1
|
Pierre HC, Patel DJ, Raja HA, Darveaux BA, Patel KI, Mardiana L, Longcake A, Hall MJ, Probert MR, Pearce CJ, Oberlies NH. Studies on the epipolythiodioxopiperazine alkaloid verticillin D: Scaled production, streamlined purification, and absolute configuration. PHYTOCHEMISTRY 2025; 236:114492. [PMID: 40147592 DOI: 10.1016/j.phytochem.2025.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
Verticillins, epipolythiodioxopiperazine alkaloids that were first described over 50 years ago, have undergone extensive cytotoxic and pharmacological evaluations over the last decade. However, of the 27 verticillin analogues in the literature, the chemistry of verticillin D, which has two additional secondary hydroxy moieties, relative to verticillin A, has remained largely unexplored since its discovery in 1999. With the goal of advancing our understanding of verticillin D, there were three main objectives with this study: improving production, streamlining purification, and assigning absolute configuration via X-ray crystallography. To begin, the production of verticillin D was analyzed across seven fungal strains, and the top producer was further assessed under two fermentation conditions. Clonostachys rosea (strain MSX51257) biosynthesized the highest amount of verticillin D, with production peaking between 15 and 25 days on rice media. Interestingly, in contrast to similar studies that yield verticillin A, the biosynthesis of verticillin D was not accompanied by a suite of structurally related verticillin analogues. As such, the purification of verticillin D was more rapid and could be accomplished without the use of HPLC. These materials were used, in part, to determine the absolute configuration of verticillin D via X-ray crystallography, allowing for assignment of the asymmetric centers at both the 13 and 13' positions as R, which has never been accomplished. This is only the third report of an X-ray structure of a verticillin analogue.
Collapse
Affiliation(s)
- Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, United States
| | - Devyani J Patel
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, United States
| | | | - Krupa I Patel
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, United States
| | - Lina Mardiana
- Indicatrix Crystallography Ltd, Newcastle Upon Tyne, NE 1 7RU, United Kingdom; Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; Department of Chemistry, Universitas Indonesia, Depok, Jawa Barat, 16424, Indonesia
| | - Alexandra Longcake
- Indicatrix Crystallography Ltd, Newcastle Upon Tyne, NE 1 7RU, United Kingdom; Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Michael J Hall
- Indicatrix Crystallography Ltd, Newcastle Upon Tyne, NE 1 7RU, United Kingdom; Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Michael R Probert
- Indicatrix Crystallography Ltd, Newcastle Upon Tyne, NE 1 7RU, United Kingdom; Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, United States.
| |
Collapse
|
2
|
Al Subeh Z, Pierre HC, Pearce CJ, Grinstaff MW, Colby AH, Liu K, Oberlies NH. Verticillin A-Loaded Surgical Buttresses Prevent Local Pancreatic Cancer Recurrence in a Murine Model. Mol Pharm 2025; 22:1220-1229. [PMID: 39868439 PMCID: PMC11881038 DOI: 10.1021/acs.molpharmaceut.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
The fungal metabolite verticillin A is a potent and selective histone methyltransferase inhibitor. It regulates apoptosis, the cell cycle, and stress response, and displays potent activity in the suppression of tumor cell growth in several different in vivo models. Verticillin A sensitizes pancreatic cancer cells to anti-PD-1 immunotherapy by regulating PD-L1 expression. However, as with many natural products, delivery and systemic toxicity are challenges that must be overcome to advance their use as a chemotherapeutic. To both reduce systemic toxicity and improve delivery, we report a verticillin A-loaded surgical buttress, which is well-tolerated at a dose as high as 40 mg/kg. In contrast, free verticillin A administered systemically results in toxicity at a dose of 3 mg/kg. The verticillin A-loaded buttress suppresses tumor recurrence in vivo in a safe and dose-dependent manner against a highly aggressive and metastatic model of pancreatic cancer.
Collapse
Affiliation(s)
- Zeinab
Y. Al Subeh
- Department
of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department
of Biochemistry and Molecular Biology, Medical
College of Georgia, Augusta, Georgia 30912, United States
| | - Herma C. Pierre
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., Hillsborough, North Carolina 27278, United States
| | - Mark W. Grinstaff
- Departments
of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Aaron H. Colby
- Departments
of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Ionic Pharmaceuticals,
LLC, Watertown, Massachusetts 02472, United States
| | - Kebin Liu
- Department
of Biochemistry and Molecular Biology, Medical
College of Georgia, Augusta, Georgia 30912, United States
- Georgia Cancer
Center, Medical College of Georgia, Augusta, Georgia 30912, United States
- Charlie
Norwood VA Medical Center, Augusta, Georgia 30904, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
3
|
Pierre HC, Amrine CSM, Doyle MG, Salvi A, Raja HA, Chekan JR, Huntsman AC, Fuchs JR, Liu K, Burdette JE, Pearce CJ, Oberlies NH. Verticillins: fungal epipolythiodioxopiperazine alkaloids with chemotherapeutic potential. Nat Prod Rep 2024; 41:1327-1345. [PMID: 38629495 PMCID: PMC11409914 DOI: 10.1039/d3np00068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.
