1
|
Zou M, Chen C, Wang M, Lei C, Wang Y, Luo F, Huang D, Wang M, Zheng H, Wang B, Lin Z, Weng Z. Facile Fabrication of Injectable Multifunctional Hydrogels Based on Gallium-Polyphenol Networks with Superior Antibacterial Activity for Promoting Infected Wound Healing. Adv Healthc Mater 2025; 14:e2404283. [PMID: 39888269 DOI: 10.1002/adhm.202404283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Multifunctional hydrogels hold significant promise for promoting the healing of infected wounds but often fall short in inhibiting antibiotic-resistant pathogens, and their clinical translation is limited by complex preparation processes and high costs. In this study, a multifunctional hydrogel is developed by combining metal-phenolic networks (MPNs) formed by tannic acid (TA) and gallium ions (Ga3⁺) with chitosan (CS) through a simple one-step method. The resulting CS-TA-Ga3⁺ (CTG) hydrogel is cost-effective and exhibits desirable properties, including injectability, self-healing, pH responsiveness, hemostasis, antioxidant, anti-inflammatory, and antibacterial activities. Importantly, the CTG hydrogels are effective against antibiotic-resistant pathogens due to the unique antibacterial mechanism of Ga3⁺. In vivo studies demonstrate that the CTG hydrogel promotes follicle formation and collagen deposition, accelerating the healing of infected wounds by inhibiting blood loss, suppressing bacterial growth, and modulating the inflammatory microenvironment. These findings highlight the CTG hydrogel's potential as an advanced and translational dressing for enhancing the healing of infected wounds.
Collapse
Affiliation(s)
- Minglang Zou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Cuiping Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Mingda Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chen Lei
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yongming Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Meishui Wang
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Houbing Zheng
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Biao Wang
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
2
|
Ahmad M, Aduru SV, Smith RP, Zhao Z, Lopatkin AJ. The role of bacterial metabolism in antimicrobial resistance. Nat Rev Microbiol 2025:10.1038/s41579-025-01155-0. [PMID: 39979446 DOI: 10.1038/s41579-025-01155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
The relationship between bacterial metabolism and antibiotic treatment is complex. On the one hand, antibiotics leverage cell metabolism to function. On the other hand, increasing research has highlighted that the metabolic state of the cell also impacts all aspects of antibiotic biology, from drug efficacy to the evolution of antimicrobial resistance (AMR). Given that AMR is a growing threat to the current global antibiotic arsenal and ability to treat infectious diseases, understanding these relationships is key to improving both public and human health. However, quantifying the contribution of metabolism to antibiotic activity and subsequent bacterial evolution has often proven challenging. In this Review, we discuss the complex and often bidirectional relationships between metabolism and the various facets of antibiotic treatment and response. We first summarize how antibiotics leverage metabolism for their function. We then focus on the converse of this relationship by specifically delineating the unique contribution of metabolism to three distinct but related arms of antibiotic biology: antibiotic efficacy, AMR evolution and AMR mechanisms. Finally, we note the relevance of metabolism in clinical contexts and explore the future of metabolic-based strategies for personalized antimicrobial therapies. A deeper understanding of these connections is crucial for the broader scientific community to address the growing crisis of AMR and develop future effective therapeutics.
Collapse
Affiliation(s)
- Mehrose Ahmad
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Sai Varun Aduru
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Robert P Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Zirui Zhao
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Allison J Lopatkin
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
3
|
Vinhas S, de Castro B, Rangel M. Synthesis of 3-hydroxy-4-pyridinone hexadentate chelators, and biophysical evaluation of their affinity towards lipid bilayers. Bioorg Chem 2024; 153:107806. [PMID: 39255611 DOI: 10.1016/j.bioorg.2024.107806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Iron is an essential micronutrient for almost every living organism, namely pathogenic bacteria. In an infection scenario, host-pathogen competitive relationships for the element are present and Fe withholding is a well known response of the host. Also, bacterial resistance is a major concern that can compromise public health and the WHO underlines an urgent need to search for new pharmaceutical ingredients or strategies to fight opportunistic bacteria. Iron metabolism, and in particular, deprivation is a strategy that currently constitutes another option to fight bacterial infection. In this work we report the synthesis of a new hexadentate chelator with enhanced hydrophilicity (MRHT) and the improved synthesis of two other chelators. The affinity towards charged and non-charged phospholipid bilayers was evaluated for three hexadentate chelators: MRHT, CP256 and RH8b using NMR and EPR spectroscopies. The results revealed that these structures, bearing 3,4-HPO units have a high affinity towards the hydrophilic region of the phospholipid bilayer. From the three hexadentate chelators, MRHT stood out, especially for liposomes with a charged surface, suggesting that this molecule could more efficiently compete with natural siderophores, creating an iron gradient near bacteria organisms.
