1
|
Bao Y, Feng S, Yu F, Ye W, Xing H, Zhu X, Bao W, Huang M. Self-Regulating pH Pyrite-Construction waste Biofilter: Denitrification Performance, Metabolic Pathways, and Clogging Alleviation. BIORESOURCE TECHNOLOGY 2025; 429:132500. [PMID: 40204030 DOI: 10.1016/j.biortech.2025.132500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Waste-based denitrification filters face challenges like alkalinity accumulation, low efficiency, and clogging. This study proposes a novel denitrification filter using construction waste and pyrite (WPDF) to address these issues. WPDF's performance, safety, and mechanisms were evaluated by measuring effluent, filler characteristics and metagenomics. Results demonstrated a high total nitrogen removal load (88.65 g N m-3d-1) with minimal biofilm (13 %) and filler accumulation (39 %), effectively mitigating clogging. Phosphorus removal relied on chemical precipitation in construction waste. WPDF was pH self-regulating and promoted the formation and release of fulvic acid. Pyrite promotes bio-metabolism, making WPDF enriched in energy metabolism (6 %) and transporter capacity (6 %). Functional prediction indicated that WPDF was more abundant in genes related to denitrification, glycolysis, and electron transport, which promoted the heterotrophic denitrification process. This study provides a novel, efficient, and eco-friendly possible solution for wastewater and offers new insights into the molecular mechanisms of carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Yinzhou Bao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Suhao Feng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fan Yu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenpei Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Xing
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiao Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weibin Bao
- Nantong Huaxin Environmental Protection Technology Co., Nantong 226000, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Tavares Paula C, Takeda PY, Lelis Giglio G, Damianovic MHRZ. Nitrogen removal from multi-electrolyte saline wastewater via mainstream anammox in warm climate conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124271. [PMID: 39864155 DOI: 10.1016/j.jenvman.2025.124271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
High salts concentrations in wastewater hinder its biological treatment. Recent research has investigated the inhibitory effect of salinity on the anammox process, mainly focusing on NaCl. Thus, the inhibition caused by multi-electrolytes salinity on freshwater anammox bacteria remains unclear. In this study, the anammox process was evaluated for the treatment of multi-electrolyte saline wastewater (NaCl, MgCl2, and CaCl2) during 684 days in three operational phases. In Phase 1, the anammox inoculum was successfully adapted from sidestream (232 mgN.L-1) to mainstream (60 mgN.L-1) conditions, with no damage to the reactor performance, at an hydraulic retention time of 1.4 h. In Phase 2, salinity was gradually increased in the synthetic medium to adapt the freshwater anammox bacteria. The anammox bacteria tolerated a total salinity of 0.72 wt% (in g.L-1: 4.7 NaCl, 2.0 MgCl2, and 0.6 CaCl2), achieving an 84.3 ± 0.8% nitrogen removal efficiency. The presence of salts favored the Ca. Jettenia genus over Ca. Brocadia after long-term exposure to salinity. Finally, in Phase 3, anaerobically pre-treated saline wastewater (0.72 wt%) was applied to the anammox reactor. The presence of residual organic matter (53 mgCOD.L-1; COD/N of 0.86) resulted in partial deviation of the metabolic pathway from anammox to, especially, nitrite heterotrophic denitrification, resulting in the accumulation of ammonia-N in the effluent. Even so, the anammox process was predominant, being responsible for 83% of the nitrogen removal. The presence of both organic matter and salinity led to a shift in dominance from the Ca. Jettenia genus to Ca. Brocadia.
Collapse
Affiliation(s)
- Carolina Tavares Paula
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - Paula Yumi Takeda
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
| | - Guilherme Lelis Giglio
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| |
Collapse
|
3
|
Karmann C, Čadková D, Behner A, Šantrůček J, Podzimek T, Cejnar P, Lopez Marin MA, Hajšlová J, Lipovová P, Bartáček J, Kouba V. Outstanding enrichment of ladderane lipids in anammox bacteria: Overlooked effect of pH. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123961. [PMID: 39742770 DOI: 10.1016/j.jenvman.2024.123961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/14/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Ladderane lipids synthesised by anammox bacteria hold significant potential for applications in jet fuel, drug delivery, and optoelectronics. Despite the widespread use of anammox bacteria in nitrogen removal from wastewater, the optimal conditions for maximising ladderane production remain unclear, limiting their broader application. To address this, we operated a fed-batch bioreactor with anammox bacteria, gradually adjusting the pH from 6.5 to 7.5 while regularly sampling for microbial community composition (Illumina sequencing), proteins, and ladderane lipids (UHPLC-HRMS). Our findings reveal that ladderane production positively correlates with rising pH increasing nearly fivefold as pH rose from 6.5 to 7.5, with a notable shift towards lipids containing two ladderane alkyl chains at higher pH. However, the conditions at an alkaline pH range also induced mild stress in anammox bacteria, as evidenced by our proteomic and microbial community data. Therefore, we propose maintaining a pH above 7.5 to enrich ladderane-rich anammox biomass but emphasise the need for gradual adaptation. This approach could optimise anammox installations for producing high-value ladderane lipids from wastewater.
