Xi P, Li M, Jiang Z. A RACK1 family protein regulates pathogenicity of Peronophythora litchii by acting as a scaffold for MAPK signal modules. Virulence 2025; 16:2503429. [PMID: 40356437 PMCID: PMC12077431 DOI: 10.1080/21505594.2025.2503429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/03/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Litchi downy blight caused by Peronophythora litchii is the most destructive disease of litchi (Litchi chinensis). RACK1 (Receptor for activated C kinase 1) is a group of scaffold proteins, mainly involved in the regulation of various signaling pathways by interacting with signal transduction proteins and affecting the activity of these proteins. In this study, a RACK1 homologue identified in P. litchii, and named PlRACK1. The protein was found to interact with the mitogen-activated protein kinases, PlMAPK1 and PlMAPK2. CRISPR/Cas9-mediated genome editing technology was used to knock out PlRACK1, and we found that it was involved in mycelial growth, cell wall integrity, ROS metabolism, laccase activity, and pathogenicity of P. litchii. PlMAPK1 interacted with RACK1, and they jointly regulated sporangiophore branching of P. litchii. Transcriptome analysis showed that P. litchii MAPK Phosphatase 1 (PlMKP1) and beta-glucoside (PlBglX) were regulated by PlRACK1, both of which were also required for the pathogenicity of P. litchii. As well, PlMKP1 also interacted with PlMAPK1 and PlMAPK2. These results provide insights into the direct interactions between RACK1, MAPKs, and MKP, and their functions in growth, development, and pathogenesis in a plant pathogenic oomycete.
Collapse
Affiliation(s)
- Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Rui Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Weixiong Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yaowen Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Tianfang Guan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Jinghan Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Wen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Pócsi I, Dijksterhuis J, Houbraken J, de Vries RP. Biotechnological potential of salt tolerant and xerophilic species of Aspergillus. Appl Microbiol Biotechnol 2024; 108:521. [PMID: 39560743 DOI: 10.1007/s00253-024-13338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Xerophilic fungi occupy versatile environments owing to their rich arsenal helping them successfully adapt to water constraints as a result of low relative humidity, high-osmolarity, and high-salinity conditions. The general term xerophilic fungi relates to organisms that tolerate and/or require reduced water activity, while halophilic and osmophilic are applied to specialized groups that require high salt concentrations or increased osmotic pressure, respectively. Species belonging to the family Aspergillaceae, and especially those classified in Aspergillus subgenus Aspergillus (sections Restricti and Aspergillus) and Polypaecilum, are particularly enriched in the group of osmophilic and salt-tolerant filamentous fungi. They produce an unprecedently wide spectrum of salt tolerant enzymes including proteases, peptidases, glutaminases, γ-glutamyl transpeptidases, various glycosidases such as cellulose-decomposing and starch-degrading hydrolases, lipases, tannases, and oxidareductases. These extremophilic fungi also represent a huge untapped treasure chest of yet-to-be-discovered, highly valuable, biologically active secondary metabolites. Furthermore, these organisms are indispensable agents in decolorizing textile dyes, degrading xenobiotics and removing excess ions in high-salt environments. They could also play a role in fermentation processes at low water activity leading to the preparation of daqu, meju, and tea. Considering current and future agricultural applications, salt-tolerant and osmophilic Aspergilli may contribute to the biosolubilization of phosphate in soil and the amelioration salt stress in crops. Transgenes from halophile Aspergilli may find promising applications in the engineering of salt stress and drought-tolerant agricultural crops. Aspergilli may also spoil feed and food and raise mycotoxin concentrations above the permissible doses and, therefore, the development of novel feed and food preservation technologies against these Aspergillus spp. is also urgently needed. On the other hand, some xerophilic Aspergilli have been shown to be promising biological control agents against mites. KEY POINTS: • Salt tolerant and osmophilic Aspergilli can be found in versatile environments • These fungi are rich resources of valuable enzymes and secondary metabolites • Biotechnological and agricultural applications of these fungi are expanding.