Collapse
Affiliation(s)
- Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
- Department of Physical and Earth Sciences. Arkansas Tech University, 1701 N. Boulder Ave., Russellville, Arkansas 72801, USA
| | - Michael G Doyle
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Amrita Salvi
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and the Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| |
Collapse
|
4
|
Goher SS, Abdrabo WS, Veerakanellore GB, Elgendy B. 2,5-Diketopiperazines (DKPs): Promising Scaffolds for Anticancer Agents. Curr Pharm Des 2024; 30:597-623. [PMID: 38343054 DOI: 10.2174/0113816128291798240201112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/22/2024] [Indexed: 05/25/2024]
Abstract
2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.
Collapse
Affiliation(s)
- Shaimaa S Goher
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo 1183, Egypt
| | - Wessam S Abdrabo
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Giri Babu Veerakanellore
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Bahaa Elgendy
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
5
|
Kaweesa EN, Bazioli JM, Pierre HC, Lantvit DD, Kulp SK, Hill KL, Phelps MA, Coss CC, Fuchs JR, Pearce CJ, Oberlies NH, Burdette JE. Exploration of Verticillins in High-Grade Serous Ovarian Cancer and Evaluation of Multiple Formulations in Preclinical In Vitro and In Vivo Models. Mol Pharm 2023; 20:3049-3059. [PMID: 37155928 PMCID: PMC10405366 DOI: 10.1021/acs.molpharmaceut.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Verticillins are epipolythiodioxopiperazine alkaloids isolated from a fungus with nanomolar anti-tumor activity in high-grade serous ovarian cancer (HGSOC). HGSOC is the fifth leading cause of death in women, and natural products continue to be an inspiration for new drug entities to help tackle chemoresistance. Verticillin D was recently found in a new fungal strain and compared to verticillin A. Both compounds exhibited nanomolar cytotoxic activity against OVCAR4 and OVCAR8 HGSOC cell lines, significantly reduced 2D foci and 3D spheroids, and induced apoptosis. In addition, verticillin A and verticillin D reduced tumor burden in vivo using OVCAR8 xenografts in the peritoneal space as a model. Unfortunately, mice treated with verticillin D displayed signs of liver toxicity. Tolerability studies to optimize verticillin A formulation for in vivo delivery were performed and compared to a semi-synthetic succinate version of verticillin A to monitor bioavailability in athymic nude females. Formulation of verticillins achieved tolerable drug delivery. Thus, formulation studies are effective at improving tolerability and demonstrating efficacy for verticillins.
Collapse
Affiliation(s)
- Elizabeth N Kaweesa
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jaqueline M Bazioli
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kasey L Hill
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Mitch A Phelps
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Christopher C Coss
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
6
|
Cank KB, Shepherd RA, Knowles SL, Rangel-Grimaldo M, Raja HA, Bunch ZL, Cech NB, Rice CA, Kyle DE, Falkinham JO, Burdette JE, Oberlies NH. Polychlorinated cyclopentenes from a marine derived Periconia sp. (strain G1144). PHYTOCHEMISTRY 2022; 199:113200. [PMID: 35421431 PMCID: PMC9173697 DOI: 10.1016/j.phytochem.2022.113200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Studies on an organic extract of a marine fungus, Periconia sp. (strain G1144), led to the isolation of three halogenated cyclopentenes along with the known and recently reported rhytidhyester D; a series of spectrometric and spectroscopic techniques were used to elucidate these structures. Interestingly, two of these compounds represent tri-halogenated cyclopentene derivatives, which have been observed only rarely from Nature. The relative and absolute configurations of the compounds were established via mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, Mosher's esters method, optical rotation and GIAO NMR calculations, including correlation coefficient calculations and the use of both DP4+ and dJ DP4 analyses. Several of the isolated compounds were tested for activity in anti-parasitic, antimicrobial, quorum sensing inhibition, and cytotoxicity assays and were shown to be inactive.
Collapse
Affiliation(s)
- Kristóf B Cank
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Robert A Shepherd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Zoie L Bunch
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Nadja B Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA
| | - Christopher A Rice
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, 724 Biological Sciences Building, University of Georgia, Athens, GA, 30602-2607, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, 335 Coverdell Center 500 D.W. Brooks Drive, Athens, GA, 30602-7399, USA.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 335 Coverdell Center 500 D.W. Brooks Drive, Athens, GA, 30602-7399, USA.
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech Center for Drug Discovery, Derring Hall Room 2125, 926 West Campus Drive, Mail Code 0406, Blacksburg, VA, 24061, USA.