Collapse
Affiliation(s)
- Christina Karmann
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28, Prague, Czech Republic.
| | - Denisa Čadková
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28, Prague, Czech Republic.
| | - Adam Behner
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28, Prague, Czech Republic.
| | - Jiří Šantrůček
- University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28, Prague, Czech Republic.
| | - Tomáš Podzimek
- University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28, Prague, Czech Republic.
| | - Pavel Cejnar
- University of Chemistry and Technology Prague, Department of Mathematics, Informatics and Cybernetics, Technická 5, 166 28, Prague, Czech Republic.
| | - Marco Antonio Lopez Marin
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28, Prague, Czech Republic.
| | - Jana Hajšlová
- University of Chemistry and Technology Prague, Department of Food Analysis and Nutrition, Technická 5, 166 28, Prague, Czech Republic.
| | - Petra Lipovová
- University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology, Technická 5, 166 28, Prague, Czech Republic.
| | - Jan Bartáček
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28, Prague, Czech Republic.
| | - Vojtěch Kouba
- University of Chemistry and Technology Prague, Department of Water Technology and Environmental Engineering, Technická 5, 166 28, Prague, Czech Republic.
| |
Collapse
|
4
|
Maurya N, Sharma A, Sundaram S. The Role of PGPB-Microalgae interaction in Alleviating Salt Stress in Plants. Curr Microbiol 2024; 81:270. [PMID: 39012372 DOI: 10.1007/s00284-024-03805-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Plant development and yield are severely hampered by climate change. Plants are very prone to a variety of abiotic stressors during growth, making them susceptible to destruction which can reduce the productivity by 20-60%. These stresses generate reactive oxygen species (ROS), which damage lipids, proteins, and nucleic acids. Microalgae and plant growth-promoting bacteria (PGPB) are remarkably effective at reducing the effects of salt stress and promoting plant growth, thereby increasing agricultural yield, and helping ensure global food security. Through a variety of mechanisms, including the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophores, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, and modulation of antioxidants defense machinery under abiotic stresses promote plant growth after inoculation of PGPB and microalgae. These microorganisms also maintain ion homeostasis, offer osmotic balance, stimulate genes that respond to salt and drought, rewire the metabolism, modify the transcription of ion transporter genes, and more. To counteract the negative consequences of salinity stress, this study summarizes the effects of PGPB- microalgae along with a tentative protective mechanism during salinity stress for sustainable agriculture.
Collapse
Affiliation(s)
- Neetu Maurya
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India
| | - Abhijeet Sharma
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India
| | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, 211002, India.
| |
Collapse
|
5
|
Tang H, Liu Y, Liu X, Zhang A, Yang R, Han Y, Liu P, He HB, Li Z. Regulation methods and enhanced mechanism on the efficient degradation of aromatics in biochemical treatment system of coal chemical wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119358. [PMID: 37890402 DOI: 10.1016/j.jenvman.2023.119358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
In order to address the problems of poor treatment effect of coal chemical wastewater (CCW) biochemical treatment system resulting in non-compliance with effluent standards and unstable operation, a combination regulation method of co-substrate metabolism and predominant flora enhancement was constructed, and the performance and mechanism of enhanced degradation of aromatics in CCW was also investigated in this study. The results showed that when the influent concentration of chemical oxygen demand (COD) and aromatics was less than 600 mg/L and 180 mg/L respectively, there was no significant effect of the combined regulation method on the enhanced treatment of aromatics, the removal rate of total organic carbon (TOC) in the system could all more than 73%; while when the influent concentration of COD increased to 800 mg/L and the aromatics concentration increased to more than 240 mg/L, the ordinary activated sludge system had collapsed. Compared with the regulation method of co-substrate metabolism alone, the combination regulation method increased the removal rate of TOC by 21%. The analysis of antioxidant enzyme activity showed that under the combination regulation method, the antioxidant enzyme activity of microorganisms was higher and their resistance to adverse environments was stronger. EPS and dehydrogenase analysis indicated that the combination regulation method was more conducive to microbial degradation of aromatics. Meanwhile, the analysis of microbial community structure showed that the aromatics degradation bacteria genera Rhodococcus, Luteococcus, etc. were enriched under the combination regulation method. The study provides a theoretical basis and technical guidance for solving the problems of unstable operation of CCW biochemical treatment systems and non-compliance with effluent standards.
Collapse
Affiliation(s)
- Hui Tang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xingshe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Rushuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yulu Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Pan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Hao Bo He
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
6
|
Liu Z, Wang J, Zhang S, Hou Y, Wang J, Gao M, Chen X, Zhang A, Liu Y, Li Z. Formation characteristics of algal-bacteria granular sludge under low-light environment: From sludge characteristics, extracellular polymeric substances to microbial community. BIORESOURCE TECHNOLOGY 2023; 376:128851. [PMID: 36898567 DOI: 10.1016/j.biortech.2023.128851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In this study, the formation characteristics of algal-bacteria granular sludge (ABGS) under low-light environment (80, 110, and 140 μmol/m2/s) were investigated. The findings revealed that the stronger light intensity favored the improvement of sludge characteristics, nutrient removal performances, and extracellular polymeric substance (EPS) secretion at the growing stage, which were more preferential to facilitate the formation of ABGS. However, after the mature stage, the weaker light intensity ensured more stable operation of the system, as shown by contributing to sludge settlement performance, denitrification, and EPS secretion. According to the results of high-throughput sequencing, the dominant bacterial genus of the mature ABGS cultured under low light intensity were all Zoogloe, while the dominant algal genus was different. For the mature ABGS, the 140 and 80 μmol/m2/s light intensity had the most significant activation effect to the functional genes related to carbohydrate metabolism and amino acid metabolism, respectively.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Yulin Ecological Environment Monitoring Station, High-tech Zone Xingda Road, Yulin 719000, China.