Collapse
Affiliation(s)
- Sílvia Vinhas
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Baltazar de Castro
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4069-007 Porto, Portugal
| | - Maria Rangel
- REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Nocera FP, De Martino L. Methicillin-resistant Staphylococcus pseudintermedius: epidemiological changes, antibiotic resistance, and alternative therapeutic strategies. Vet Res Commun 2024; 48:3505-3515. [PMID: 39167258 PMCID: PMC11538175 DOI: 10.1007/s11259-024-10508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Staphylococcus pseudintermedius is a major opportunistic bacterial pathogen that belongs to the skin and mucosal microbiota of the dog. Since its global emergence around 2006, multidrug - methicillin-resistant S. pseudintermedius (MRSP) clones have become endemic worldwide. MRSP strains pose a significant threat to animal health and make antimicrobial therapy difficult due to their typical multidrug resistance phenotypes. The difficulty to treat MRSP infections using the current antimicrobials licensed for veterinary use has intensified research efforts to develop new treatment strategies and alternative anti-infective approaches to conventional antimicrobial therapy. The present narrative review outlines the latest changes in the epidemiology of MRSP with focus on the geographical distribution variability and antimicrobial resistance profiles in the main MRSP lineages. It also provides an overview of the effectiveness of currently available antimicrobials and the status of anti-infective alternatives to conventional antimicrobials.Recent studies have reported notable changes in the population structure of MRSP, with the emergence of new epidemic lineages, such as ST258, ST123, ST496, and ST551 in European countries and ST45, ST181, ST258, ST496 in non-European countries, which partly or totally replaced those that were initially prevalent, such as ST71 in Europe and ST68 in the US. Due to methicillin resistance often associated with the resistance to a broader number of antimicrobials, treating canine MRSP skin infection is challenging. Several alternative or supplementary treatment options to conventional antibiotics, especially for topical treatment, such as a novel water-soluble hydroxypyridinone-containing iron-chelating 9 kDa polymer (DIBI), antimicrobial peptides (AMPs), nanoparticles, and bacteriophages seem to be particularly interesting from a clinical perspective.
Collapse
Affiliation(s)
- Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
5
|
O'Ferrall LM, Fantasia A, Chan K, Teixeira LM, Kavanagh K, O'Connor C, Santos MA, Chaves S, Nurchi VM, Crisponi G, Zoroddu MA, Griffith DM, Cappai R. Solution studies, synthesis and antibacterial activity of Ga(III) complexes with bis-kojate derivatives. J Inorg Biochem 2024; 259:112663. [PMID: 39024775 DOI: 10.1016/j.jinorgbio.2024.112663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Given the recognized major problem of microbial drug resistance for human health, new metal-based drugs have been currently explored for their antimicrobial properties, including gallium-based compounds as potential metallophores that could perturb Fe's interactions with proteins. Herein we have designed and synthesized two bis-kojate ligands (named L4 and L6) and studied their Ga(III) complexes for their physico-chemical and biological properties. In particular a detailed study of their complexation properties in aqueous solution, showed equilibrium models with formation of quite stable dinuclear 2:3 metal:ligand complexes, though with different stability. Solid state complexes were also prepared and characterized and complementary DFT studies indicated that [Ga2(L4)3] complex, with higher stability, seems to adopt a three-ligand bridging conformation, while that for L6 adopt a one ligand bridging conformation. Preliminary investigation of the antibacterial activity of these gallium complexes showed antipseudomonal activity, which appeared higher for the complex with L4, a feature of potential interest for the scientific community.
