1
|
Xiong F, Emrich T, Schoepf UJ, Jin N, Hall S, Ruddy JM, Giese D, Lautenschlager C, Emrich AL, Varga-Szemes A. Highly accelerated free-breathing real-time 2D flow imaging using compressed sensing and shared velocity encoding. Eur Radiol 2024; 34:1692-1703. [PMID: 37658887 DOI: 10.1007/s00330-023-10157-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES 2D real-time (RT) phase-contrast (PC) MRI is a promising alternative to conventional PC MRI, which overcomes problems due to irregular heartbeats or poor respiratory control. This study aims to evaluate a prototype compressed sensing (CS)-accelerated 2D RT-PC MRI technique with shared velocity encoding (SVE) for accurate beat-to-beat flow measurements. METHODS The CS RT-PC technique was implemented using a single-shot fast RF-spoiled gradient echo with SVE by symmetric velocity encoding, and acquired with a temporal resolution of 51-56.5 ms in 1-5 heartbeats. Both aortic dissection phantom (n = 8) and volunteer (n = 7) studies were conducted using the prototype CS RT (CS, R = 8), the conventional (GRAPPA, R = 2), and the fully sampled PC sequences on a 3T clinical system. Flow parameters including peak velocity, peak flow rate, net flow rate, and maximum velocity were calculated to compare the performance between different methods using linear regression, intraclass correlation (ICC), and Bland-Altman analyses. RESULTS Comparisons of the flow measurements at all locations in the phantoms demonstrated an excellent correlation (all R2 ≥ 0.93) and agreement (all ICC ≥ 0.97) with negligible means of differences. In healthy volunteers, a similarly good correlation (all R2 ≥ 0.80) and agreement (all ICC ≥ 0.90) were observed; however, CS RT slightly underestimated the maximum velocities and flow rates (~ 12%). CONCLUSION The highly accelerated CS RT-PC technique is feasible for the evaluation of flow patterns without requiring breath-holding, and it allows for rapid flow assessment in patients with arrhythmia or poor breath-hold capacity. CLINICAL RELEVANCE STATEMENT The free-breathing real-time flow MRI technique offers improved spatial and temporal resolutions, as well as the ability to image individual cardiac cycles, resulting in superior image quality compared to the conventional PC technique when imaging patients with arrhythmias, especially those with atrial fibrillation. KEY POINTS • The highly accelerated prototype CS RT-PC MRI technique with improved temporal resolution by the concept of SVE is feasible for beat-to-beat flow evaluation without requiring breath-holding. • The results of the phantom and in vivo quantitative flow evaluation show the ability of the prototype CS RT-PC technique to obtain reliable flow measurements similarly to the conventional PC MRI. • With less than 12% underestimation, excellent agreements between the two techniques were shown for the measurements of peak velocities and flow rates.
Collapse
Affiliation(s)
- Fei Xiong
- Siemens Medical Solutions USA Inc, Cardiovascular MR R&D, Chicago, IL, USA
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, MSC 226, Charleston, SC, 29425-2260, USA
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, MSC 226, Charleston, SC, 29425-2260, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Centre for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, MSC 226, Charleston, SC, 29425-2260, USA.
| | - Ning Jin
- Siemens Medical Solutions USA Inc, Cardiovascular MR R&D, Chicago, IL, USA
| | - SarahRose Hall
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | | | - Carla Lautenschlager
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, MSC 226, Charleston, SC, 29425-2260, USA
| | - Anna Lena Emrich
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Department of Cardiac and Vascular Surgery, University Medical Center Mainz, Mainz, Germany
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, MSC 226, Charleston, SC, 29425-2260, USA
| |
Collapse
|
2
|
Dokumacı AS, Aitken FR, Sedlacik J, Bridgen P, Tomi‐Tricot R, Mooiweer R, Vecchiato K, Wilkinson T, Casella C, Giles S, Hajnal JV, Malik SJ, O'Muircheartaigh J, Carmichael DW. Simultaneous Optimization of MP2RAGE T 1 -weighted (UNI) and FLuid And White matter Suppression (FLAWS) brain images at 7T using Extended Phase Graph (EPG) Simulations. Magn Reson Med 2023; 89:937-950. [PMID: 36352772 PMCID: PMC10100108 DOI: 10.1002/mrm.29479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE The MP2RAGE sequence is typically optimized for either T1 -weighted uniform image (UNI) or gray matter-dominant fluid and white matter suppression (FLAWS) contrast images. Here, the purpose was to optimize an MP2RAGE protocol at 7 Tesla to provide UNI and FLAWS images simultaneously in a clinically applicable acquisition time at <0.7 mm isotropic resolution. METHODS Using the extended phase graph formalism, the signal evolution of the MP2RAGE sequence was simulated incorporating T2 relaxation, diffusion, RF spoiling, and B1 + variability. Flip angles and TI were optimized at different TRs (TRMP2RAGE ) to produce an optimal contrast-to-noise ratio for UNI and FLAWS images. Simulation results were validated by comparison to MP2RAGE brain scans of 5 healthy subjects, and a final protocol at TRMP2RAGE = 4000 ms was applied in 19 subjects aged 8-62 years with and without epilepsy. RESULTS FLAWS contrast images could be obtained while maintaining >85% of the optimal UNI contrast-to-noise ratio. Using TI1 /TI2 /TRMP2RAGE of 650/2280/4000 ms, 6/8 partial Fourier in the inner phase-encoding direction, and GRAPPA factor = 4 in the other, images with 0.65 mm isotropic resolution were produced in <7.5 min. The contrast-to-noise ratio was around 20% smaller at TRMP2RAGE = 4000 ms compared to that at TRMP2RAGE = 5000 ms; however, the 20% shorter duration makes TRMP2RAGE = 4000 ms a good candidate for clinical applications example, pediatrics. CONCLUSION FLAWS and UNI images could be obtained in a single scan with 0.65 mm isotropic resolution, providing a set of high-contrast images and full brain coverage in a clinically applicable scan time. Images with excellent anatomical detail were demonstrated over a wide age range using the optimized parameter set.