| | - Jingwen Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Shumin Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Yiwen Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 710054, China
| | - Min Gao
- School of Environmental and Chemical Engineering, Xi an Polytechnic University, Jin Hua Nan Road, No. 19, Xi'an 710048, China
| | - Xingdu Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| |
Collapse
|
7
|
Chen X, Liu L, Bi Y, Meng F, Wang D, Qiu C, Yu J, Wang S. A review of anammox metabolic response to environmental factors: Characteristics and mechanisms. ENVIRONMENTAL RESEARCH 2023; 223:115464. [PMID: 36773633 DOI: 10.1016/j.envres.2023.115464] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising low carbon and economic biological nitrogen removal technology. Considering the anammox technology has been easily restricted by environmental factors in practical engineering applications, therefore, it is necessary to understand the metabolic response characteristics of anammox bacteria to different environmental factors, and then guide the application of the anammox process. This review presented the latest advances of the research progress of the effects of different environmental factors on the metabolic pathway of anammox bacteria. The effects as well as mechanisms of conventional environmental factors and emerging pollutants on the anammox metabolic processes were summarized. Also, the role of quorum sensing (QS) mediating the bacteria growth, gene expression and other metabolic process in the anammox system were also reviewed. Finally, interaction and cross-feeding mechanisms of microbial communities in the anammox system were discussed. This review systematically summarized the variations of metabolic mechanism response to the external environment and cross-feeding interactions in the anammox process, which would provide an in-depth understanding for the anammox metabolic process and a comprehensive guidance for future anammox-related metabolic studies and engineering applications.
Collapse
Affiliation(s)
- Xiaoying Chen
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| |
Collapse
|
8
|
Liu Z, Zhang D, Ning F, Zhang S, Hou Y, Gao M, Wang J, Zhang A, Liu Y. Resistance and adaptation of mature algal-bacterial granular sludge under salinity stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160558. [PMID: 36574543 DOI: 10.1016/j.scitotenv.2022.160558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The study investigated the response characteristics of algal-bacterial granular sludge (ABGS) under salinity stress (0 % → 2 %). At 1 % salinity, the sludge performance was inhibited, while recovered rapidly, indicating the ABGS exhibited resistance. However, at 2 % salinity, the suppressed performances did not recover until the stress was eliminated. Under salinity stress, the nutrient removal capacity of the system and the composition and chemical characteristics of extracellular polymers substances also changed. Meanwhile, the ABGS formed adaptation to salinity stress in the early coping process. As a result, the effect of the second 2 % salinity on ABGS was significantly weakened. High-throughput sequencing results showed that the microbial community in ABGS shifted under salinity stress, and the halophilic bacteria genera Arcobacter, Denitromonas, Azoarcus, etc. were enriched, which might be the genetic basis of the adaptation.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Yulin Ecological Environment Monitoring Station, High-tech Zone Xingda Road, Yulin 719000, China.
| | - Dan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Fangzhi Ning
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Shumin Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Yiwen Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Min Gao
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Jin Hua Nan Road, No. 19, Xi'an 710048, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 11 710054, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No. 13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
9
|
An G, Yan R, Fu Z, Chen Z, Guo Y, Yang J, Zhou Y. Adaptation of anammox consortia in microbial fuel cell to low temperature: Microbial community and predictive functional profiling. BIORESOURCE TECHNOLOGY 2023; 370:128565. [PMID: 36596367 DOI: 10.1016/j.biortech.2022.128565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this study was to explore the tolerance mechanism of anammox consortia in microbial fuel cell (MFC) system at low temperature. Data showed that nearly 80 % total nitrogen removal was achieved after the temperature decreased from 30 °C to 15 °C. The nitrogenremovalrate (NRR) of the system was decreased by 26.3 %, from 0.441 kgN·m-3·d-1 at 30 °C to 0.325 kgN·m-3·d-1 at 15 °C. Isotope experiment in 15NH4+-containing reactor found that much more 29N2 were produced than 30N2, confirming that anammox was the main 15NH4+ removal pathway and electrochemical oxidation participate in this process. High throughput sequencing analysis indicated the low temperature stimulated the enrichment of heterotrophic bacteria, such as Comamonadaceae and Rhodobacteraceae. While the relative abundance of Candidatus Brocadia, typical anammox bacteria, decreased significantly. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis showed that the low temperature induced a more efficient expression in synthesis of unsaturated fatty acids (UFAs) and ABC membrane transports. This study indicates that anammox consortia are likely to maintain high nitrogen removal performance of MFC system by changing the proportion of membrane composition and EPS exportation.
Collapse
Affiliation(s)
- Geer An
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia, Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010040, China
| | - Rong Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia, Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010040, China; Inner Mongolia Lvchuang Environmental Protection Technology Co., Ltd., Hohhot 010051, China
| | - Zhimin Fu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia, Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010040, China.