Collapse
Affiliation(s)
- L More O'Ferrall
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland; School of Food Science & Environmental Health, Technological University of Dublin, Dublin 7, Ireland
| | - A Fantasia
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, via Vienna 2, 07100 Sassari, Italy; Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | - K Chan
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - L M Teixeira
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - K Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland; SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - C O'Connor
- School of Food Science & Environmental Health, Technological University of Dublin, Dublin 7, Ireland
| | - M A Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Insituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - S Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Insituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - V M Nurchi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | - G Crisponi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | - M A Zoroddu
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, via Vienna 2, 07100 Sassari, Italy
| | - D M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland; SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland.
| | - R Cappai
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, via Vienna 2, 07100 Sassari, Italy.
| |
Collapse
|
6
|
Lei H, Hou G, Liu L, Pei Z, Chen Y, Lu Y, Yang N, Sun S, Cheng L. A Two-Pronged Nanostrategy of Iron Metabolism Disruption to Synergize Tumor Therapy by Triggering the Paraptosis-Apoptosis Hybrid Pathway. ACS NANO 2024; 18:22257-22274. [PMID: 39121010 DOI: 10.1021/acsnano.4c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Iron metabolism has emerged as a promising target for cancer therapy; however, the innate metabolic compensatory capacity of cancer cells significantly limits the effectiveness of iron metabolism therapy. Herein, bioactive gallium sulfide nanodots (GaSx), with dual functions of "reprogramming" and "interfering" iron metabolic pathways, were successfully developed for tumor iron metabolism therapy. The constructed GaSx nanodots ingeniously harness hydrogen sulfide (H2S) gas, which is released in response to the tumor microenvironment, to reprogram the inherent transferrin receptor 1 (TfR1)-ferroportin 1 (FPN1) iron metabolism axis in cancer cells. Concurrently, the gallium ions (Ga3+) derived from GaSx act as a biochemical "Trojan horse", mimicking the role of iron and displacing it from essential biomolecular binding sites, thereby influencing the fate of cancer cells. By leveraging the dual mechanisms of Ga3+-mediated iron disruption and H2S-facilitated reprogramming of iron metabolic pathways, GaSx prompted the initiation of a paraptosis-apoptosis hybrid pathway in cancer cells, leading to marked suppression of tumor proliferation. Importantly, the dysregulation of iron metabolism induced by GaSx notably increased tumor cell susceptibility to both chemotherapy and immune checkpoint blockade (ICB) therapy. This study underscores the therapeutic promise of gas-based interventions and metal ion interference strategies for the tumor metabolism treatment.
Collapse
Affiliation(s)
- Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Lin Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yujie Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Nalin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Cozzi M, Failla M, Gianquinto E, Kovachka S, Buoli Comani V, Compari C, De Bei O, Giaccari R, Marchesani F, Marchetti M, Ronda L, Rolando B, Baroni M, Cruciani G, Campanini B, Bettati S, Faggiano S, Lazzarato L, Spyrakis F. Identification of small molecules affecting the interaction between human hemoglobin and Staphylococcus aureus IsdB hemophore. Sci Rep 2024; 14:8272. [PMID: 38594253 PMCID: PMC11003968 DOI: 10.1038/s41598-024-55931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
Human hemoglobin (Hb) is the preferred iron source of Staphylococcus aureus. This pathogenic bacterium exploits a sophisticated protein machinery called Iron-regulated surface determinant (Isd) system to bind Hb, extract and internalize heme, and finally degrade it to complete iron acquisition. IsdB, the surface exposed Hb receptor, is a proven virulence factor of S. aureus and the inhibition of its interaction with Hb can be pursued as a strategy to develop new classes of antimicrobials. To identify small molecules able to disrupt IsdB:Hb protein-protein interactions (PPIs), we carried out a structure-based virtual screening campaign and developed an ad hoc immunoassay to screen the retrieved set of commercially available compounds. Saturation-transfer difference (STD) NMR was applied to verify specific interactions of a sub-set of molecules, chosen based on their efficacy in reducing the amount of Hb bound to IsdB. Among molecules for which direct binding was verified, the best hit was submitted to ITC analysis to measure the binding affinity to Hb, which was found to be in the low micromolar range. The results demonstrate the viability of the proposed in silico/in vitro experimental pipeline to discover and test IsdB:Hb PPI inhibitors. The identified lead compound will be the starting point for future SAR and molecule optimization campaigns.
Collapse
Affiliation(s)
- Monica Cozzi
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sandra Kovachka
- Department of Drug Science and Technology, University of Turin, Turin, Italy
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | | | - Omar De Bei
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Massimo Baroni
- Molecular Discovery Ltd, Kisnetic Business Centre, Elstree, Borehamwood, Hertfordshire, UK
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Institute of Biophysics, National Research Council, Pisa, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy.