Collapse
Affiliation(s)
- Ayşe Sıla Dokumacı
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Fraser R. Aitken
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Jan Sedlacik
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Radiology DepartmentGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| | - Pip Bridgen
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Raphael Tomi‐Tricot
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- MR Research CollaborationsSiemens Healthcare LimitedCamberleyUnited Kingdom
| | - Ronald Mooiweer
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- MR Research CollaborationsSiemens Healthcare LimitedCamberleyUnited Kingdom
| | - Katy Vecchiato
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUnited Kingdom
| | - Tom Wilkinson
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Chiara Casella
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUnited Kingdom
| | - Sharon Giles
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Joseph V. Hajnal
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Shaihan J. Malik
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| | - Jonathan O'Muircheartaigh
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUnited Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College LondonLondonUnited Kingdom
| | - David W. Carmichael
- Biomedical Engineering DepartmentSchool of Biomedical Engineering and Imaging Sciences, King's College London
LondonUnited Kingdom
- London Collaborative Ultra high field System (LoCUS)LondonUnited Kingdom
| |
Collapse
|
3
|
Cao L, Zhang Z, Li J, Wang Z, Ren Y, Wang Q, Huang D, Li Z. A Low-Cost Flexible Perforated Respiratory Sensor Based on Platinum for Continuous Respiratory Monitoring. MICROMACHINES 2022; 13:1743. [PMID: 36296096 PMCID: PMC9611104 DOI: 10.3390/mi13101743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Monitoring sleep conditions is of importance for sleep quality evaluation and sleep disease diagnosis. Accurate respiration detection provides key information about sleep conditions. Here, we propose a perforated temperature sensor that can be worn below the nasal cavity to monitor breath. The sensing system consists of two perforated temperature sensors, signal conditioning circuits, a transmission module, and a supporting analysis algorithm. The perforated structure effectively enhances the sensitivity of the system and shortens the response time. The sensor's response time is 0.07 s in air and sensitivity is 1.4‱°C-1. The device can achieve a monitoring respiratory temperature range between normal room temperature and 40 °C. The simple and standard micromachining process ensures low cost and high reproducibility. We achieved the monitoring of different breathing patterns, such as normal breathing, panting, and apnea, which can be applied to sleep breath monitoring and exercise information recording.
Collapse
Affiliation(s)
- Lu Cao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing 100871, China
- College of Engineering, Peking University, Beijing 100871, China
| | - Zhitong Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing 100871, China
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Junshi Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing 100871, China
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zhongyan Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing 100871, China
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yingjie Ren
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing 100871, China
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Qining Wang
- College of Engineering, Peking University, Beijing 100871, China
| | - Dong Huang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing 100871, China
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing 100871, China
- School of Integrated Circuits, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Eyre K, Lindsay K, Razzaq S, Chetrit M, Friedrich M. Simultaneous multi-parametric acquisition and reconstruction techniques in cardiac magnetic resonance imaging: Basic concepts and status of clinical development. Front Cardiovasc Med 2022; 9:953823. [PMID: 36277755 PMCID: PMC9582154 DOI: 10.3389/fcvm.2022.953823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Simultaneous multi-parametric acquisition and reconstruction techniques (SMART) are gaining attention for their potential to overcome some of cardiovascular magnetic resonance imaging's (CMR) clinical limitations. The major advantages of SMART lie within their ability to simultaneously capture multiple "features" such as cardiac motion, respiratory motion, T1/T2 relaxation. This review aims to summarize the overarching theory of SMART, describing key concepts that many of these techniques share to produce co-registered, high quality CMR images in less time and with less requirements for specialized personnel. Further, this review provides an overview of the recent developments in the field of SMART by describing how they work, the parameters they can acquire, their status of clinical testing and validation, and by providing examples for how their use can improve the current state of clinical CMR workflows. Many of the SMART are in early phases of development and testing, thus larger scale, controlled trials are needed to evaluate their use in clinical setting and with different cardiac pathologies.
Collapse
Affiliation(s)
- Katerina Eyre
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada,*Correspondence: Katerina Eyre,
| | - Katherine Lindsay
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Saad Razzaq
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Michael Chetrit
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Matthias Friedrich
- McGill University Health Centre, Montreal, QC, Canada,Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Fenski M, Grandy TH, Viezzer D, Kertusha S, Schmidt M, Forman C, Schulz-Menger J. Isotropic 3D compressed sensing (CS) based sequence is comparable to 2D-LGE in left ventricular scar quantification in different disease entities. Int J Cardiovasc Imaging 2022; 38:1837-1850. [PMID: 35243574 PMCID: PMC10509092 DOI: 10.1007/s10554-022-02571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
The goal of this study was to evaluate a three-dimensional compressed sensing (3D-CS) LGE prototype sequence for the detection and quantification of myocardial fibrosis in patients with chronic myocardial infarction (CMI) and myocarditis (MYC) compared with a 2D-LGE standard. Patients with left-ventricular LGE due to CMI (n = 33) or MYC (n = 20) were prospectively recruited. 2D-LGE and 3D-CS images were acquired in random order at 1.5 Tesla. 3D-CS short axis (SAX) images were reconstructed corresponding to 2D SAX images. LGE was quantitatively assessed on patient and segment level using semi-automated threshold methods. Image quality (4-point scoring system), Contrast-ratio (CR) and acquisition times were compared. There was no significant difference between 2D and 3D sequences regarding global LGE (%) (CMI [2D-LGE: 11.4 ± 7.5; 3D-LGE: 11.5 ± 8.5; p = 0.99]; MYC [2D-LGE: 27.0 ± 15.7; 3D-LGE: 26.2 ± 13.1; p = 0.70]) and segmental LGE-extent (p = 0.63). 3D-CS identified papillary infarction in 5 cases which was not present in 2D images. 2D-LGE acquisition time was shorter (2D: median: 06:59 min [IQR: 05:51-08:18]; 3D: 14:48 min [12:45-16:57]). 3D-CS obtained better quality scores (2D: 2.06 ± 0.56 vs. 3D: 2.29 ± 0.61). CR did not differ (p = 0.63) between basal and apical regions in 3D-CS images but decreased significantly in 2D apical images (CR basal: 2D: 0.77 ± 0.11, 3D: 0.59 ± 0.10; CR apical: 2D: 0.64 ± 0.17, 3D: 0.53 ± 0.11). 3D-LGE shows high congruency with standard LGE and allows better identification of small lesions. However, the current 3D-CS LGE sequence did not provide PSIR reconstruction and acquisition time was longer.