| | - Zepeng Chen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia, Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010040, China
| | - Yaru Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia, Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010040, China
| | - Jun Yang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia, Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010040, China
| | - Yongheng Zhou
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia, Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010040, China
| |
Collapse
|
10
|
The Role of ptsH in Stress Adaptation and Virulence in Cronobacter sakazakii BAA-894. Foods 2022; 11:foods11172680. [PMID: 36076869 PMCID: PMC9455513 DOI: 10.3390/foods11172680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cronobacter sakazakii, an emerging foodborne pathogen that was isolated primarily from powdered infant formula, poses an important issue in food safety due to its high stress tolerance and pathogenicity. The Hpr (encoded by ptsH gene) has been shown to regulate carbon metabolism as well as stress response and virulence. However, the functional properties of ptsH in C. sakzakii have not been investigated. In this study, we clarified the role of ptsH in the C. sakzakii stress response and virulence, and explored its possible regulatory mechanism by RNA-seq. Compared with wild-type, the ΔptsH mutant showed a slower growth rate in the log phase but no difference in the stationary phase. Moreover, the resistance to heat stress (65 °C, 55 °C), simulated gastric fluid (pH = 2.5), biofilm formation and adhesion to HT-29 cells of ΔptsH mutant were significantly decreased, whereas the oxidative resistance (1, 5, 10 mM H2O2), osmotic resistance (10%, 15%, 20% NaCl), and superoxide dismutase activity were enhanced. Finally, RNA-seq analysis revealed the sulfur metabolism pathway is significantly upregulated in the ΔptsH mutant, but the bacterial secretion system pathway is dramatically downregulated. The qRT-PCR assay further demonstrated that the ΔptsH mutant has elevated levels of genes that are related to oxidative and osmotic stress (sodA, rpoS, cpxA/R, osmY). This study provides a great understanding of the role of ptsH in diverse stress responses and virulence in C. sakazakii, and it contributes to our understanding of the genetic determinant of stress resistance and pathogenicity of this important foodborne pathogen.
Collapse
|
11
|
Lu Y, Liu X, Miao Y, Chatzisymeon E, Pang L, Qi L, Yang P, Lu H. Particle size effects in microbial characteristics in thermophilic anaerobic digestion of cattle manure containing copper oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62994-63004. [PMID: 35449326 DOI: 10.1007/s11356-022-20327-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Roles of bulk-, micron-, and nano-copper oxide (CuO) on methane production, microbial diversity, functions during thermophilic anaerobic digestion (AD) were investigated in this study. Results showed that bulk-, micron-, and nano-CuO promoted methane production by 27.8%, 47.6%. and 83.1% compared to the control group, respectively. Microbial community analysis demonstrated that different particle sizes could cause various shifts on bacteria community, while had little effect on archaeal diversity. Thereinto, bacteria belonging to phylum Firmicutes and Coprothermobacterota dominated in enhanced hydrolysis process in groups with nano-CuO and bulk-CuO, respectively, while micron-CuO had stronger promotion on the abundances of hydrolytic and fermentative bacteria belonging to families Peptostreptococcaceae, Caloramatoraceae, Erysipelotrichaceae, and Clostridiaceae, than other two CuO sizes. Metabolic pathways revealed that energy-related metabolism and material transformation in bacteria were only boosted by micron-CuO, and nano-CuO and bulk-CuO were important to methanogenic activity, stimulating energy consumption and methane metabolism, respectively.
Collapse
Affiliation(s)
- Yuanyuan Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Xuna Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Yanjun Miao
- China SEDIN Ningbo Engineering Co., Ltd, Ningbo, 315048, People's Republic of China
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China.
| | - Luqing Qi
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China
- Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Hongyan Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, People's Republic of China
| |
Collapse
|
12
|
Xu A, Yu D, Qiu Y, Chen G, Tian Y, Wang Y. A novel process of salt tolerance partial denitrification and anammox (ST-PDA) for treating saline wastewater. BIORESOURCE TECHNOLOGY 2022; 345:126472. [PMID: 34864184 DOI: 10.1016/j.biortech.2021.126472] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 05/12/2023]
Abstract
In the study, the salt-tolerant partial denitrification and Anammox (ST-PDA) process was established, meanwhile, the feasibility of salinity inhibition model as the boundary control method and the subsequent operation performance were studied. Study indicated that the performance of salt-tolerant PD sludge was the optimum under the 10 g·L-1 salinity, and AnAOB also maintained high activity at the salinity. Haldane and Aiba models verified that NO3--N (substrate) and FNA (product) would have negative consequences for performance of ST-PDA system. However, the effect of FNA would be eliminated by self-alkalization in the denitrification process. A 90% nitrogen removal rate was achieved and the average effluent total nitrogen of 17.8 mg·L-1 was maintained in the system. The high throughput sequencing revealed that the species richness decreased with the salinity increased, while Thauera played a major role in nitrogen removal in saline environment. The study provides a novel insights for salt-containing industrial wastewater.
Collapse
Affiliation(s)
- Ao Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Yuan Tian
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanyan Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
13
|
Ma WJ, Cheng YF, Jin RC. Comprehensive evaluation of the long-term effect of Cu 2+ on denitrifying granular sludge and feasibility of in situ recovery by phosphate. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126901. [PMID: 34419849 DOI: 10.1016/j.jhazmat.2021.126901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
With increased industrial development, vast heavy metals are inevitably discharged into wastewater. Cu2+ is one of the most hazardous heavy metals in biotreatment. However, the potential effect of Cu2+ on denitrifying granular sludge is still unknown. This work assesses the response of denitrifying granular sludge to Cu2+ stress from multiple aspects. The denitrifying granular sludge could tolerate 5 mg L-1 Cu2+, while the nitrogen removal efficiency decreased to 48.5% under 10 mg L-1 Cu2+. Enzyme activity and carbohydrate metabolism were inhibited, and the denitrifying bacteria were washed out under Cu2+ stress. The resulting deteriorated state was reversed by phosphate. The nitrogen removal efficiency recovered to 99% after 10 days, and the enzyme activity also recovered to the original level. Membrane transport, transcription and cellular processes were promoted. Overall, the results of this work provide a feasible strategy to rapidly restore the metabolic activity of denitrifying granular sludge under Cu2+ stress.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
14
|
Huang DQ, Fu JJ, Li ZY, Fan NS, Jin RC. Inhibition of wastewater pollutants on the anammox process: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150009. [PMID: 34492484 DOI: 10.1016/j.scitotenv.2021.150009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has been recognized as an efficient nitrogen removal technology. However, anammox bacteria are susceptible to surrounding environments and different pollutants, which limits the extensive application of the anammox process worldwide. Numerous researchers investigate the effects of various pollutants on the anammox process or bacteria, and related findings have also been reviewed with the focused on their inhibitory effects on process performance and microbial community. This review systemically summarized the recent advances in the inhibition, mechanism and recovery process of traditional and emerging pollutants on the anammox process over a decade, such as organics, metals, antibiotics, nanoparticles, etc. Generally, low-concentration pollutants exhibited a promotion on the anammox activity, while high-concentration pollutants showed inhibitory effects. The inhibitory threshold concentration of different pollutants varied. The combined effects of multipollutant also attracts more attentions, including synergistic, antagonistic and independent effects. Additionally, remaining problems and research needs are further proposed. This review provides a foundation for future research on the inhibition in anammox process, and promotes the proper operation of anammox processes treating different types of wastewaters.