- Institute of Biophysics, National Research Council, Pisa, Italy.
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Turin, Italy.
| |
Collapse
|
8
|
Zhang J, Yan B, Shi X. Association of iron overload with infectious complications in liver transplant recipients: a systematic review and meta-analysis. J Int Med Res 2024; 52:3000605241232920. [PMID: 38518199 PMCID: PMC10960351 DOI: 10.1177/03000605241232920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 03/24/2024] Open
Abstract
OBJECTIVE This study was performed to examine the possible association of iron overload with infectious complications and survival among liver transplant recipients. METHODS We conducted a systematic review and meta-analysis of studies published in the PubMed, Embase, Web of Science, and Cochrane Library databases up to September 2022. Hazard ratios (HRs) and 95% confidence intervals (CIs) were extracted to estimate the association of iron overload with infectious outcomes and overall survival after liver transplantation. RESULTS Eight studies involving 2817 recipients met the inclusion criteria. Iron overload was strongly associated with an increased risk of infection after liver transplantation (HR, 1.66; 95% CI, 1.03-2.68). An increase in the serum ferritin level was associated with an increased risk of infection after liver transplantation (HR, 1.44; 95% CI, 1.09-1.91). Iron overload was a significant predictor of worse overall survival (HR, 1.35; 95% CI, 1.11-1.64). In addition, a high serum ferritin level was significantly associated with an increased risk of death (HR, 1.34; 95% CI, 1.10-1.64). CONCLUSION Iron overload may be associated with a higher risk of infectious complications and a worse prognosis among liver transplant recipients.
Collapse
Affiliation(s)
- Jingpo Zhang
- Department of Hepatobiliary Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, P.R. China
| | - Bingzheng Yan
- Department of Hepatobiliary Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, P.R. China
| | - Xin Shi
- Department of Hepatobiliary Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, P.R. China
| |
Collapse
|
9
|
Artuso I, Poddar H, Evans BA, Visca P. Genomics of Acinetobacter baumannii iron uptake. Microb Genom 2023; 9:mgen001080. [PMID: 37549061 PMCID: PMC10483418 DOI: 10.1099/mgen.0.001080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Iron is essential for growth in most bacteria due to its redox activity and its role in essential metabolic reactions; it is a cofactor for many bacterial enzymes. The bacterium Acinetobacter baumannii is a multidrug-resistant nosocomial pathogen. A. baumannii responds to low iron availability imposed by the host through the exploitation of multiple iron-acquisition strategies, which are likely to deliver iron to the cell under a variety of environmental conditions, including human and animal infection. To date, six different gene clusters for active iron uptake have been described in A. baumannii , encoding protein systems involved in (i) ferrous iron uptake (feo ); (ii) haem uptake (hemT and hemO ); and (iii) synthesis and transport of the baumannoferrin(s) (bfn ), acinetobactin (bas /bau ) and fimsbactin(s) (fbs ) siderophores. Here we describe the structure, distribution and phylogeny of iron-uptake gene clusters among >1000 genotypically diverse A. baumannii isolates, showing that feo , hemT , bfn and bas /bau clusters are very prevalent across the dataset, whereas the additional haem-uptake system hemO is only present in a portion of the dataset and the fbs gene cluster is very rare. Since the expression of multiple iron-uptake clusters can be linked to virulence, the presence of the additional haem-uptake system hemO may have contributed to the success of some A. baumannii clones.
Collapse
Affiliation(s)
- Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Harsh Poddar
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Benjamin A. Evans
- Norwich Medical School, University of East Anglia, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- Fondazione Santa Lucia IRCCS, Via Ardeatina, 306/354, 00179 Rome, Italy
- National Biodiversity Future Centre, Palermo 90133, Italy
| |
Collapse
|
10
|
Stelitano G, Cocorullo M, Mori M, Villa S, Meneghetti F, Chiarelli LR. Iron Acquisition and Metabolism as a Promising Target for Antimicrobials (Bottlenecks and Opportunities): Where Do We Stand? Int J Mol Sci 2023; 24:ijms24076181. [PMID: 37047161 PMCID: PMC10094389 DOI: 10.3390/ijms24076181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.