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- HUN-REN-UD Fungal Stress Biology Research Group, Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Jan Dijksterhuis
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
3
|
Lv G, Zhu Y, Cheng X, Cao Y, Zeng B, Liu X, He B. Transcriptomic Responses of Cordyceps militaris to Salt Treatment During Cordycepins Production. Front Nutr 2022; 8:793795. [PMID: 35004818 PMCID: PMC8733472 DOI: 10.3389/fnut.2021.793795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Cordycepin is a major bioactive compound found in Cordyceps militaris (C. militaris) that exhibits a broad spectrum of biological activities. Hence, it is potentially a bioactive ingredient of pharmaceutical and cosmetic products. However, overexploitation and low productivity of natural C. militaris is a barrier to commercialization, which leads to insufficient supply to meet its existing market demands. In this study, a preliminary study of distinct concentrations of salt treatments toward C. militaris was conducted. Although the growth of C. militaris was inhibited by different salt treatments, the cordycepin production increased significantly accompanied by the increment of salt concentration. Among them, the content of cordycepin in the 7% salt-treated group was five-fold higher than that of the control group. Further transcriptome analysis of samples with four salt concentrations, coupled with Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, several differentially expressed genes (DEGs) were found. Finally, dynamic changes of the expression patterns of four genes involved in the cordycepin biosynthesis pathway were observed by the quantitative real-time PCR. Taken together, our study provides a global transcriptome characterization of the salt treatment adaptation process in C. militaris and facilitates the construction of industrial strains with a high cordycepin production and salt tolerance.
Collapse
Affiliation(s)
- Gongbo Lv
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yue Zhu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojie Cheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yan Cao
- Information Institute of Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xinping Liu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
4
|
Li W, Li P, Zhou X, Situ J, Lin Y, Qiu J, Yuan Y, Xi P, Jiang Z, Kong G. A Cytochrome B 5-Like Heme/Steroid Binding Domain Protein, PlCB5L1, Regulates Mycelial Growth, Pathogenicity and Oxidative Stress Tolerance in Peronophythora litchii. FRONTIERS IN PLANT SCIENCE 2021; 12:783438. [PMID: 34899811 PMCID: PMC8655872 DOI: 10.3389/fpls.2021.783438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
As an electron transport component, cytochrome b5 is an essential component of the Class II cytochrome P450 monooxygenation system and widely present in animals, plants, and fungi. However, the roles of Cyt-b5 domain proteins in pathogenic oomycetes remain unknown. Peronophythora litchii is an oomycete pathogen that causes litchi downy blight, the most destructive disease of litchi. In this study, we identified a gene, designated PlCB5L1, that encodes a Cyt-b5 domain protein in P. litchii, and characterized its function. PlCB5L1 is highly expressed in the zoospores, cysts, germinated cysts, and during early stages of infection. PlCB5L1 knockout mutants showed reduced growth rate and β-sitosterol utilization. Importantly, we also found that PlCB5L1 is required for the full pathogenicity of P. litchii. Compared with the wild-type strain, the PlCB5L1 mutants exhibited significantly higher tolerance to SDS and sorbitol, but impaired tolerance to cell wall stress, osmotic stress, and oxidative stress. Further, the expression of genes involved in oxidative stress tolerance, including peroxidase, cytochrome P450, and laccase genes, were down-regulated in PlCB5L1 mutants under oxidative stress. This is the first report that a Cyt-b5 domain protein contributes to the development, stress response, and pathogenicity in plant pathogenic oomycetes.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Peng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Yiming Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Jiahui Qiu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Yuling Yuan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Xie Y, Zhang P, Zhang L. Genome-Wide Transcriptional Responses of Marine Nematode Litoditis marina to Hyposaline and Hypersaline Stresses. Front Physiol 2021; 12:672099. [PMID: 34017268 PMCID: PMC8129518 DOI: 10.3389/fphys.2021.672099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Maintenance of osmotic homeostasis is essential for all organisms, especially for marine animals in the ocean with 3% salinity or higher. However, the underlying molecular mechanisms that how marine animals adapt to high salinity environment compared to their terrestrial relatives, remain elusive. Here, we investigated marine animal’s genome-wide transcriptional responses to salinity stresses using an emerging marine nematode model Litoditis marina. We found that the transthyretin-like family genes were significantly increased in both hyposaline and hypersaline conditions, while multiple neurotransmitter receptor and ion transporter genes were down-regulated in both conditions, suggesting the existence of conserved strategies for response to stressful salinity environments in L. marina. Unsaturated fatty acids biosynthesis related genes, neuronal related tubulins and intraflagellar transport genes were specifically up-regulated in hyposaline treated worms. By contrast, cuticle related collagen genes were enriched and up-regulated for hypersaline response. Given a wide range of salinity tolerance of the marine nematodes, this study and further genetic analysis of key gene(s) of osmoregulation in L. marina will likely provide important insights into biological evolution and environmental adaptation mechanisms in nematodes and other invertebrate animals in general.
Collapse
Affiliation(s)
- Yusu Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengchi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|