Collapse
Affiliation(s)
- Dong-Qi Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Yue Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Syed Z, Sogani M, Dongre A, Kumar A, Sonu K, Sharma G, Gupta AB. Bioelectrochemical systems for environmental remediation of estrogens: A review and way forward. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146544. [PMID: 33770608 DOI: 10.1016/j.scitotenv.2021.146544] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Globally estrogenic pollutants are a cause of concern in wastewaters and water bodies because of their high endocrine disrupting activity leading to extremely negative impacts on humans and other organisms even at very low environmental concentrations. Bioremediation of estrogens has been studied extensively and one technology that has emerged with its promising capabilities is Bioelectrochemical Systems (BESs). Several studies in the past have investigated BESs applications for treatment of wastewaters containing toxic recalcitrant pollutants with a primary focus on improvement of performance of these systems for their deployment in real field applications. But the information is scattered and further the improvements are difficult to achieve for standalone BESs. This review critically examines the various existing treatment technologies for the effective estrogen degradation. The major focus of this paper is on the technological advancements for scaling up of these BESs for the real field applications along with their integration with the existing and conventional wastewater treatment systems. A detailed discussion on few selected microbial species having the unusual properties of heterotrophic nitrification and extraordinary stress response ability to toxic compounds and their degradation has been highlighted. Based on the in-depth study and analysis of BESs, microbes and possible benefits of various treatment methods for estrogen removal, we have proposed a sustainable Hybrid BES-centered treatment system for this purpose as a choice for wastewater treatment. We have also identified three pipeline tasks that reflect the vital parts of the life cycle of drugs and integrated treatment unit, as a way forward to foster bioeconomy along with an approach for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zainab Syed
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Monika Sogani
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| | - Aman Dongre
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India; Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), L&W, Waite Campus, Urrbrae, SA, 5064, Australia.
| | - Kumar Sonu
- Department of Civil Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Gopesh Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| |
Collapse
|
16
|
Wang Z, Gao P, Ji Y, Zhang H, Wu X, Ma J, Li S. Effects of salinity on the simultaneous anammox and denitrification process: performance, sludge morphology and shifts in microbial communities. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202099. [PMID: 34040787 PMCID: PMC8113906 DOI: 10.1098/rsos.202099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/14/2021] [Indexed: 05/07/2023]
Abstract
In this study, the long-term effects of different salinities on the performance, sludge morphology and shifts in microbial communities were studied in a simultaneous anammox and denitrification (SAD) process at a C/N ratio of 0.5. Stable nitrogen removal efficiencies of 86.96 and 84.58% and nitrogen removal rates of 0.95 and 0.93 kg (m3 d)-1 could be achieved under low (25 mmol l-1) and moderate (50 mmol l-1) salinity, respectively. However, the performance collapsed when the system was exposed to high salinity (100 mmol l-1). The content of extracellular polymeric substances increased as salinity increased, which resulted in larger sizes of granular sludge under low and moderate salinities. Nevertheless, high salinity shock disintegrated granular sludge, thereby decreasing the average granule size. The Illumina-Miseq sequencing results revealed that Candidatus Jettenia was the sole salinity-tolerant AnAOB genus during the entire operation, whereas the main denitrification bacterial genera shifted from Denitrisoma under low salinity to Denitrisoma, Thauera and Ignavibacterium under high salinity. The results of this study provide a comprehensive and practical evaluation of the SAD process for organic nitrogen-rich saline wastewater treatment.
