1
|
Aranda-Merino N, Marín-Garrido A, Román-Hidalgo C, Ramos-Payán M, Abril N, Fernández-Torres R, Bello-López MÁ. Bioavailability of flumequine and diclofenac in mice exposed to a metal-drug chemical cocktail. Evaluation of the protective role of selenium. Br J Pharmacol 2024; 181:1935-1951. [PMID: 38149319 DOI: 10.1111/bph.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Organisms, including humans, are subjected to the simultaneous action of a wide variety of pollutants, the effects of which should not be considered in isolation, as many synergies and antagonisms have been found between many of them. Therefore, this work proposes an in vivo study to evaluate the effect of certain metal contaminants on the bioavailability and metabolism of pharmacologically active compounds. Because the most frequent entry vector is through ingestion, the influence of the gut microbiota and the possible protective effects of selenium has been additionally evaluated. EXPERIMENTAL APPROACH A controlled exposure experiment in mammals (Mus musculus) to a "chemical cocktail" consisting of metals and pharmaceuticals (diclofenac and flumequine). The presence of selenium has also been evaluated as an antagonist. Mouse plasma samples were measured by UPLC-QTOF. A targeted search of 48 metabolites was also performed. KEY RESULTS Metals significantly affected the FMQ plasma levels when the gut microbiota was depleted. Hydroxy FMQ decreased if metals were present. Selenium minimized this decrease. The 3-hydroxy DCF metabolite was not found in any case. Changes in some metabolic pathways are discussed. CONCLUSIONS AND IMPLICATIONS The presence of metals in the mouse diet as well as the prior treatment of mice with an antibiotic mixture (Abxs), which deplete the gut microbiota, has a decisive effect on the bioavailability and metabolism of the tested pharmaceuticals and dietary selenium minimize some of their effects.
Collapse
Affiliation(s)
- Noemí Aranda-Merino
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Antonio Marín-Garrido
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Cristina Román-Hidalgo
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - María Ramos-Payán
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Rut Fernández-Torres
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
2
|
Mulkiewicz E, Wolecki D, Świacka K, Kumirska J, Stepnowski P, Caban M. Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148251. [PMID: 34139498 DOI: 10.1016/j.scitotenv.2021.148251] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The presence of the non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is a fact, and aquatic and soil organisms are chronically exposed to trace levels of these emerging pollutants. This review presents the current state of knowledge on the metabolic pathways of NSAIDs in organisms at various levels of biological organisation. More than 150 publications dealing with target or non-target analysis of selected NSAIDs (mainly diclofenac, ibuprofen, and naproxen) were collected. The metabolites of phase I and phase II are presented. The similarity of NSAIDs metabolism to that in mammals was observed in bacteria, microalgae, fungi, higher plants, invertebrates, and vertebrates. The differences, such as newly detected metabolites, the extracellular metabolism observed in bacteria and fungi, or phase III metabolism in plants, are highlighted. Metabolites detected in plants (conjugates with sugars and amino acids) but not found in any other organisms are described. Selected, in-depth studies with isolated bacterial strains showed the possibility of transforming NSAIDs into assimilable carbon sources. It has been found that some of the metabolites show higher toxicity than their parent forms. The presence of metabolites of NSAIDs in the environment is the cumulative effect of their introduction with wastewaters, their formation in wastewater treatment plants, and their transformation by non-target wild-living organisms.