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood Street, 333 PHARM, MC 781, Chicago, IL, 60612, USA.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Patricia A. Sullivan Science Building, Greensboro, NC, 27402-6170, USA.
| |
Collapse
|
7
|
Lu C, Yang D, Klement JD, Colson YL, Oberlies NH, Pearce CJ, Colby AH, Grinstaff MW, Liu Z, Shi H, Ding HF, Liu K. H3K9me3 represses G6PD expression to suppress the pentose phosphate pathway and ROS production to promote human mesothelioma growth. Oncogene 2022; 41:2651-2662. [PMID: 35351997 PMCID: PMC9058223 DOI: 10.1038/s41388-022-02283-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
The role of glucose-6-phosphate dehydrogenase (G6PD) in human cancer is incompletely understood. In a metabolite screening, we observed that inhibition of H3K9 methylation suppressed aerobic glycolysis and enhances the PPP in human mesothelioma cells. Genome-wide screening identified G6PD as an H3K9me3 target gene whose expression is correlated with increased tumor cell apoptosis. Inhibition of aerobic glycolysis enzyme LDHA and G6PD had no significant effects on tumor cell survival. Ablation of G6PD had no significant effect on human mesothelioma and colon carcinoma xenograft growth in athymic mice. However, activation of G6PD with the G6PD-selective activator AG1 induced tumor cell death. AG1 increased tumor cell ROS production and the resultant extrinsic and intrinsic death pathways, mitochondrial processes, and unfolded protein response in tumor cells. Consistent with increased tumor cell death in vitro, AG1 suppressed human mesothelioma xenograft growth in a dose-dependent manner in vivo. Furthermore, AG1 treatment significantly increased tumor-bearing mouse survival in an intra-peritoneum xenograft athymic mouse model. Therefore, in human mesothelioma and colon carcinoma, G6PD is not essential for tumor growth. G6PD acts as a metabolic checkpoint to control metabolic flux towards the PPP to promote tumor cell apoptosis, and its expression is repressed by its promotor H3K9me3 deposition.
Collapse
Affiliation(s)
- Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA.
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | | | - Aaron H Colby
- Ionic Pharmaceuticals, Brookline, MA, 02445, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Ionic Pharmaceuticals, Brookline, MA, 02445, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Zhuoqi Liu
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Han-Fei Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
8
|
Aldrich LN, Burdette JE, de Blanco EC, Coss CC, Eustaquio AS, Fuchs JR, Kinghorn AD, MacFarlane A, Mize B, Oberlies NH, Orjala J, Pearce CJ, Phelps MA, Rakotondraibe LH, Ren Y, Soejarto DD, Stockwell BR, Yalowich JC, Zhang X. Discovery of Anticancer Agents of Diverse Natural Origin. JOURNAL OF NATURAL PRODUCTS 2022; 85:702-719. [PMID: 35213158 PMCID: PMC9034850 DOI: 10.1021/acs.jnatprod.2c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research progress from mainly over the last five years is described for a multidisciplinary collaborative program project directed toward the discovery of potential anticancer agents from a broad range of taxonomically defined organisms. Selected lead compounds with potential as new antitumor agents that are representative of considerable structural diversity have continued to be obtained from each of tropical plants, terrestrial and aquatic cyanobacteria, and filamentous fungi. Recently, a new focus has been on the investigation of the constituents of U.S. lichens and their fungal mycobionts. A medicinal chemistry and pharmacokinetics component of the project has optimized structurally selected lead natural products, leading to enhanced cytotoxic potencies against selected cancer cell lines. Biological testing has shown several compounds to have in vivo activity, and relevant preliminary structure-activity relationship and mechanism of action studies have been performed. Several promising lead compounds worthy of further investigation have been identified from the most recent collaborative work performed.
Collapse
Affiliation(s)
- Leslie N. Aldrich
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Joanna E. Burdette
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | | | - Christopher C. Coss
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alessandra S. Eustaquio
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James R. Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - A. Douglas Kinghorn
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda MacFarlane
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brittney Mize
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 24702, United States
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J. Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Mitch A. Phelps
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Yulin Ren
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Djaja Doel Soejarto
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Field Museum of Natural History, Chicago, Illinois 60605, United States
| | - Brent R. Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jack C. Yalowich
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoli Zhang
- College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Al Subeh Z, Waldbusser AL, Raja HA, Pearce CJ, Ho KL, Hall MJ, Probert MR, Oberlies NH, Hematian S. Structural Diversity of Perylenequinones Is Driven by Their Redox Behavior. J Org Chem 2022; 87:2697-2710. [PMID: 35077640 PMCID: PMC8898278 DOI: 10.1021/acs.joc.1c02639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 01/16/2023]
Abstract
Hypocrellins and hypomycins are two subclasses of fungal perylenequinones with unique structural, biological, and photochemical properties. With the growing interest in these naturally occurring photosensitizers, more studies were warranted to better understand the structural relationships between these two subclasses of perylenequinones. In this study, the long-postulated biosynthetic precursor (7) of class B fungal perylenequinones was isolated and characterized from a Shiraia-like sp. (strain MSX60519). Furthermore, the electrochemical and chemical redox behaviors of hypocrellins and hypomycins were investigated under aerobic and anaerobic conditions. These studies served to define the structural relationship within hypocrellins (1-3), which was further supported by X-ray crystallography, and between hypocrellins and hypomycins (4-6). Chemical reductions of hypocrellins under anaerobic conditions identified the origin of hypomycin A (4), hypomycin C (5), and hypomycin E (6), which in turn served to confirm 4 and revise the absolute configurations of 5 and 6. Hypocrellins were shown to undergo reversible reduction and reoxidation under aerobic conditions, while in an anaerobic environment and longer time scale, the fully reduced form can, to some extent, undergo an intramolecular ring closing metathesis. This may impart a means of reductive pathway for self-protection against these phototoxins and explain the chemical diversity observed in the fungal metabolites.