Collapse
Affiliation(s)
- Zhaozhao Wang
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Peng Gao
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Ying Ji
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Huan Zhang
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Xinjuan Wu
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Jun Ma
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Simin Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
- Hebei Technology Innovation Center for Water Pollution Control and Water Ecological Remediation, Hebei University of Engineering, Handan 056038, People's Republic of China
| |
Collapse
|
17
|
Gabriel A, Costa S, Henriques I, Lopes I. Effects of Long-Term Exposure to Increased Salinity on the Amphibian Skin Bacterium Erwinia toletana. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:779-788. [PMID: 33877369 DOI: 10.1007/s00244-021-00845-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Amphibian's skin bacterial community may help them to cope with several types of environmental perturbations, including osmotic stress caused by increased salinity. This work assessed whether an amphibian skin bacterium could increase its tolerance to NaCl after a long-term exposure to this salt. A strain of Erwinia toletana, isolated from the skin of Pelophylax perezi, was exposed to two salinity scenarios (with 18 g/L of NaCl): (1) long-term exposure (for 46 days; Et-NaCl), and (2) long-term exposure followed by a recovery period (exposure for 30 days to NaCl and then to LB medium for 16 days; Et-R). After exposure, the sensitivity of E. toletana clonal populations to NaCl was assessed by exposing them to 6 NaCl concentrations (LB medium spiked with NaCl) plus a control (LB medium). Genotypic alterations were assessed by PCR-based molecular typing method (BOX-PCR). The results showed that tolerance of E. toletana to NaCl slightly increased after the long-term exposure, EC50 for growth were: 22.5 g/L (8.64-36.4) for Et-LB; 30.3 g/L (23.2-37.4) for Et-NaCl; and 26.1 g/L (19.332.9) for Et-R. Differences in metabolic activity were observed between Et-LB and Et-R and between Et-NaCl and Et-R, suggesting the use of different substrates by this bacterium when exposed to salinized environments. NaCl-induced genotypic alterations were not detected. This work suggests that E. toletana exposed to low levels of salinity, activate different metabolic pathways to cope with osmotic stress. These findings may be further explored to be used in bioaugmentation procedures through the supplementation with this bacterium of the skin microbiome of natural populations of amphibians exposed to salinization.
Collapse
Affiliation(s)
- Antonieta Gabriel
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal.
| | - Sara Costa
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences, CESAM, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Isabel Lopes
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| |
Collapse
|
18
|
Start-up Strategies for Anaerobic Ammonia Oxidation (Anammox) in In-Situ Nitrogen Removal from Polluted Groundwater in Rare Earth Mining Areas. SUSTAINABILITY 2021. [DOI: 10.3390/su13084591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.
Collapse
|
19
|
Park M, Kim J, Lee T, Oh YK, Nguyen VK, Cho S. Correlation of microbial community with salinity and nitrogen removal in an anammox-based denitrification system. CHEMOSPHERE 2021; 263:128340. [PMID: 33297266 DOI: 10.1016/j.chemosphere.2020.128340] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/06/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic ammonium oxidation (anammox), a low-energy-consuming technology, can be used to remove nitrogen from industrial saline wastewater. However, high salinity inhibits anammox microbial activity. This study investigated the effect of salinity on nitrogen removal performance and microbial community structure. The experiment used an up-flow anammox reactor fed with synthetic wastewater with salinity increased from 0.5 to 2.5%. Results indicated that 80% nitrogen removal efficiency can be achieved at 2% salinity with a nitrogen loading rate of 2.0 kg-N/m3/d. Anammox performance significantly deteriorated at 2.5% salinity. High-throughput sequencing revealed that Planctomycetes (representative anammox bacteria) increased with salinity, replacing Proteobacteria (representative heterotrophic denitrifying bacteria) in the microbial community. qPCR analysis indicated that relative abundance of "Candidatus Kuenenia" within anammox bacteria increased from 3.96 to 83.41%, corresponding to salinity of 0.5-2.0%, and subsequently decreased to 63.27% at 2.5% salinity, correlating with nitrogen-removal performance. Thus, anammox has potential in nitrogen removal from wastewater with salinity up to 2%.
Collapse
Affiliation(s)
- Myeonghwa Park
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeongmi Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Teaho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - You-Kwan Oh
- School of Chemical & Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Van Khanh Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam; Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sunja Cho
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
20
|
Wang M, Chen S, Chen L, Wang D. Microbial mechanisms responsible for the variation of soil Cd availability under different pe+pH environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111057. [PMID: 32905911 DOI: 10.1016/j.ecoenv.2020.111057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to explore potential microbial mechanisms associated with how water management may alter soil Cd availability under changing pe + pH environments. Four water regimes, aerobic [70% MWHC] + dissolved oxygen, aerobic, continuous flooding, and continuous flooding + N2, were applied to Cd-contaminated soil. The results show that the anoxic treatments were effective in decreasing soil pe + pH and in turn decreased Cd availability and increased soil S and Fe availability relative to those of the aerobic treatments. The decreased pe + pH enriched some anaerobic microorganisms such as those in the families Anaerolineaceae and Geobacteraceae. Conversely, other families, such as Gemmatimonadaceae and Sphingomonadaceae, appeared to be sensitive biomarkers that responded to aerobic treatments. Bacterial community structure and network interactions were altered to strengthen bacterial responses to different pe + pH environments as indicated by phylogenetic molecular ecological network (pMEN) analysis. The majority of predicted functional categories, such as metabolism, cell motility, and membrane transport, were affected by different irrigation regimes as indicated by a functional gene profile analysis. The categories were related to important traits that facilitated acclimation of bacteria to their local environment with altered soil pe + pH. Structural equation models revealed that soil pe + pH contributed significantly to soil enzyme activities and differences in bacterial community and function, and consequently, was responsible for the variation of soil Cd availability and iron or sulfur reduction.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shibao Chen
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Li Chen
- Institute of Plant Protection and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, PR China
| | - Duo Wang
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, PR China
| |
Collapse
|
21
|
Deng J, Zhang B, Xie J, Wu H, Li Z, Qiu G, Wei C, Zhu S. Diversity and functional prediction of microbial communities involved in the first aerobic bioreactor of coking wastewater treatment system. PLoS One 2020; 15:e0243748. [PMID: 33301488 PMCID: PMC7728250 DOI: 10.1371/journal.pone.0243748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
The pre-aerobic process of coking wastewater treatment has strong capacity of decarbonization and detoxification, which contribute to the subsequent dinitrogen of non-carbon source/heterotrophic denitrification. The COD removal rate can reach > 90% in the first aerobic bioreactor of the novel O/H/O coking wastewater treatment system during long-term operation. The physico-chemical characteristics of influent and effluent coking wastewater in the first aerobic bioreactor were analyzed to examine how they correlated with bacterial communities. The diversity of the activated sludge microbial community was investigated using a culture-independent molecular approach. The microbial community functional profiling and detailed pathways were predicted from the 16S rRNA gene-sequencing data by the PICRUSt software and the KEGG database. High-throughput MiSeq sequencing results revealed a distinct microbial composition in the activated sludge of the first aerobic bioreactor of the O/H/O system. Proteobacteria, Bacteroidetes, and Chlorobi were the decarbonization and detoxification dominant phyla with the relative abundance of 84.07 ± 5.45, 10.89 ± 6.31, and 2.96 ± 1.12%, respectively. Thiobacillus, Rhodoplanes, Lysobacter, and Leucobacter were the potential major genera involved in the crucial functional pathways related to the degradation of phenols, cyanide, benzoate, and naphthalene. These results indicated that the comprehensive understanding of the structure and function diversity of the microbial community in the bioreactor will be conducive to the optimal coking wastewater treatment.