Collapse
Affiliation(s)
- Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Daniel Wolecki
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
3
|
Liu J, Xia TR. Identification of the metabolites produced following Iris tectorum Maxim oral administration and a network pharmacology-based analysis of their potential pharmacological properties. Xenobiotica 2021; 51:680-688. [PMID: 33779496 DOI: 10.1080/00498254.2021.1907473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Iris tectorum Maxim is a traditional herbal medicine that has been used to treat cancer, abdominal distension, hepatic cirrhosis, and inflammatory diseases. How I. tectorum Maxim is metabolised and the mechanistic basis for its pharmacological activity remain to be defined.2. This study was designed to clarify the metabolism of I. tectorum Maxim and to explore the mechanistic basis for its pharmacological activity.3. In the present study, 51 metabolites were identified via mass spectrometry in samples of bile, urine, and faeces from Wistar rats. Metabolites were mainly formed by glucuronidation, sulphation, methylation, and amino acid conjugation.4. Tectoridin, tectorigenin, irigenin, iristectorigenin A, iristectorigenin B, and 6-hydroxygenistein were identified as potentially be bioactive candidate metabolites for which 36 putative targets and 90 interactions were detected through a network pharmacology analysis. Gene set enrichment analyses and compound-disease networks revealed the targets of these metabolites to regulate important proteins associated with cancer as well as cardiovascular, urogenital, and digestive system diseases.5. Molecular docking confirmed the interactions of these six candidate bioactive metabolites with carbonic anhydrase IV, VII, and XII.6. Overall, these data offer new insights into the metabolism and pharmacological activity of I. tectorum Maxim in vivo.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmacy, Yinan People's Hospital, Yinan, Shandong, China
| | - Tian-Rui Xia
- Guangdong Yi Fang Pharmaceutical Co., Ltd, Foshan, China
| |
Collapse
|
4
|
Wilson CE, Dickie AP, Schreiter K, Wehr R, Wilson EM, Bial J, Scheer N, Wilson ID, Riley RJ. The pharmacokinetics and metabolism of diclofenac in chimeric humanized and murinized FRG mice. Arch Toxicol 2018; 92:1953-1967. [PMID: 29721588 DOI: 10.1007/s00204-018-2212-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/25/2018] [Indexed: 11/30/2022]
Abstract
The pharmacokinetics of diclofenac were investigated following single oral doses of 10 mg/kg to chimeric liver humanized and murinized FRG and C57BL/6 mice. In addition, the metabolism and excretion were investigated in chimeric liver humanized and murinized FRG mice. Diclofenac reached maximum blood concentrations of 2.43 ± 0.9 µg/mL (n = 3) at 0.25 h post-dose with an AUCinf of 3.67 µg h/mL and an effective half-life of 0.86 h (n = 2). In the murinized animals, maximum blood concentrations were determined as 3.86 ± 2.31 µg/mL at 0.25 h post-dose with an AUCinf of 4.94 ± 2.93 µg h/mL and a half-life of 0.52 ± 0.03 h (n = 3). In C57BL/6J mice, mean peak blood concentrations of 2.31 ± 0.53 µg/mL were seen 0.25 h post-dose with a mean AUCinf of 2.10 ± 0.49 µg h/mL and a half-life of 0.51 ± 0.49 h (n = 3). Analysis of blood indicated only trace quantities of drug-related material in chimeric humanized and murinized FRG mice. Metabolic profiling of urine, bile and faecal extracts revealed a complex pattern of metabolites for both humanized and murinized animals with, in addition to unchanged parent drug, a variety of hydroxylated and conjugated metabolites detected. The profiles in humanized mice were different to those of both murinized and wild-type animals, e.g., a higher proportion of the dose was detected in the form of acyl glucuronide metabolites and much reduced amounts as taurine conjugates. Comparison of the metabolic profiles obtained from the present study with previously published data from C57BL/6J mice and humans revealed a greater, though not complete, match between chimeric humanized mice and humans, such that the liver humanized FRG model may represent a model for assessing the biotransformation of such compounds in humans.
Collapse
Affiliation(s)
- C E Wilson
- Nestlé Skin Health R&D, Les Templiers, Route des Colles, BP 87, 06902, Sophia-Antipolis, France.