Collapse
Affiliation(s)
- Maximilian Fenski
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Thomas Hiroshi Grandy
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Darian Viezzer
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Stela Kertusha
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
| | | | | | - Jeanette Schulz-Menger
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Argentiero A, Muscogiuri G, Rabbat MG, Martini C, Soldato N, Basile P, Baggiano A, Mushtaq S, Fusini L, Mancini ME, Gaibazzi N, Santobuono VE, Sironi S, Pontone G, Guaricci AI. The Applications of Artificial Intelligence in Cardiovascular Magnetic Resonance-A Comprehensive Review. J Clin Med 2022; 11:jcm11102866. [PMID: 35628992 PMCID: PMC9147423 DOI: 10.3390/jcm11102866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease remains an integral field on which new research in both the biomedical and technological fields is based, as it remains the leading cause of mortality and morbidity worldwide. However, despite the progress of cardiac imaging techniques, the heart remains a challenging organ to study. Artificial intelligence (AI) has emerged as one of the major innovations in the field of diagnostic imaging, with a dramatic impact on cardiovascular magnetic resonance imaging (CMR). AI will be increasingly present in the medical world, with strong potential for greater diagnostic efficiency and accuracy. Regarding the use of AI in image acquisition and reconstruction, the main role was to reduce the time of image acquisition and analysis, one of the biggest challenges concerning magnetic resonance; moreover, it has been seen to play a role in the automatic correction of artifacts. The use of these techniques in image segmentation has allowed automatic and accurate quantification of the volumes and masses of the left and right ventricles, with occasional need for manual correction. Furthermore, AI can be a useful tool to directly help the clinician in the diagnosis and derivation of prognostic information of cardiovascular diseases. This review addresses the applications and future prospects of AI in CMR imaging, from image acquisition and reconstruction to image segmentation, tissue characterization, diagnostic evaluation, and prognostication.
Collapse
Affiliation(s)
- Adriana Argentiero
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Giuseppe Muscogiuri
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60660, USA;
| | - Chiara Martini
- Radiologic Sciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Nicolò Soldato
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Paolo Basile
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Laura Fusini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Maria Elisabetta Mancini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Nicola Gaibazzi
- Department of Cardiology, Azienda Ospedaliero-Universitaria, 43126 Parma, Italy;
| | - Vincenzo Ezio Santobuono
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
- Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy
- Correspondence:
| |
Collapse
|
7
|
Zeilinger MG, Wiesmüller M, Forman C, Schmidt M, Munoz C, Piccini D, Kunze KP, Neji R, Botnar RM, Prieto C, Uder M, May M, Wuest W. 3D Dixon water-fat LGE imaging with image navigator and compressed sensing in cardiac MRI. Eur Radiol 2020; 31:3951-3961. [PMID: 33263160 PMCID: PMC8128857 DOI: 10.1007/s00330-020-07517-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Abstract
Objectives To evaluate an image-navigated isotropic high-resolution 3D late gadolinium enhancement (LGE) prototype sequence with compressed sensing and Dixon water-fat separation in a clinical routine setting. Material and methods Forty consecutive patients scheduled for cardiac MRI were enrolled prospectively and examined with 1.5 T MRI. Overall subjective image quality, LGE pattern and extent, diagnostic confidence for detection of LGE, and scan time were evaluated and compared to standard 2D LGE imaging. Robustness of Dixon fat suppression was evaluated for 3D Dixon LGE imaging. For statistical analysis, the non-parametric Wilcoxon rank sum test was performed. Results LGE was rated as ischemic in 9 patients and non-ischemic in 11 patients while it was absent in 20 patients. Image quality and diagnostic confidence were comparable between both techniques (p = 0.67 and p = 0.66, respectively). LGE extent with respect to segmental or transmural myocardial enhancement was identical between 2D and 3D (water-only and in-phase). LGE size was comparable (3D 8.4 ± 7.2 g, 2D 8.7 ± 7.3 g, p = 0.19). Good or excellent fat suppression was achieved in 93% of the 3D LGE datasets. In 6 patients with pericarditis, the 3D sequence with Dixon fat suppression allowed for a better detection of pericardial LGE. Scan duration was significantly longer for 3D imaging (2D median 9:32 min vs. 3D median 10:46 min, p = 0.001). Conclusion The 3D LGE sequence provides comparable LGE detection compared to 2D imaging and seems to be superior in evaluating the extent of pericardial involvement in patients suspected with pericarditis due to the robust Dixon fat suppression. Key Points • Three-dimensional LGE imaging provides high-resolution detection of myocardial scarring. • Robust Dixon water-fat separation aids in the assessment of pericardial disease. • The 2D image navigator technique enables 100% respiratory scan efficacy and permits predictable scan times.
Collapse
Affiliation(s)
| | - Marco Wiesmüller
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| | - Christoph Forman
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Michaela Schmidt
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland
| | - Karl-Philipp Kunze
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,MR Research Collaborations, Siemens Healthcare GmbH, Frimley, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,MR Research Collaborations, Siemens Healthcare GmbH, Frimley, UK
| | - René Michael Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Michael Uder
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| | - Matthias May
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| | - Wolfgang Wuest
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Pathrose A, Ma L, Berhane H, Scott MB, Chow K, Forman C, Jin N, Serhal A, Avery R, Carr J, Markl M. Highly accelerated aortic 4D flow MRI using compressed sensing: Performance at different acceleration factors in patients with aortic disease. Magn Reson Med 2020; 85:2174-2187. [PMID: 33107141 DOI: 10.1002/mrm.28561] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To systematically assess the feasibility and performance of a highly accelerated compressed sensing (CS) 4D flow MRI framework at three different acceleration factors (R) for the quantification of aortic flow dynamics and wall shear stress (WSS) in patients with aortic disease. METHODS Twenty patients with aortic disease (58 ± 15 y old; 19 M) underwent four 4D flow scans: one conventional (GRAPPA, R = 2) and three CS 4D flows with R = 5.7, 7.7, and 10.2. All scans were acquired with otherwise equivalent imaging parameters on a 1.5T scanner. Peak-systolic velocity (Vmax ), peak flow (Qmax ), and net flow (Qnet ) were quantified at the ascending aorta (AAo), arch, and descending aorta (DAo). WSS was calculated at six regions within the AAo and arch. RESULTS Mean scan times for the conventional and CS 4D flows with R = 5.7, 7.7, and 10.2 were 9:58 ± 2:58 min, 3:40 ± 1:19 min, 2:50 ± 0:56 min, and 2:05 ± 0:42 min, respectively. Vmax , Qmax , and Qnet were significantly underestimated by all CS protocols (underestimation ≤ -7%, -9%, and -10% by CS, R = 5.7, 7.7, and 10.2, respectively). WSS measurements showed the highest underestimation by all CS protocols (underestimation ≤ -9%, -12%, and -14% by CS, R = 5.7, 7.7, and 10.2). CONCLUSIONS Highly accelerated aortic CS 4D flow at R = 5.7, 7.7, and 10.2 showed moderate agreement with the conventional 4D flow, despite systematically underestimating various hemodynamic parameters. The shortened scan time may enable the clinical translation of CS 4D flow, although potential hemodynamic underestimation should be considered when interpreting the results.