Collapse
Affiliation(s)
- Zeinab
Y. Al Subeh
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Amy L. Waldbusser
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., Hillsborough, North Carolina 27278, United States
| | - Kin Lok Ho
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne, NE1 7RU, United
Kingdom
| | - Michael J. Hall
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne, NE1 7RU, United
Kingdom
| | - Michael R. Probert
- Chemistry,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne, NE1 7RU, United
Kingdom
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Shabnam Hematian
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
10
|
Al Subeh ZY, Waldbusser AL, Raja HA, Pearce CJ, Ho KL, Hall MJ, Probert MR, Oberlies NH, Hematian S. Structural Diversity of Perylenequinones Is Driven by Their Redox Behavior. J Org Chem 2022. [PMID: 35077640 DOI: 10.1021/acs.joc.1c0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Hypocrellins and hypomycins are two subclasses of fungal perylenequinones with unique structural, biological, and photochemical properties. With the growing interest in these naturally occurring photosensitizers, more studies were warranted to better understand the structural relationships between these two subclasses of perylenequinones. In this study, the long-postulated biosynthetic precursor (7) of class B fungal perylenequinones was isolated and characterized from a Shiraia-like sp. (strain MSX60519). Furthermore, the electrochemical and chemical redox behaviors of hypocrellins and hypomycins were investigated under aerobic and anaerobic conditions. These studies served to define the structural relationship within hypocrellins (1-3), which was further supported by X-ray crystallography, and between hypocrellins and hypomycins (4-6). Chemical reductions of hypocrellins under anaerobic conditions identified the origin of hypomycin A (4), hypomycin C (5), and hypomycin E (6), which in turn served to confirm 4 and revise the absolute configurations of 5 and 6. Hypocrellins were shown to undergo reversible reduction and reoxidation under aerobic conditions, while in an anaerobic environment and longer time scale, the fully reduced form can, to some extent, undergo an intramolecular ring closing metathesis. This may impart a means of reductive pathway for self-protection against these phototoxins and explain the chemical diversity observed in the fungal metabolites.
Collapse
Affiliation(s)
- Zeinab Y Al Subeh
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Amy L Waldbusser
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Kin Lok Ho
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Michael J Hall
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Michael R Probert
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Shabnam Hematian
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
11
|
Al Subeh ZY, Raja HA, Obike JC, Pearce CJ, Croatt MP, Oberlies NH. Media and strain studies for the scaled production of cis-enone resorcylic acid lactones as feedstocks for semisynthesis. J Antibiot (Tokyo) 2021; 74:496-507. [PMID: 34155352 PMCID: PMC8313427 DOI: 10.1038/s41429-021-00432-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Resorcylic acid lactones (RALs) with a cis-enone moiety, represented by hypothemycin (1) and (5Z)-7-oxozeaenol (2), are fungal secondary metabolites with irreversible inhibitory activity against protein kinases, with particularly selective activity for inhibition of TAK1 (transforming growth factor beta-activated kinase 1). Gram-scale quantities of these compounds were needed as feedstock for semi-synthesizing RAL-analogues in a step-economical fashion. To do so, this study had three primary goals: identifying fungi that biosynthesized 1 and 2, enhancing their production by optimizing the fermentation conditions on the lab scale, and developing straight forward purification processes. After evaluating 536 fungal extracts via an in-house dereplication protocol, three strains were identified as producing cis-enone RALs (i.e., MSX78495, MSX63935, MSX45109). Screening these fungal strains on three grain-based media revealed enhanced production of 1 by strain MSX78495 on oatmeal medium, while rice medium increased the biosynthesis of 2 by strain MSX63935. Furthermore, the purification processes were improved, moving away from HPLC purification to utilizing two to four cycles of resuspension and centrifugation in small volumes of organic solvents, generating gram-scale quantities of these metabolites readily. In addition, studying the chemistry profiles of strains MSX78495 and MSX63935 resulted in the isolation of ten other RALs (3-12), two radicinin analogues (13-14), and six benzopyranones (15-20), with 19 and 20 being newly described chlorinated benzopyranones.