Collapse
Affiliation(s)
- Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Baoshan Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junting Xie
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
22
|
Tang CJ, Zhang L, Feng F, Xiong L, Mahmood Q, Zeng W, Chai X, Wang Y. Long-term domestication to Mn stresses alleviates the inhibition on anammox process. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1966-1974. [PMID: 32108974 DOI: 10.1002/wer.1316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Heavy metals such as Mn2+ are common contaminants in ammonium-rich wastewater. The information of Mn2+ effect on anammox process needs further investigation. The short- and long-term effects of Mn2+ on anammox were explored by anammox granular sludge. Batch tests showed that the half inhibition value (IC50 ) of Mn2+ was 4.83 mg/L. The anammox activity was severely inhibited in 0.5 hr under 15 mg/L Mn2+ . However, after long-term domestication by increasing the concentration of Mn2+ , both the low-load reactor (R1) and the high-load reactor (R2) performed well, achieving volumetric nitrogen removal rate of 6.36 kg/(m3 ·d) and 13.99 kg/(m3 ·d), respectively. The average ammonium and nitrite removal efficiency of both reactors under 200 mg/L Mn still maintained above 90%. The results from long-term reactors' operation showed that the serious inhibition effect indicated by the batch test was significantly exaggerated. The granules became dispersed after long-term operation in the high-load reactor (R2) which might be correlated to the high osmotic pressure caused by high Mn2+ load, and the mechanism needs to be investigated further. PRACTITIONER POINTS: The half inhibition value of Mn2+ on anammox sludge was 4.83 mg/L in batch experiment. 200 mg/L Mn2+ did not cause any inhibition on anammox process during long-term operation. Granular sludge is finer under high nitrogen loads with 200 mg/L Mn stress.
Collapse
Affiliation(s)
- Chong-Jian Tang
- School of Metallurgy and Environment, Central South University, Changsha, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, China
| | - Lin Zhang
- School of Metallurgy and Environment, Central South University, Changsha, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, China
| | - Fan Feng
- School of Metallurgy and Environment, Central South University, Changsha, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, China
| | - Lei Xiong
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Weizhi Zeng
- School of Metallurgy and Environment, Central South University, Changsha, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, China
| | - Xilin Chai
- School of Metallurgy and Environment, Central South University, Changsha, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, China
| | - Yunyan Wang
- School of Metallurgy and Environment, Central South University, Changsha, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, China
| |
Collapse
|
23
|
Bai N, Li S, Zhang J, Zhang H, Zhang H, Zheng X, Lv W. Efficient biodegradation of DEHP by CM9 consortium and shifts in the bacterial community structure during bioremediation of contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115112. [PMID: 32634694 DOI: 10.1016/j.envpol.2020.115112] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), the most extensively used plasticizer in plastic formulations, is categorized as a priority environmental contaminant with carcinogenic, teratogenic, and mutagenic toxicities. Many isolated microorganisms exhibit outstanding performance as pure cultures in the laboratory but are unable to cope with harsh environmental conditions in the field. In the present study, a microbial consortium (CM9) with efficient functionality was isolated from contaminated farmland soil. CM9 could consistently degrade 94.85% and 100.00% of DEHP (1000 mg/L) within 24 h and 72 h, respectively, a higher efficiency than those of other reported pure and mixed microorganism cultures. The degradation efficiencies of DEHP and di-n-butyl phthalate were significantly higher than those of dimethyl phthalate and diethyl phthalate (p < 0.05). The primary members of the CM9 consortium were identified as Rhodococcus, Niabella, Sphingopyxis, Achromobacter, Tahibacter, and Xenophilus. The degradation pathway was hypothesized to include both de-esterification and β-oxidation. In contaminated soil, bioaugmentation with CM9 and biochar markedly enhanced the DEHP removal rate to 87.53% within 42 d, compared to that observed by the indigenous microbes (49.31%) (p < 0.05). During simulated bioaugmentation, the dominant genera in the CM9 consortium changed significantly over time, indicating their high adaptability to soil conditions and contribution to DEHP degradation. Rhodococcus, Pigmentiphaga and Sphingopyxis sharply decreased, whereas Tahibacter, Terrimonas, Niabella, Unclassified_f_Caulobacteraceae, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium showed considerable increases. These results provide a theoretical framework for the development of in situ bioremediation of phthalate (PAE)-contaminated soil by composite microbial inocula.