Collapse
Affiliation(s)
- Ashitha Pathrose
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Liliana Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Haben Berhane
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Michael B Scott
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Kelvin Chow
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Chicago, Illinois, USA
| | | | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Chicago, Illinois, USA
| | - Ali Serhal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ryan Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - James Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
9
|
Comparison of compressed sensing and conventional coronary magnetic resonance angiography for detection of coronary artery stenosis. Eur J Radiol 2020; 129:109124. [PMID: 32563962 DOI: 10.1016/j.ejrad.2020.109124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE This study aimed to compare the efficacy of compressed sensing (CS) and conventional coronary magnetic resonance angiography (CMRA) in detecting coronary artery stenosis. METHOD Twenty-eight patients underwent 3 T contrast-enhanced CS and conventional CMRA; for late gadolinium enhancement (LGE) imaging, 0.1 mmol/kg gadolinium medium was infused. CS CMRA was scanned within the LGE waiting time. After the LGE image acquisition, conventional CMRA was performed. The diagnostic performance of both CMRA for the detection of significant stenosis was evaluated using coronary angiography as a reference. The analysis was conducted to examine the three main coronary artery vessels: left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA). These arteries were subdivided into 8 segments (LAD; main, proximal, and middle, LCX; proximal and distal, RCA; proximal, middle, and distal). Of these, hypoplastic segments and vessels after coronary stent implantation were excluded. The acquisition time of CS CMRA was compared with that of conventional CMRA. RESULTS The coronary arteries were evaluated in 197 segments. The sensitivity, specificity, and accuracy of CS CMRA in detecting significant stenosis were 85.2 %, 82.5 %, and 83.2 %, respectively, on a per-segment basis. Those of conventional CMRA were 85.2 %, 86.7 %, and 86.3 %, respectively. The acquisition time was 207 s (range, 144-258 s) for CS and 975 s (range, 787-1226s) for conventional CMRA (p < 0.001). CONCLUSIONS Similar to conventional CMRA, CS CMRA has shown potential for the detection of significant coronary artery stenosis.
Collapse
|
10
|
Mussard E, Hilbert T, Forman C, Meuli R, Thiran J, Kober T. Accelerated MP2RAGE imaging using Cartesian phyllotaxis readout and compressed sensing reconstruction. Magn Reson Med 2020; 84:1881-1894. [DOI: 10.1002/mrm.28244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Emilie Mussard
- Advanced Clinical Imaging Technology Siemens Healthcare AG Lausanne Switzerland
- Department of Radiology Lausanne University Hospital and University of Lausanne Lausanne Switzerland
- LTS5 École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology Siemens Healthcare AG Lausanne Switzerland
- Department of Radiology Lausanne University Hospital and University of Lausanne Lausanne Switzerland
- LTS5 École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | | | - Reto Meuli
- Department of Radiology Lausanne University Hospital and University of Lausanne Lausanne Switzerland
| | - Jean‐Philippe Thiran
- Department of Radiology Lausanne University Hospital and University of Lausanne Lausanne Switzerland
- LTS5 École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology Siemens Healthcare AG Lausanne Switzerland
- Department of Radiology Lausanne University Hospital and University of Lausanne Lausanne Switzerland
- LTS5 École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| |
Collapse
|
11
|
Bustin A, Fuin N, Botnar RM, Prieto C. From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction. Front Cardiovasc Med 2020; 7:17. [PMID: 32158767 PMCID: PMC7051921 DOI: 10.3389/fcvm.2020.00017] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Cardiac magnetic resonance (CMR) imaging is an important tool for the non-invasive assessment of cardiovascular disease. However, CMR suffers from long acquisition times due to the need of obtaining images with high temporal and spatial resolution, different contrasts, and/or whole-heart coverage. In addition, both cardiac and respiratory-induced motion of the heart during the acquisition need to be accounted for, further increasing the scan time. Several undersampling reconstruction techniques have been proposed during the last decades to speed up CMR acquisition. These techniques rely on acquiring less data than needed and estimating the non-acquired data exploiting some sort of prior information. Parallel imaging and compressed sensing undersampling reconstruction techniques have revolutionized the field, enabling 2- to 3-fold scan time accelerations to become standard in clinical practice. Recent scientific advances in CMR reconstruction hinge on the thriving field of artificial intelligence. Machine learning reconstruction approaches have been recently proposed to learn the non-linear optimization process employed in CMR reconstruction. Unlike analytical methods for which the reconstruction problem is explicitly defined into the optimization process, machine learning techniques make use of large data sets to learn the key reconstruction parameters and priors. In particular, deep learning techniques promise to use deep neural networks (DNN) to learn the reconstruction process from existing datasets in advance, providing a fast and efficient reconstruction that can be applied to all newly acquired data. However, before machine learning and DNN can realize their full potentials and enter widespread clinical routine for CMR image reconstruction, there are several technical hurdles that need to be addressed. In this article, we provide an overview of the recent developments in the area of artificial intelligence for CMR image reconstruction. The underlying assumptions of established techniques such as compressed sensing and low-rank reconstruction are briefly summarized, while a greater focus is given to recent advances in dictionary learning and deep learning based CMR reconstruction. In particular, approaches that exploit neural networks as implicit or explicit priors are discussed for 2D dynamic cardiac imaging and 3D whole-heart CMR imaging. Current limitations, challenges, and potential future directions of these techniques are also discussed.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Niccolo Fuin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - René M. Botnar