Collapse
|
11
|
Holbein BE, Lehmann C. Dysregulated Iron Homeostasis as Common Disease Etiology and Promising Therapeutic Target. Antioxidants (Basel) 2023; 12:antiox12030671. [PMID: 36978919 PMCID: PMC10045916 DOI: 10.3390/antiox12030671] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Iron is irreplaceably required for animal and human cells as it provides the activity center for a wide variety of essential enzymes needed for energy production, nucleic acid synthesis, carbon metabolism and cellular defense. However, iron is toxic when present in excess and its uptake and storage must, therefore, be tightly regulated to avoid damage. A growing body of evidence indicates that iron dysregulation leading to excess quantities of free reactive iron is responsible for a wide range of otherwise discrete diseases. Iron excess can promote proliferative diseases such as infections and cancer by supplying iron to pathogens or cancer cells. Toxicity from reactive iron plays roles in the pathogenesis of various metabolic, neurological and inflammatory diseases. Interestingly, a common underlying aspect of these conditions is availability of excess reactive iron. This underpinning aspect provides a potential new therapeutic avenue. Existing hematologically used iron chelators to take up excess iron have shown serious limitations for use but new purpose-designed chelators in development show promise for suppressing microbial pathogen and cancer cell growth, and also for relieving iron-induced toxicity in neurological and other diseases. Hepcidin and hepcidin agonists are also showing promise for relieving iron dysregulation. Harnessing iron-driven reactive oxygen species (ROS) generation with ferroptosis has shown promise for selective destruction of cancer cells. We review biological iron requirements, iron regulation and the nature of iron dysregulation in various diseases. Current results pertaining to potential new therapies are also reviewed.
Collapse
Affiliation(s)
- Bruce E. Holbein
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence:
| |
Collapse
|
12
|
Allan DS, Holbein BE. Iron Chelator DIBI Suppresses Formation of Ciprofloxacin-Induced Antibiotic Resistance in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:1642. [PMID: 36421286 PMCID: PMC9687013 DOI: 10.3390/antibiotics11111642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 09/30/2023] Open
Abstract
Antibiotic resistance of bacterial pathogens results from their exposure to antibiotics and this has become a serious growing problem that limits effective use of antibiotics. Resistance can arise from mutations induced by antibiotic-mediated damage with these mutants possessing reduced target sensitivity. We have studied ciprofloxacin (CIP)-mediated killing of Staphylococcus aureus and the influence of the Reactive Oxygen Species (ROS) inactivator, thiourea and the iron chelator DIBI, on initial killing by CIP and their effects on survival and outgrowth upon prolonged exposure to CIP. CIP at 2× MIC caused a rapid initial killing which was not influenced by initial bacterial iron status and which was followed by robust recovery growth over 96 h exposure. Thiourea and DIBI did slow the initial rate of CIP killing but the overall extent of kill by 24 h exposure was like CIP alone. Thiourea permitted recovery growth whereas this was strongly suppressed by DIBI. Small Colony Variant (SCV) survivors were progressively enriched in the survivor population during CIP exposure, and these were found to have stable slow-growth phenotype and acquired resistance to CIP and moxifloxacin but not to other non-related antibiotics. DIBI totally suppressed SCV formation with all survivors remaining sensitive to CIP and to DIBI. DIBI exposure did not promote resistance to DIBI. Our evidence indicates a high potential for DIBI as an adjunct to CIP and other antibiotics to both improve antibiotic efficacy and to thwart antibiotic resistance development.