Collapse
Affiliation(s)
- Naling Bai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China
| | - Juanqin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China
| | - Hanlin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Haiyun Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xianqing Zheng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China.
| |
Collapse
|
24
|
Responses of Anammox Granular Sludge to Long-Term Rare Earth Element Feeding: Lanthanum as a Case. SUSTAINABILITY 2020. [DOI: 10.3390/su12197887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A tremendous input of ammonium and rare earth elements (REEs) has entered the surroundings on account of the discharge and leak of leaching agents during rare earth in-suit leaching mining, which has threatened various organisms. Anammox has the potential to release nitrogen contamination, but the potential impacts of REEs on anammox bacteria remain unclear. In this study, La (III) was chosen as a case to explore the long-term impacts on anammox granular sludge. The 5 mg L−1 La (III) which was examined hardly affected the anammox granulates because of the defense of extracellular polymeric substances. The high La concentrations (10–50 mg L−1) caused intercellular accumulation and the significant inhibition of nitrogen removal performance and dehydrogenase activity, especially a decrease in the relative abundance of Ca. Kuenenia. Moreover, it also induced patently oxidative damage and affected cell membrane integrity. Notably, extracellular polymeric substances have a limited defense capability; neither La3+ nor Ca2+/Mg2+ efflux-related genes aggravated the intracellular accumulation of La.
Collapse
|
25
|
Wang S, Li H, Zhang A, Fang F, Chen Y, Yan P, Guo J, Ma T, Shen Y. Importance of exopolysaccharide branched chains in determining the aggregation ability of anammox sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139470. [PMID: 32464401 DOI: 10.1016/j.scitotenv.2020.139470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The high aggregation ability of anammox granular sludge is an issue of wide concern; however, the mechanism needs to be further clarified. In this study, selective hydrolysis experiments were performed to determine the role of exopolysaccharide (PS) branched chains and proteins for the aggregation mechanism of anammox granular sludge. The results revealed that selective hydrolysis of proteins hardly affected the granular aggregation while the hydrolysis of PS branched chains led to a decrease in the sludge zeta potential by 17.3% (β-amylase group) and 24.1% (isoamylase group), a decrease of hydrophobicity by 11.6% (β-amylase group) and 17.7% (isoamylase group), an increase of surface free energy by 36.8% (β-amylase group) and 55.1% (isoamylase group) and the deterioration of the PS self-assembly ability. In addition, FTIR and XPS spectra analysis showed that the disruption of PS branched chains resulted in a higher proportion of hydrophilic and electronegative groups, which hindered bacterial aggregation, which was further confirmed by XDLVO theory. The key role of the PS chain structure in sludge aggregation is a critical finding of this work that provides helpful insights for the application of anammox process.
Collapse
Affiliation(s)
- Shuai Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Hanxiang Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Aiyu Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Tengfei Ma
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Key Laboratory of Catalysis & New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Key Laboratory of Catalysis & New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China.
| |
Collapse
|
26
|
Qi K, Li Z, Zhang C, Tan X, Wan C, Liu X, Wang L, Lee DJ. Biodegradation of real industrial wastewater containing ethylene glycol by using aerobic granular sludge in a continuous-flow reactor: Performance and resistance mechanism. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Naufal M, Wu JH. Stability of microbial functionality in anammox sludge adaptation to various salt concentrations and different salt-adding steps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114713. [PMID: 32388308 DOI: 10.1016/j.envpol.2020.114713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The stability of community functioning in anaerobic ammonia oxidation (anammox) sludge adaptation to various salinity changes are concerned but not fully explored. In this study, two anammox reactors were designed in response to different salt levels and salt-adding methods. The reactor PI, run with small stepwise salt increments (0.5%-1.0%), removed >90% of nitrite and ammonium in the influent over the range of 0%-4% salt. By contrast, the reactor SI, run with a sharp salt increment (>2.5%), exhibited a reduced performance (by up to 44%) over the same salt range with a new steady state. The observed resilience times after salt perturbations indicated that the PI reactor recovered substantially and rapidly at all imposed salt levels. Principal coordinates analysis of 16S rRNA gene amplicon sequences revealed that bacterial community structures of the anammox sludge altered conspicuously in response to the salinity changes. However, quantitative PCR analysis showed that the shift in copy number of studied nitrogen-converting genes encoding hydrazine synthase (hzsA), bacterial and archaeal ammonia monooxygenases (amoA), nitrite oxidoreductase (nxrB), nitrite reductase (nirK), and nitrous oxide reductase (nosZ) was not significant (p > 0.05) in anammox sludge across the salt levels of 0.5%-4%, which suggests the stability of microbial community functioning in the osmoadaptation processes. The freshwater anammox Ca. Kuenenia showed high osmoadaptation by potentially adopting both high-salt-in and low-salt-in strategies to dominate in both reactors. The quantitative transcript analysis showed that the active anammox bacteria represented by hzsA transcripts in the SI reactor were approximately two orders of magnitude lower than those in the PI reactor during the long-term exposure to 4% salinity, manifesting the influence by the salt-increasing methods. These results provided new insight into osmo-adaptation of the anammox microbiome and will be useful for managing salinity effects on nitrogen removal processes.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department of Environmental Engineering, National Cheng Kung University, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Taiwan.
| |
Collapse
|
28
|
Evaluating the effects of micro-zones of granular sludge on one-stage partial nitritation–anammox nitrogen removal. Bioprocess Biosyst Eng 2020; 43:1037-1049. [DOI: 10.1007/s00449-020-02302-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
|