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Hosseini SAH, Zhang C, Weingärtner S, Moeller S, Stuber M, Ugurbil K, Akçakaya M. Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling. PLoS One 2020; 15:e0229418. [PMID: 32084235 PMCID: PMC7034900 DOI: 10.1371/journal.pone.0229418] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/05/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose To accelerate coronary MRI acquisitions with arbitrary undersampling patterns by using a novel reconstruction algorithm that applies coil self-consistency using subject-specific neural networks. Methods Self-consistent robust artificial-neural-networks for k-space interpolation (sRAKI) performs iterative parallel imaging reconstruction by enforcing self-consistency among coils. The approach bears similarity to SPIRiT, but extends the linear convolutions in SPIRiT to nonlinear interpolation using convolutional neural networks (CNNs). These CNNs are trained individually for each scan using the scan-specific autocalibrating signal (ACS) data. Reconstruction is performed by imposing the learned self-consistency and data-consistency, which enables sRAKI to support random undersampling patterns. Fully-sampled targeted right coronary artery MRI was acquired in six healthy subjects. The data were retrospectively undersampled, and reconstructed using SPIRiT, l1-SPIRiT and sRAKI for acceleration rates of 2 to 5. Additionally, prospectively undersampled whole-heart coronary MRI was acquired to further evaluate reconstruction performance. Results sRAKI reduces noise amplification and blurring artifacts compared with SPIRiT and l1-SPIRiT, especially at high acceleration rates in targeted coronary MRI. Quantitative analysis shows that sRAKI outperforms these techniques in terms of normalized mean-squared-error (~44% and ~21% over SPIRiT and l1-SPIRiT at rate 5) and vessel sharpness (~10% and ~20% over SPIRiT and l1-SPIRiT at rate 5). Whole-heart data shows the sharpest coronary arteries when resolved using sRAKI, with 11% and 15% improvement in vessel sharpness over SPIRiT and l1-SPIRiT, respectively. Conclusion sRAKI is a database-free neural network-based reconstruction technique that may further accelerate coronary MRI with arbitrary undersampling patterns, while improving noise resilience over linear parallel imaging and image sharpness over l1 regularization techniques.
Collapse
Affiliation(s)
- Seyed Amir Hossein Hosseini
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
| | - Chi Zhang
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
| | - Sebastian Weingärtner
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
| | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
13
|
Hirai K, Kido T, Kido T, Ogawa R, Tanabe Y, Nakamura M, Kawaguchi N, Kurata A, Watanabe K, Yamaguchi O, Schmidt M, Forman C, Mochizuki T. Feasibility of contrast-enhanced coronary artery magnetic resonance angiography using compressed sensing. J Cardiovasc Magn Reson 2020; 22:15. [PMID: 32050982 PMCID: PMC7017458 DOI: 10.1186/s12968-020-0601-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Coronary magnetic resonance angiography (CMRA) is a promising technique for assessing the coronary arteries. However, a disadvantage of CMRA is the comparatively long acquisition time. Compressed sensing (CS) can considerably reduce the scan time. The aim of this study was to verify the feasibility of CS CMRA scanning during the waiting time between contrast injection and late gadolinium enhancement (LGE) scan in a clinical protocol. METHODS Fifty clinical patients underwent contrast-enhanced CS CMRA and conventional CMRA on a 3 T CMR scanner. After contrast injection, CS CMRA was scanned during the waiting time for LGE CMR. A conventional CMRA scan was performed after LGE CMR. We assessed acquisition times and coronary artery image quality for each segment on a 4-point scale. Visible vessel length, sharpness and diameter of right (RCA), left anterior descending (LAD), and left circumflex (LCX) coronary arteries were also quantitatively compared among the scans. RESULTS All CS CMRA scans were successfully performed within the LGE waiting time. The median total scan time was 207 s (163, 259 s) for CS and 785 s (698, 975 s) for conventional CMRA (p < 0.001). No significant differences were observed in image quality scores, vessel length measurements, sharpness, and diameter between CS and conventional CMRA. CONCLUSIONS We could achieve all CS CMRA scans within the LGE waiting time. Contrast-enhanced CS CMRA could considerably shorten the scan time while maintaining image quality compared with conventional CMRA.
Collapse
Affiliation(s)
- Kuniaki Hirai
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Ryo Ogawa
- Department of Radiology, Saiseikai Matsuyama Hospital, 880-2, Yamanishi, Matsuyama, Ehime 791-8026 Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Masashi Nakamura
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Kouki Watanabe
- Department of Cardiology, Saiseikai Matsuyama Hospital, 880-2, Yamanishi, Matsuyama, Ehime 791-8026 Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Michaela Schmidt
- Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Christoph Forman
- Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| |
Collapse
|
14
|
Ma LE, Markl M, Chow K, Huh H, Forman C, Vali A, Greiser A, Carr J, Schnell S, Barker AJ, Jin N. Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k-space reordering, and inline reconstruction. Magn Reson Med 2019; 81:3675-3690. [PMID: 30803006 DOI: 10.1002/mrm.27684] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate the accuracy and feasibility of a free-breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. METHODS The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4-14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS-accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution. RESULTS CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel-by-voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax ) and peak flow (Qmax ) in both volunteers and patients (volunteers: vmax , -16.2% to -9.4%, Qmax : -11.6% to -2.9%, patients: vmax , -11.2% to -4.0%; Qmax , -10.2% to -5.8%). CONCLUSION Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax ; however, these were generally within 13% of conventional 4D flow-derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.