Collapse
Affiliation(s)
| | - Bruce E. Holbein
- Fe Pharmaceuticals Canada Inc. #58, The Labs at Innovacorp, 1344 Summer Street, Halifax, NS B3H O8A, Canada
| |
Collapse
|
13
|
McNeil BL, Kadassery KJ, McDonagh AW, Zhou W, Schaffer P, Wilson JJ, Ramogida CF. Evaluation of the Effect of Macrocyclic Ring Size on [ 203Pb]Pb(II) Complex Stability in Pyridyl-Containing Chelators. Inorg Chem 2022; 61:9638-9649. [PMID: 35704752 DOI: 10.1021/acs.inorgchem.2c01114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As an element-equivalent theranostic pair, lead-203 (203Pb, 100% EC, half-life = 51.92 h) and lead-212 (212Pb, 100% β-, half-life = 10.64 h), through the emission of γ rays and an α particle in its decay chain, respectively, can aid in the development of personalized targeted radionuclide treatment for advanced and currently untreatable cancers. With these isotopes currently being used in clinical trials, an understanding of the relationship between the chelator structure, ability to incorporate the radiometal, and metal-complex stability is needed to help design appropriate chelators for clinical use. Herein, we report an investigation into the effect of ring size in macrocyclic chelators where pyridine, an intermediate Lewis base, acts as an electron donor toward lead. Crown-4Py (4,7,13,16-tetrakis(pyridin-2-ylmethyl)-1,10-dioxa-4,7,13,16-tetraazacyclooctadecane), cyclen-4Py (1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane), and NOON-2Py (7,16-bis(pyridin-2-ylmethyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane) were synthesized and analyzed for their ability to coordinate Pb2+. Metal complex stability was investigated via [203Pb]Pb2+ radiolabeling studies, 1H NMR spectroscopy, X-ray crystallography, and potentiometry. With the smallest macrocyclic backbone, cyclen-4Py had the highest radiochemical yield, while, in descending order, crown-4Py and NOON-2Py had the lowest. Thermodynamic stability constants (log KML) of 19.95(3), 13.29(5), and 11.67 for [Pb(Cyclen-4Py)]2+, [Pb(Crown-4Py)]2+, and [Pb(NOON-2Py)]2+, respectively, correlated with their radiochemical yields. The X-ray crystal structure of the least stable complexes [Pb(NOON-2Py)]2+ revealed a hemidirected Pb2+ center, as reflected by a void within the coordination sphere, and [Pb(Crown-4Py)]2+ showed an average Pb-N pyridine interatomic distance of >3 Å. By contrast, the crystal structure of [Pb(Cyclen-4Py)]2+ showed shorter Pb-N pyridine interactions, and in solution, only one highly symmetric isomer existed for this complex, whereas conformational flexibility was observed for both [Pb(Crown-4Py)]2+ and [Pb(NOON-2Py)]2+ at the NMR timescale. This study illustrates the importance of the macrocyclic backbone size when incorporating bulky electron-donor groups into the design of a macrocyclic chelator as it affects the accessibility of lead to the donor arms. Our results show that cyclen-4Py is a promising chelator for future studies with this theranostic pair.
Collapse
Affiliation(s)
- Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Karthika J Kadassery
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca New York, 14853-1301 United States
| | - Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Paul Schaffer
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada.,Department of Radiology, The University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca New York, 14853-1301 United States
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| |
Collapse
|
14
|
Antimicrobial Activity of the Iron-Chelator, DIBI, against Multidrug-Resistant Canine Methicillin-Susceptible Staphylococcus pseudintermedius: A Preliminary Study of Four Clinical Strains. Pathogens 2022; 11:pathogens11060656. [PMID: 35745511 PMCID: PMC9227175 DOI: 10.3390/pathogens11060656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/10/2022] Open
Abstract
Staphylococcus pseudintermedius is an important opportunistic pathogen causing various infections in dogs. Furthermore, it is an emerging zoonotic agent and both multidrug-resistant methicillin-resistant S. pseudintermedius (MRSP) as well as methicillin-susceptible (MSSP) strains represent an important therapeutic challenge to veterinary medicine and pose a potential threat to human health. We tested representative S. pseudintermedius clinical strains from dogs suffering from otitis externa for their susceptibilities to a panel of 17 antimicrobials compared to DIBI. DIBI, unlike antibiotics, is a novel water-soluble hydroxypyridinone-containing iron-chelating agent that deprives microbes of growth-essential iron and has been previously shown to inhibit methicillin-resistant Staphylococcus aureus (MRSA). We also characterised the strains according to whether they harbour key antibiotic resistance genes. The strains each displayed multiple antimicrobial resistance patterns; all were negative for the mecA gene and possessed the tetK and tetM genes, but they varied as to their possession of the ermB gene. However, all the isolates had similar susceptibility to DIBI with low MICs (2 µg/mL or 0.2 µM). Because the four MSSPs were equally susceptible to DIBI, subject to confirmation with additional strains, this could provide a potential non-antibiotic, anti-infective alternative approach for the treatment of antimicrobial-resistant canine S. pseudintermedius otitis.
Collapse
|