| | - A P Dickie
- Evotec (UK) Ltd, 114 Innovation Drive, Abingdon, Oxfordshire, OX14 4RZ, UK
| | - K Schreiter
- Evotec International GmbH, Manfred Eigen Campus, Essener Bogen 7, Hamburg, Germany
| | - R Wehr
- Evotec International GmbH, Manfred Eigen Campus, Essener Bogen 7, Hamburg, Germany
| | - E M Wilson
- Yecuris Corporation, PO Box 4645, Tualatin, OR, 97062, USA
| | - J Bial
- Yecuris Corporation, PO Box 4645, Tualatin, OR, 97062, USA
| | - N Scheer
- CEVEC Pharmaceuticals GmbH, Gottfried-Hagen-Str. 60-62, 51105, Cologne, Germany
| | - I D Wilson
- Department of Surgery and Cancer, Imperial College, Exhibition Rd, South Kensington, London, SW7 2AZ, UK
| | - R J Riley
- Evotec (UK) Ltd, Alderley Park, Nether Alderley, Cheshire, SK10 4TG, UK
| |
Collapse
|
5
|
Pickup K, Martin S, Partridge EA, Jones HB, Wills J, Schulz-Utermoehl T, McCarthy A, Rodrigues A, Page C, Ratcliffe K, Sarda S, Wilson ID. Acute liver effects, disposition and metabolic fate of [ 14C]-fenclozic acid following oral administration to normal and bile-cannulated male C57BL/6J mice. Arch Toxicol 2016; 91:2643-2653. [PMID: 27896398 PMCID: PMC5489613 DOI: 10.1007/s00204-016-1894-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022]
Abstract
The distribution, metabolism, excretion and hepatic effects of the human hepatotoxin fenclozic acid were investigated following single oral doses of 10 mg/kg to normal and bile duct-cannulated male C57BL/6J mice. Whole body autoradiography showed distribution into all tissues except the brain, with radioactivity still detectable in blood, kidney and liver at 72 h post-dose. Mice dosed with [14C]-fenclozic acid showed acute centrilobular hepatocellular necrosis, but no other regions of the liver were affected. The majority of the [14C]-fenclozic acid-related material recovered was found in the urine/aqueous cage wash, (49%) whilst a smaller portion (13%) was eliminated via the faeces. Metabolic profiles for urine, bile and faecal extracts, obtained using liquid chromatography and a combination of mass spectrometric and radioactivity detection, revealed extensive metabolism of fenclozic acid in mice that involved biotransformations via both oxidation and conjugation. These profiling studies also revealed the presence of glutathione-derived metabolites providing evidence for the production of reactive species by mice administered fenclozic acid. Covalent binding to proteins from liver, kidney and plasma was also demonstrated, although this binding was relatively low (less than 50 pmol eq./mg protein).
Collapse
Affiliation(s)
- Kathryn Pickup
- Cyprotex Discovery Ltd, 15 Beech Lane, Macclesfield, Cheshire, SK10 2DR, UK
| | - Scott Martin
- Drug Metabolism and Pharmacokinetics, Oncology iMED Chesterford Science Park, AstraZeneca UK Ltd., Saffron Walden, Essex, CB10 1XL, UK
| | - Elizabeth A Partridge
- Drug Metabolism and Pharmacokinetics IM, AstraZeneca UK Ltd, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Huw B Jones
- Global Safety Assessment Department, Alderley Park, AstraZeneca UK Ltd, Macclesfield, Cheshire, SK10 4TG, UK
| | - Jonathan Wills
- Drug Metabolism and Pharmacokinetics IM, AstraZeneca UK Ltd, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | | | - Alan McCarthy
- In Vivo Assays Ltd, c/o Biohub, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Alison Rodrigues
- Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Sherrington Building, University of Liverpool, Ashton Street, L69 3GE, Liverpool, UK
| | - Chris Page
- Agilent Technologies Inc., 5500 Lakeside, Cheadle, SK8 3GR, UK
| | - Kerry Ratcliffe
- Global Safety Assessment Department, Alderley Park, AstraZeneca UK Ltd, Macclesfield, Cheshire, SK10 4TG, UK
| | - Sunil Sarda
- Discovery Sciences IM, Milton Science Park, AstraZeneca UK Ltd., Cambridge, Cambridgeshire, CB40FZ, UK
| | - Ian D Wilson
- Department of Surgery and Cancer, Imperial College, Exhibition Rd, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|