Collapse
Affiliation(s)
- Liliana E Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Kelvin Chow
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc, Chicago, Illinois
| | - Hyungkyu Huh
- Daegu-Gyeongbuk Medical Innovation Foundation, Medical Device Development Center, Daegu, South Korea
| | | | - Alireza Vali
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - James Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Susanne Schnell
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Denver, Colorado.,Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc, Cleveland, Ohio
| |
Collapse
|
15
|
Tang H, Hu N, Yuan Y, Xia C, Liu X, Zuo P, Stalder AF, Schmidt M, Zhou X, Song B, Sun J. Accelerated Time-of-Flight Magnetic Resonance Angiography with Sparse Undersampling and Iterative Reconstruction for the Evaluation of Intracranial Arteries. Korean J Radiol 2019; 20:265-274. [PMID: 30672166 PMCID: PMC6342758 DOI: 10.3348/kjr.2017.0634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/18/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To compare the image quality of three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA) with sparse undersampling and iterative reconstruction (sparse TOF) with that of conventional TOF MRA. MATERIALS AND METHODS This study included 56 patients who had undergone sparse TOF MRA for intracranial artery evaluation on a 3T MR scanner. Conventional TOF MRA scans were also acquired from 29 patients with matched acquisition times and another 27 patients with matched scanning parameters. The image quality was scored using a five-point scale based on the delineation of arterial vessel segments, artifacts, overall vessel visualization, and overall image quality by two radiologists independently, and the data were analyzed using the non-parametric Wilcoxon signed-rank test. Contrast ratios (CRs) of vessels were compared using the paired t test. Interobserver agreement was calculated using the kappa test. RESULTS Compared with conventional TOF at the same spatial resolution, sparse TOF with an acceleration factor of 3.5 could reduce acquisition time by 40% and showed comparable image quality. In addition, when compared with conventional TOF with the same acquisition time, sparse TOF with an acceleration factor of 5 could also achieve higher spatial resolution, better delineation of vessel segments, fewer artifacts, higher image quality, and a higher CR (p < 0.05). Good-to-excellent interobserver agreement (κ: 0.65-1.00) was obtained between the two radiologists. CONCLUSION Compared with conventional TOF, sparse TOF can achieve equivalent image quality in a reduced duration. Furthermore, using the same acquisition time, sparse TOF could improve the delineation of vessels and decrease image artifacts.
Collapse
Affiliation(s)
- Hehan Tang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Yuan
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiumin Liu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Panli Zuo
- MR Collaboration NEA, Siemens Healthineers Ltd., Beijing, China
| | | | | | - Xiaoyue Zhou
- MR Collaboration NEA, Siemens Healthineers Ltd., Shanghai, China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Ma J, März M, Funk S, Schulz-Menger J, Kutyniok G, Schaeffter T, Kolbitsch C. Shearlet-based compressed sensing for fast 3D cardiac MR imaging using iterative reweighting. Phys Med Biol 2018; 63:235004. [PMID: 30465546 DOI: 10.1088/1361-6560/aaea04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High-resolution three-dimensional (3D) cardiovascular magnetic resonance (CMR) is a valuable medical imaging technique, but its widespread application in clinical practice is hampered by long acquisition times. Here we present a novel compressed sensing (CS) reconstruction approach using shearlets as a sparsifying transform allowing for fast 3D CMR (3DShearCS) using 3D radial phase encoding (RPE). An iterative reweighting scheme was applied during image reconstruction to ensure fast convergence and high image quality. Shearlets are mathematically optimal for a simplified model of natural images and have been proven to be more efficient than classical systems such as wavelets. 3DShearCS was compared to three other commonly used reconstruction approaches. Image quality was assessed quantitatively using general image quality metrics and using clinical diagnostic scores from expert reviewers. The proposed technique had lower relative errors, higher structural similarity and higher diagnostic scores compared to the other reconstruction techniques especially for high undersampling factors, i.e. short scan times. 3DShearCS provided ensured accurate depiction of cardiac anatomy for fast imaging and could help to promote 3D high-resolution CMR in clinical practice.
Collapse
Affiliation(s)
- Jackie Ma
- Image and Video Coding Group, Fraunhofer Institute for Telecommunications-Heinrich Hertz Institute, Berlin, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
17
|
Automated Curved and Multiplanar Reformation for Screening of the Proximal Coronary Arteries in MR Angiography. J Imaging 2018. [DOI: 10.3390/jimaging4110124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Congenital anomalies of the coronary ostia can lead to sudden death. A screening solution would be useful to prevent adverse outcomes for the affected individuals. To be considered for integration into clinical routine, such a procedure must meet strict constraints in terms of invasiveness, time and user interaction. Imaging must be fast and seamlessly integrable into the clinical process. Non-contrast enhanced coronary magnetic resonance angiography (MRA) is well suited for this. Furthermore, planar reformations proved effective to reduce the acquired volumetric datasets to 2D images. These usually require time consuming user interaction, though. To fulfill the aforementioned challenges, we present a fully automated solution for imaging and reformatting of the proximal coronary arteries which enables rapid screening of these. The proposed pipeline consists of: (I) highly accelerated single breath-hold MRA data acquisition, (II) coronary ostia detection and vessel centerline extraction, and (III) curved planar reformation of the proximal coronary arteries, as well as multiplanar reformation of the coronary ostia. The procedure proved robust and effective in ten volunteer data sets. Imaging of the proximal coronary arteries took 24 ± 5 s and was successful within one breath-hold for all patients. The extracted centerlines achieve an overlap of 0.76 ± 0.18 compared to the reference standard and the average distance of the centerline points from the spherical surface for reformation was 1.1 ± 0.51 mm. The promising results encourage further experiments on patient data, particularly in coronary ostia anomaly screening.