Collapse
Affiliation(s)
- Zeinab Y Al Subeh
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Jennifer C Obike
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
12
|
Verticillin A increases the BIM EL/MCL-1 ratio to overcome ABT-737-resistance in human colon cancer cells by targeting the MEK/ERK pathway. Biochem Biophys Res Commun 2021; 567:22-28. [PMID: 34133998 DOI: 10.1016/j.bbrc.2021.05.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
ABT-737, a small molecule BH-3 mimetic, is less effective against human colon cancers due to its resistance. Verticillin A is a natural compound, which was previously purified from verticillium-infected mushrooms. Hence, we aimed at overcoming the ABT737 resistance observed in CRC tumors by combining Verticillin A with ABT-737 and figuring out the potential mechanism. In this study, we observed that Verticillin A could sensitize colon cancer to ABT-737-induced cell death through induction of mitochondrial-dependent apoptosis. Verticillin A could significantly increase the BIMEL/MCL-1 ratio to overcome ABT737 resistance through the suppression of the MEK/ERK pathway. In addition, up-regulation of BIM protein levels to activate BAX translocation results in apoptosis induction. Altogether, our work suggested the potential application of Verticillin A as a MEK inhibitor in BH3-mimetic-based therapy.
Collapse
|
13
|
Knowles SL, Roberts CD, Augustinović M, Flores-Bocanegra L, Raja HA, Heath-Borrero KN, Burdette JE, Falkinham Iii JO, Pearce CJ, Oberlies NH. Opportunities and Limitations for Assigning Relative Configurations of Antibacterial Bislactones using GIAO NMR Shift Calculations. JOURNAL OF NATURAL PRODUCTS 2021; 84:1254-1260. [PMID: 33764773 PMCID: PMC8108483 DOI: 10.1021/acs.jnatprod.0c01309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Four new bislactones, dihydroacremonol (1), clonostachyone (2), acremodiol B (3), and acremodiol C (4), along with one known compound, hymeglusin (5), were isolated from cultures of two fungal strains (MSX59876 and MSX59260). Both strains were identified based on phylogenetic analysis of molecular data as Clonostachys spp.; yet, they biosynthesized a suite of related, but different, secondary metabolites. Given the challenges associated with elucidating the structures and configurations of bislactones, GIAO NMR calculations were tested as a complement to traditional NMR and HRESIMS experiments. Fortuitously, the enantiomer of the new natural product (4) was known as a synthetic compound, and the predicted configuration from GIAO NMR calculations (i.e., for the relative configuration) and optical rotation calculations (i.e., for the absolute configuration) matched those of the synthesis product. These results engendered confidence in using similar procedures, particularly the mixture of GIAO NMR shift calculations coupled with an orthogonal technique, to predict the configuration of 1-3; however, there were important limitations, which are discussed for each of these. The metabolites displayed antimicrobial activities, with compounds 1 and 4 being the most potent against Staphylococcus aureus with MICs of 1 and 4 μg/mL, respectively.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Christopher D Roberts
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Mario Augustinović
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Kimberly N Heath-Borrero
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Joseph O Falkinham Iii
- Department of Biological Sciences, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| |
Collapse
|
14
|
Amrine CSM, Huntsman AC, Doyle MG, Burdette JE, Pearce CJ, Fuchs JR, Oberlies NH. Semisynthetic Derivatives of the Verticillin Class of Natural Products through Acylation of the C11 Hydroxy Group. ACS Med Chem Lett 2021; 12:625-630. [PMID: 33859802 DOI: 10.1021/acsmedchemlett.1c00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The verticillins, a class of epipolythiodioxopiperazine alkaloids (ETPs) first described 50 years ago with the discovery of verticillin A (1), have gained attention due to their potent activity against cancer cells, noted both in vitro and in vivo. In this study, the complex scaffold afforded through optimized fermentation was used as a feedstock for semisynthetic efforts designed to explore the reactivity of the C11 and C11' hydroxy substituents. Functionality introduced at these positions would be expected to impact not only the potency but also the pharmacokinetic properties of the resulting compound. With this in mind, verticillin H (2) was used as a starting material to generate nine semisynthetic analogues (4-12) containing a variety of ester, carbonate, carbamate, and sulfonate moieties. Likewise, verticillin A succinate (13) was synthesized from 1 to demonstrate the successful application of this strategy to other ETPs. The synthesized compounds and their corresponding starting materials (i.e., 1 and 2) were screened for activity against a panel of melanoma, breast, and ovarian cancer cell lines: MDA-MB-435, MDA-MB-231, and OVCAR3. All analogues retained IC50 values in the nanomolar range, comparable to, and in some cases more potent than, the parent compounds.