Collapse
|
18
|
Nakamura M, Kido T, Kido T, Watanabe K, Schmidt M, Forman C, Mochizuki T. Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: A comparison with conventional imaging. Eur J Radiol 2018; 104:43-48. [PMID: 29857865 DOI: 10.1016/j.ejrad.2018.04.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Whole-heart coronary magnetic resonance angiography (MRA) is a promising non-contrast, radiation-free technique for assessing the coronary artery. Yet, a disadvantage of coronary MRA is the relatively long acquisition time. The purpose of this study was to evaluate the scan time and image quality of compressed sensing (CS) coronary MRA compared with conventional coronary MRA. MATERIALS AND METHODS Twenty healthy volunteers underwent navigator-gated coronary MRA with a CS prototype sequence and conventional navigator-gated coronary MRA on a clinical 3T MRI scanner without contrast medium. The spatial resolutions were 1.33 × 1.33 × 1.20 mm3 for CS and 1.33 × 1.33 × 1.48 mm3 interpolated to 0.70 × 0.70 × 1.20 mm3 for conventional, respectively. We compared acquisition times, rated image quality on a 4-point scale (RCA; proximal, middle, and distal, LAD; main, proximal, middle, and distal, LCX; proximal and distal), and measured the visualized vessel lengths of three vessels. RESULTS The mean acceptance rates were 44.9% for CS coronary MRA and 48.7% for conventional coronary MRA (p = .39). The mean effective scan time was 3 min 45 s for CS coronary MRA and 15 min 6 s for conventional coronary MRA (p < 0.001). Image quality scores were significantly lower for CS coronary MRA than for conventional coronary MRA (3.4 ± 0.7 for CS vs. 3.8 ± 0.4 for conventional; p < 0.0001). Conventional coronary MRA images were scored >3.4 in all segments on average, while CS coronary MRA images were scored >3.2 (good quality for diagnosis) in almost all segments, with only the distal RCA segment graded 2.9 on average. The average visible vessel lengths for CS and conventional coronary MRA were as follows: 11.5 ± 4.4 cm and 12.5 ± 4.8 cm for the RCA, respectively (p < 0.05, 95% limits of agreement [LOA]; -3.6 to 1.6 cm); 10.6 ± 3.0 cm and 11.1 ± 2.9 cm for the LAD, respectively (p = .15, 95% LOA -4.0 to 2.8 cm); and 7.1 ± 2.2 cm and 8.2 ± 2.5 cm for the LCX, respectively (p < 0.05, 95% LOA -4.0 to 1.7 cm). CONCLUSIONS Non-contrast coronary MRA using CS could largely shorten acquisition time, compared with conventional navigator-gated coronary MRA, while maintaining acceptable visualization at 3T.
Collapse
Affiliation(s)
- Masashi Nakamura
- Department of Radiology, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan.
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
| | - Kouki Watanabe
- Department of Cardiology, Saiseikai Matsuyama Hospital, Matsuyama, Ehime, Japan
| | | | | | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Matsuyama, Ehime, Japan
| |
Collapse
|
19
|
Kurzendorfer T, Forman C, Schmidt M, Tillmanns C, Maier A, Brost A. Fully automatic segmentation of left ventricular anatomy in 3-D LGE-MRI. Comput Med Imaging Graph 2017; 59:13-27. [DOI: 10.1016/j.compmedimag.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
|
20
|
Single-breath-hold 3-D CINE imaging of the left ventricle using Cartesian sampling. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:19-31. [DOI: 10.1007/s10334-017-0624-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
|
21
|
Usman M, Ruijsink B, Nazir MS, Cruz G, Prieto C. Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory. Magn Reson Imaging 2016; 38:129-137. [PMID: 28034638 PMCID: PMC5375620 DOI: 10.1016/j.mri.2016.12.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/22/2023]
Abstract
Purpose To present a method that uses a novel free-running self-gated acquisition to achieve isotropic resolution in whole heart 3D Cartesian cardiac CINE MRI. Material and methods 3D cardiac CINE MRI using navigator gating results in long acquisition times. Recently, several frameworks based on self-gated non-Cartesian trajectories have been proposed to accelerate this acquisition. However, non-Cartesian reconstructions are computationally expensive due to gridding, particularly in 3D. In this work, we propose a novel highly efficient self-gated Cartesian approach for 3D cardiac CINE MRI. Acquisition is performed using CArtesian trajectory with Spiral PRofile ordering and Tiny golden angle step for eddy current reduction (so called here CASPR-Tiger). Data is acquired continuously under free breathing (retrospective ECG gating, no preparation pulses interruption) for 4–5 min and 4D whole-heart volumes (3D + cardiac phases) with isotropic spatial resolution are reconstructed from all available data using a soft gating technique combined with temporal total variation (TV) constrained iterative SENSE reconstruction. Results For data acquired on eight healthy subjects and three patients, the reconstructed images using the proposed method had good contrast and spatio-temporal variations, correctly recovering diastolic and systolic cardiac phases. Non-significant differences (P > 0.05) were observed in cardiac functional measurements obtained with proposed 3D approach and gold standard 2D multi-slice breath-hold acquisition. Conclusion The proposed approach enables isotropic 3D whole heart Cartesian cardiac CINE MRI in 4 to 5 min free breathing acquisition. A novel self-gated 3D Cartesian acquisition is proposed for free breathing whole-heart cardiac MRI The proposed framework has efficient k-space sampling, better eddy current performance and high computational efficiency The Proposed method is able to achieve high spatio-temporal resolution 3D cardiac CINE The proposed method only requires four to five minute free breathing scan
Collapse
Affiliation(s)
- M Usman
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom; Department of Computer Science, University College London, London, UK.
| | - B Ruijsink
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - M S Nazir
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - G Cruz
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom
| | - C Prieto
- King's College London, Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom; Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| |
Collapse
|
22
|
Han F, Zhou Z, Han E, Gao Y, Nguyen KL, Finn JP, Hu P. Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): Validation in children with congenital heart disease. Magn Reson Med 2016; 78:472-483. [PMID: 27529745 DOI: 10.1002/mrm.26376] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop and validate a cardiac-respiratory self-gating strategy for the recently proposed multiphase steady-state imaging with contrast enhancement (MUSIC) technique. METHODS The proposed SG strategy uses the ROtating Cartesian K-space (ROCK) sampling, which allows for retrospective k-space binning based on motion surrogates derived from k-space center line. The k-space bins are reconstructed using a compressed sensing algorithm. Ten pediatric patients underwent cardiac MRI for clinical reasons. The original MUSIC and 2D-CINE images were acquired as a part of the clinical protocol, followed by the ROCK-MUSIC acquisition, all under steady-state intravascular distribution of ferumoxytol. Subjective scores and image sharpness were used to compare the images of ROCK-MUSIC and original MUSIC. RESULTS All scans were completed successfully without complications. The ROCK-MUSIC acquisition took 5 ± 1 min, compared to 8 ± 2 min for the original MUSIC. Image scores of ROCK-MUSIC were significantly better than original MUSIC at the ventricular outflow tracts (3.9 ± 0.3 vs. 3.3 ± 0.6, P < 0.05). There was a strong trend toward superior image scores for ROCK-MUSIC in the other anatomic locations. CONCLUSION ROCK-MUSIC provided images of equal or superior image quality compared to original MUSIC, and this was achievable with 40% savings in scan time and without the need for physiologic signal. Magn Reson Med 78:472-483, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Ziwu Zhou
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Eric Han
- Harvard Westlake School, Los Angeles, California, USA
| | - Yu Gao
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Division of Cardiology, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - J Paul Finn
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, California, USA
| |
Collapse
|
23
|
Piccini D, Feng L, Bonanno G, Coppo S, Yerly J, Lim RP, Schwitter J, Sodickson DK, Otazo R, Stuber M. Four-dimensional respiratory motion-resolved whole heart coronary MR angiography. Magn Reson Med 2016; 77:1473-1484. [PMID: 27052418 DOI: 10.1002/mrm.26221] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/25/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach. METHODS Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation. RESULTS Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases. CONCLUSION XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. Magn Reson Med 77:1473-1484, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland.,Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Li Feng
- Center for Advanced Imaging Innovation and Research, and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gabriele Bonanno
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Simone Coppo
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne, Switzerland
| | - Ruth P Lim
- Department of Radiology, Austin Health and The University of Melbourne, Melbourne, Victoria, Australia
| | - Juerg Schwitter
- Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne, Lausanne, Switzerland
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research, and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research, and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Matthias Stuber
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne, Switzerland
| |
Collapse
|
24
|
Piccini D, Bonanno G, Ginami G, Littmann A, Zenge MO, Stuber M. Is there an optimal respiratory reference position for self-navigated whole-heart coronary MR angiography? J Magn Reson Imaging 2015; 43:426-33. [PMID: 26174582 DOI: 10.1002/jmri.24992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/18/2015] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To test the direct influence of the reference respiratory position on image quality for self-navigated whole-heart coronary MRI. METHODS Self-navigated whole-heart coronary MRI was performed in 11 healthy adult subjects. Respiratory motion was compensated for by using three different respiratory reference positions of the heart: end-inspiratory, end-expiratory, and the mean of the entire respiratory excursion. All datasets were reconstructed without motion compensation for comparison. Image quality was assessed in all reconstructions using signal-to-noise ratio (SNR) and contrst-to-noise ratio (CNR) measurements, as well as percentage vessel sharpness and visible length of the coronary arteries. RESULTS While SNR and CNR remained close to constant in all reconstructions, a clear and significant improvement in vessel sharpness was identified in all motion corrected datasets with respect to their uncorrected counterpart (e.g., percentage sharpness of the proximal right coronary artery (RCA): 61.6 ± 8.2% for end-inspiration, 64.1 ± 10.7% for end-expiration, and 63.3 ± 7.0% for the mean respiratory position versus 55.0 ± 10.4 for the uncorrected datasets; P < 0.05). Among all motion corrected reconstructions, the use of an end-expiratory reference position most consistently provided the highest image quality. In particular, some of the improvements in vessel sharpness and length measured for end-expiration were statistically significant with respect to the reconstructions performed at end-inspiration (e.g., percentage sharpness of the proximal left anterior descending coronary: 58.2 ± 7.4% versus 55.8 ± 8.4%; P < 0.05; and visible length of the RCA: 125.7 ± 25.9 mm versus 114.4 ± 27.4 mm; P < 0.05). CONCLUSION The use of end-expiration as a reference position for respiratory motion correction in free-breathing self-navigated whole heart coronary MRA significantly improves image quality. J
Collapse
Affiliation(s)
- Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Gabriele Bonanno
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Giulia Ginami
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | | | - Matthias Stuber
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
25
|
Stalder AF, Schmidt M, Quick HH, Schlamann M, Maderwald S, Schmitt P, Wang Q, Nadar MS, Zenge MO. Highly undersampled contrast-enhanced MRA with iterative reconstruction: Integration in a clinical setting. Magn Reson Med 2014; 74:1652-60. [PMID: 25522299 DOI: 10.1002/mrm.25565] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/17/2014] [Accepted: 11/17/2014] [Indexed: 11/06/2022]
Abstract
PURPOSE To integrate, optimize, and evaluate a three-dimensional (3D) contrast-enhanced sparse MRA technique with iterative reconstruction on a standard clinical MR system. METHODS Data were acquired using a highly undersampled Cartesian spiral phyllotaxis sampling pattern and reconstructed directly on the MR system with an iterative SENSE technique. Undersampling, regularization, and number of iterations of the reconstruction were optimized and validated based on phantom experiments and patient data. Sparse MRA of the whole head (field of view: 265 × 232 × 179 mm(3) ) was investigated in 10 patient examinations. RESULTS High-quality images with 30-fold undersampling, resulting in 0.7 mm isotropic resolution within 10 s acquisition, were obtained. After optimization of the regularization factor and of the number of iterations of the reconstruction, it was possible to reconstruct images with excellent quality within six minutes per 3D volume. Initial results of sparse contrast-enhanced MRA (CEMRA) in 10 patients demonstrated high-quality whole-head first-pass MRA for both the arterial and venous contrast phases. CONCLUSION While sparse MRI techniques have not yet reached clinical routine, this study demonstrates the technical feasibility of high-quality sparse CEMRA of the whole head in a clinical setting. Sparse CEMRA has the potential to become a viable alternative where conventional CEMRA is too slow or does not provide sufficient spatial resolution.
Collapse
Affiliation(s)
| | | | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Germany
| | - Marc Schlamann
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Germany
| | | | - Qiu Wang
- Siemens Corporate Technology, Princeton, New Jersey, USA
| | | | | |
Collapse
|
26
|
Self-navigation with compressed sensing for 2D translational motion correction in free-breathing coronary MRI: a feasibility study. PLoS One 2014; 9:e105523. [PMID: 25171369 PMCID: PMC4149508 DOI: 10.1371/journal.pone.0105523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/23/2014] [Indexed: 11/30/2022] Open
Abstract
Purpose Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses “sub-images” and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. Methods During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. Results Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. Conclusions CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted.
Collapse
|