Collapse
Affiliation(s)
- Chiraz Soumia M. Amrine
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Department of Physical Sciences, Arkansas Tech University, Russellville, Arkansas 72801, United States
| | - Andrew C. Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G. Doyle
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Cedric J. Pearce
- Mycosynthetix, Inc., 505 Meadowlands Drive, Suite 103, Hillsborough, North Carolina 27278, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
15
|
Cox EJ, Tian DD, Clarke JD, Rettie AE, Unadkat JD, Thummel KE, McCune JS, Paine MF. Modeling Pharmacokinetic Natural Product-Drug Interactions for Decision-Making: A NaPDI Center Recommended Approach. Pharmacol Rev 2021; 73:847-859. [PMID: 33712517 PMCID: PMC7956993 DOI: 10.1124/pharmrev.120.000106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The popularity of botanical and other purported medicinal natural products (NPs) continues to grow, especially among patients with chronic illnesses and patients managed on complex prescription drug regimens. With few exceptions, the risk of a given NP to precipitate a clinically significant pharmacokinetic NP-drug interaction (NPDI) remains understudied or unknown. Application of static or dynamic mathematical models to predict and/or simulate NPDIs can provide critical information about the potential clinical significance of these complex interactions. However, methods used to conduct such predictions or simulations are highly variable. Additionally, published reports using mathematical models to interrogate NPDIs are not always sufficiently detailed to ensure reproducibility. Consequently, guidelines are needed to inform the conduct and reporting of these modeling efforts. This recommended approach from the Center of Excellence for Natural Product Drug Interaction Research describes a systematic method for using mathematical models to interpret the interaction risk of NPs as precipitants of potential clinically significant pharmacokinetic NPDIs. A framework for developing and applying pharmacokinetic NPDI models is presented with the aim of promoting accuracy, reproducibility, and generalizability in the literature. SIGNIFICANCE STATEMENT: Many natural products (NPs) contain phytoconstituents that can increase or decrease systemic or tissue exposure to, and potentially the efficacy of, a pharmaceutical drug; however, no regulatory agency guidelines exist to assist in predicting the risk of these complex interactions. This recommended approach from a multi-institutional consortium designated by National Institutes of Health as the Center of Excellence for Natural Product Drug Interaction Research provides a framework for modeling pharmacokinetic NP-drug interactions.
Collapse
Affiliation(s)
- Emily J Cox
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Dan-Dan Tian
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - John D Clarke
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Allan E Rettie
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jashvant D Unadkat
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Kenneth E Thummel
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jeannine S McCune
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Mary F Paine
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| |
Collapse
|
16
|
Salvi A, Amrine CSM, Austin JR, Kilpatrick K, Russo A, Lantvit D, Calderon-Gierszal E, Mattes Z, Pearce CJ, Grinstaff MW, Colby AH, Oberlies NH, Burdette JE. Verticillin A Causes Apoptosis and Reduces Tumor Burden in High-Grade Serous Ovarian Cancer by Inducing DNA Damage. Mol Cancer Ther 2020; 19:89-100. [PMID: 31909733 DOI: 10.1158/1535-7163.mct-19-0205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy in women worldwide and the fifth most common cause of cancer-related deaths among U.S. women. New therapies are needed to treat HGSOC, particularly because most patients develop resistance to current first-line therapies. Many natural product and fungal metabolites exhibit anticancer activity and represent an untapped reservoir of potential new agents with unique mechanism(s) of action. Verticillin A, an epipolythiodioxopiperazine alkaloid, is one such compound, and our recent advances in fermentation and isolation are now enabling evaluation of its anticancer activity. Verticillin A demonstrated cytotoxicity in HGSOC cell lines in a dose-dependent manner with a low nmol/L IC50 Furthermore, treatment with verticillin A induced DNA damage and caused apoptosis in HGSOC cell lines OVCAR4 and OVCAR8. RNA-Seq analysis of verticillin A-treated OVCAR8 cells revealed an enrichment of transcripts in the apoptosis signaling and the oxidative stress response pathways. Mass spectrometry histone profiling confirmed reports that verticillin A caused epigenetic modifications with global changes in histone methylation and acetylation marks. To facilitate in vivo delivery of verticillin A and to monitor its ability to reduce HGSOC tumor burden, verticillin A was encapsulated into an expansile nanoparticle (verticillin A-eNP) delivery system. In an in vivo human ovarian cancer xenograft model, verticillin A-eNPs decreased tumor growth and exhibited reduced liver toxicity compared with verticillin A administered alone. This study confirmed that verticillin A has therapeutic potential for treatment of HGSOC and that encapsulation into expansile nanoparticles reduced liver toxicity.
Collapse
Affiliation(s)
- Amrita Salvi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Chiraz Soumia M Amrine
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Julia R Austin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - KiAundra Kilpatrick
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Angela Russo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel Lantvit
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Esther Calderon-Gierszal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Zachary Mattes
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, Massachusetts
| | | | - Mark W Grinstaff
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, Massachusetts
| | - Aaron H Colby
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, Massachusetts
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
17
|
Domenick TM, Gill EL, Vedam-Mai V, Yost RA. Mass Spectrometry-Based Cellular Metabolomics: Current Approaches, Applications, and Future Directions. Anal Chem 2020; 93:546-566. [PMID: 33146525 DOI: 10.1021/acs.analchem.0c04363] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taylor M Domenick
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4283, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4283, United States
| | - Vinata Vedam-Mai
- Department of Neurology, University of Florida, Gainesville, Florida 32610, United States
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
18
|
Graf TN, Kao D, Rivera-Chávez J, Gallagher JM, Raja HA, Oberlies NH. Drug Leads from Endophytic Fungi: Lessons Learned via Scaled Production. PLANTA MEDICA 2020; 86:988-996. [PMID: 32219776 PMCID: PMC7511429 DOI: 10.1055/a-1130-4856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Recently, the isolation and elucidation of a series of polyhydroxyanthraquinones were reported from an organic extract of a solid phase culture of an endophytic fungus, Penicillium restrictum (strain G85). One of these compounds, ω-hydroxyemodin (1: ), showed promising quorum-sensing inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) in both in vitro and in vivo models. The initial supply of 1: was 19 mg, and this amount needed to be scaled by a factor of 30 to 50 times, in order to generate material for further in vivo studies. To do so, improvements were implemented to enhance both the fermentation of the fungal culture and the isolation of this compound, with the target of generating > 800 mg of study materials in a period of 13 wk. Valuable insights, both regarding chemistry and mycology, were gained during the targeted production of 1: on the laboratory-scale. In addition, methods were modified to make the process more environmentally friendly by judicious choice of solvents, implementing procedures for solvent recycling, and minimizing the use of halogenated solvents.
Collapse
Affiliation(s)
- Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Diana Kao
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - José Rivera-Chávez
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
- Department of Natural Products, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jacklyn M. Gallagher
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
19
|
Wang MH, Zhang XY, Tan XM, Niu SB, Sun BD, Yu M, Ding G, Zou ZM. Chetocochliodins A-I, Epipoly(thiodioxopiperazines) from Chaetomium cochliodes. JOURNAL OF NATURAL PRODUCTS 2020; 83:805-813. [PMID: 32115958 DOI: 10.1021/acs.jnatprod.9b00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nine new epipoly(thiodioxopiperazine) (ETP) analogues, chetocochliodins A-I (1-9), along with two known ones, chetoseminudins E and C (10 and 11), were purified from the fungus Chaetomium cochliodes. The planar structures and absolute configurations of these new compounds were determined by extensive NMR spectroscopic analysis, CD spectra, and chemical reactions. Shielding effects from the indole on the 3-SCH3/3-OCH3/3-OCH2- groups facilitated the determination of relative configuration of the analogues. Compound 9 was cytotoxic, suggesting the importance of the sulfide bridge for the diketopiperazine bioactivities.
Collapse
Affiliation(s)
- Meng-Hua Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Xiao-Yan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Xian-Mei Tan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Shu-Bin Niu
- Department of Pharmacy, Beijing City University, Beijing 100083, People's Republic of China
| | - Bing-Da Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100090, People's Republic of China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| |
Collapse
|
20
|
Kao D, Flores-Bocanegra L, Raja HA, Darveaux BA, Pearce CJ, Oberlies NH. New tricks for old dogs: Two new macrocyclic trichothecene epimers and absolute configuration of 16-hydroxyverrucarin B. PHYTOCHEMISTRY 2020; 172:112238. [PMID: 31931448 PMCID: PMC7050405 DOI: 10.1016/j.phytochem.2019.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 05/04/2023]
Abstract
Two new compounds, 3'-epi-16-hydroxyverrucarin A and 3'-epiverrucarin X, have been isolated and identified, and the characterization data of a series of known trichothecenes have been refined. The interesting structure and potent biological activities of macrocyclic trichothecenes have been of interest to the scientific community for several decades. However, some of the characterization data for the older analogues of this class are not well documented, either because of a lack of absolute configuration or a lack of clarity in the NMR data, largely due to technological limitations at the time they were discovered. NMR techniques, application of Mosher's esters analysis, and electronic circular dichroism were used here both to refine the characterization of known trichothecenes, as well as to uncover new structures. These studies demonstrate strategies that can be used to interrogate the characterization data of well-known secondary metabolites, thereby gaining greater insight into methods that can be used to refine previous literature.
Collapse
Affiliation(s)
- Diana Kao
- Department of Chemistry Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, United States
| | - Laura Flores-Bocanegra
- Department of Chemistry Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, United States
| | - Huzefa A Raja
- Department of Chemistry Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, United States
| | - Blaise A Darveaux
- Mycosynthetix, Inc., 505 Meadowlands Drive, Suite 103, Hillsborough, NC, 27278, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., 505 Meadowlands Drive, Suite 103, Hillsborough, NC, 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, United States.
| |
Collapse
|
21
|
Knowles SL, Vu N, Todd DA, Raja HA, Rokas A, Zhang Q, Oberlies NH. Orthogonal Method for Double-Bond Placement via Ozone-Induced Dissociation Mass Spectrometry (OzID-MS). JOURNAL OF NATURAL PRODUCTS 2019; 82:3421-3431. [PMID: 31823607 PMCID: PMC7004233 DOI: 10.1021/acs.jnatprod.9b00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most often, the structures of secondary metabolites are solved using a suite of NMR techniques. However, there are times when it can be challenging to position double bonds, particularly those that are fully substituted or when there are multiple double bonds in similar chemical environments. Ozone-induced dissociation mass spectrometry (OzID-MS) serves as an orthogonal structure elucidation tool, using predictable fragmentation patterns that are generated after ozonolysis across a carbon-carbon double bond. This technique is finding growing use in the lipidomics community, suggestive of its potential value for secondary metabolites. This methodology was evaluated by confirming the double-bond positions in five fungal secondary metabolites, specifically, ent-sartorypyrone E (1), sartorypyrone A (2), sorbicillin (3), trichodermic acid A (4), and AA03390 (5). This demonstrated its potential with a variety of chemotypes, ranging from polyketides to terpenoids and including those in both conjugated and nonconjugated polyenes. In addition, the potential of using this methodology in the context of a mixture was piloted by studying Aspergillus fischeri, first examining a traditional extract and then sampling a live fungal culture in situ. While the intensity of signals varied from pure compound to extract to in situ, the utility of the technique was preserved.
Collapse
Affiliation(s)
- Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Ngoc Vu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Daniel A. Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| |
Collapse
|
22
|
Costa TM, Lenzi J, Paganelli CJ, Filho HHDS, Alberton MD, Tavares LBB, Oliveira D. Liposoluble compounds from
Ganoderma lipsiense
grown on solid red rice medium with antiparasitic and antibacterial properties. Biotechnol Appl Biochem 2019; 67:180-185. [DOI: 10.1002/bab.1851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Tania Maria Costa
- Department of Chemical and Food EngineeringFederal University of Santa Catarina Florianópolis Santa Catarina Brazil
| | - Juliana Lenzi
- Graduate Program in Environmental EngineeringRegional University of Blumenau Blumenau Santa Catarina Brazil
| | - Camila Jeriani Paganelli
- Department of Pharmaceutical SciencesRegional University of Blumenau Blumenau Santa Catarina Brazil
| | | | - Michele Debiasi Alberton
- Department of Pharmaceutical SciencesRegional University of Blumenau Blumenau Santa Catarina Brazil
| | | | - Débora Oliveira
- Department of Chemical and Food EngineeringFederal University of Santa Catarina Florianópolis Santa Catarina Brazil
| |
Collapse
|
23
|
Amrine CSM, Long JL, Raja HA, Kurina SJ, Burdette JE, Pearce CJ, Oberlies NH. Engineering Fluorine into Verticillins (Epipolythiodioxopiperazine Alkaloids) via Precursor-Directed Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2019; 82:3104-3110. [PMID: 31633350 PMCID: PMC6996222 DOI: 10.1021/acs.jnatprod.9b00711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Precursor-directed biosynthesis was used to generate a series of fluorinated verticillins. The biosynthesis of these epipolythiodioxopiperazine alkaloids was monitored in situ via the droplet liquid microjunction surface sampling probe (droplet probe), and a suite of NMR and mass spectrometry data were used for their characterization. All analogues demonstrated nanomolar IC50 values vs a panel of cancer cell lines. This approach yielded new compounds that would be difficult to generate via synthesis.
Collapse
Affiliation(s)
- Chiraz Soumia M Amrine
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Jessica L Long
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| | - Steven J Kurina
- Department of Pharmaceutical Sciences , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Cedric J Pearce
- Mycosynthetix Inc. , 505 Meadowlands Drive, Suite 103 , Hillsborough , North Carolina 27278 , United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , Greensboro , North Carolina 27402 , United States
| |
Collapse
|
24
|
Oberlies NH, Knowles SL, Amrine CSM, Kao D, Kertesz V, Raja HA. Droplet probe: coupling chromatography to the in situ evaluation of the chemistry of nature. Nat Prod Rep 2019; 36:944-959. [PMID: 31112181 PMCID: PMC6640111 DOI: 10.1039/c9np00019d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2019The chemistry of nature can be beautiful, inspiring, beneficial and poisonous, depending on perspective. Since the isolation of the first secondary metabolites roughly two centuries ago, much of the chemical research on natural products has been both reductionist and static. Typically, compounds were isolated and characterized from the extract of an entire organism from a single time point. While there could be subtexts to that approach, the general premise has been to determine the chemistry with very little in the way of tools to differentiate spatial and/or temporal changes in secondary metabolite profiles. However, the past decade has seen exponential advances in our ability to observe, measure, and visualize the chemistry of nature in situ. Many of those techniques have been reviewed in this journal, and most are tapping into the power of mass spectrometry to analyze a plethora of sample types. In nearly all of the other techniques used to study chemistry in situ, the element of chromatography has been eliminated, instead using various ionization sources to coax ions of the secondary metabolites directly into the mass spectrometer as a mixture. Much of that science has been driven by the great advances in ambient ionization techniques used with a suite of mass spectrometry platforms, including the alphabet soup from DESI to LAESI to MALDI. This review discusses the one in situ analysis technique that incorporates chromatography, being the droplet-liquid microjunction-surface sampling probe, which is more easily termed "droplet probe". In addition to comparing and contrasting the droplet probe with other techniques, we provide perspective on why scientists, particularly those steeped in natural products chemistry training, may want to include chromatography in in situ analyses. Moreover, we provide justification for droplet sampling, especially for samples with delicate and/or non-uniform topographies. Furthermore, while the droplet probe has been used the most in the analysis of fungal cultures, we digest a variety of other applications, ranging from cyanobacteria, to plant parts, and even delicate documents, such as herbarium specimens.
Collapse
Affiliation(s)
- Nicholas H Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Sonja L Knowles
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Diana Kao
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huzefa A Raja
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| |
Collapse
|