1
|
Dessouky AH, El-Hussieny H, El-Sherry TM, Parque V, Fath El-Bab AM. Development of a low-cost microfluidic chip for hyaluronidase-free oocyte denudation in mammals. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2025; 6:133-142. [PMID: 40206391 PMCID: PMC11981813 DOI: 10.1016/j.biotno.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Infertility in mammals is one of the most intricate medical issues requiring non-traditional interventions. In Vitro Fertilization (IVF) is one of the modern medical technologies currently used to treat infertility. However, current IVF procedures are inaccessible and unaffordable to the majority due to the high cost, the complexity of the procedure, and the reliance on highly qualified operators. For successful IVF, oocyte denudation, the process of removing cumulus cells from oocytes, is often performed. Here, microfluidics offers the potential to enhance denudation procedures and to minimize operator variability. In this paper, we propose the configuration of a microfluidic chip for oocyte denudation whose structure hybridizes inner jagged surfaces and expansion units. The jagged surface units have the role of removing the cumulus cells surrounding the oocyte by using the wall shear stress principle, and the (rounded) expansion units have the role of rotating the cumulus cells for further deployment in subsequent jagged surfaces. The proposed device can be manufactured at a low cost (<1 USD)) by the engraving of CO2 laser machine on PMMA material, and is able to circumvent the use of enzymatic components such as hyaluronidase. Experiments using computational simulations and manufactured microfluidic chips evaluated distinct geometry configurations of the jagged surfaces and identified the suitable flow rates for maximal shear stress and denudation performance. Manufactured samples of the proposed microfluidic devices have shown the denudation performance of 96.7 % and yield rate of 90 % at a constant flow rate of 1 ml/min.
Collapse
Affiliation(s)
- Ashraf Hisham Dessouky
- Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Alexandria, Egypt
- Mechanical Engineering Department, Helwan University, Cairo, 11792, Cairo, Egypt
| | - Haitham El-Hussieny
- Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Alexandria, Egypt
| | - Taymour Mohammed El-Sherry
- Department of Theriogenology, Veterinary Hospital, Faculty of Veterinary Medicine Assiut University, Assiut, Assiut, Egypt
| | - Victor Parque
- Graduate School of Advanced Science and Engineering, Hiroshima University, HigashiHiroshima, 739-8527, Hiroshima, Japan
| | - Ahmed M.R. Fath El-Bab
- Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Alexandria, Egypt
| |
Collapse
|
2
|
Barbier L, Bulteau R, Rezaei B, Panier T, Letort G, Labrune E, Verlhac MH, Vernerey F, Campillo C, Terret ME. Noninvasive characterization of oocyte deformability in microconstrictions. SCIENCE ADVANCES 2025; 11:eadr9869. [PMID: 39970229 PMCID: PMC11838009 DOI: 10.1126/sciadv.adr9869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Oocytes naturally present mechanical defects that hinder their development after fertilization. Thus, in the context of assisted reproduction, oocyte selection based on their mechanical properties has great potential to improve the quality of the resulting embryos and the success rate of these procedures. However, using mechanical properties as a quantifiable selective criterion requires robust and nondestructive measurement tools. This study developed a constriction-based microfluidic device that monitors the deformation of mouse oocytes under controlled pressure. The device can distinguish mechanically aberrant oocyte groups from healthy control ones. On the basis of a mathematical model, we propose that deformability measurements infer both oocyte tension and elasticity, elasticity being the most discriminating factor in our geometry. Despite force transmission during oocyte deformation, no long-term damage was observed. This noninvasive characterization of mouse oocyte deformability in microconstrictions allows for a substantial advance in assessing the mechanical properties of mammalian oocytes and has potential application as a quantifiable selective criterion in medically assisted reproduction.
Collapse
Affiliation(s)
- Lucie Barbier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Rose Bulteau
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Behnam Rezaei
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado, Boulder, CO, USA
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin (LJP), Paris, France
| | - Gaëlle Letort
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, 25 rue du Dr. Roux, 75015 Paris, France
| | - Elsa Labrune
- Hospices Civils de Lyon, Service de médecine de la reproduction et préservation de fertilité, Inserm U1208, SBRI, Faculté de médecine Laennec, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Marie-Hélène Verlhac
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Franck Vernerey
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado, Boulder, CO, USA
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Marie-Emilie Terret
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| |
Collapse
|
3
|
Golchin A, Shams F, Moradi F, Sadrabadi AE, Parviz S, Alipour S, Ranjbarvan P, Hemmati Y, Rahnama M, Rasmi Y, Aziz SGG. Single-cell Technology in Stem Cell Research. Curr Stem Cell Res Ther 2025; 20:9-32. [PMID: 38243989 DOI: 10.2174/011574888x265479231127065541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing on the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Moradi
- Department of Tissue Engineering, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Shima Parviz
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Hemmati
- Department of Prosthodontics, Dental Faculty, Urmia University of Medical Science, Urmia, Iran
| | - Maryam Rahnama
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Palay P, Fathi D, Saffari H, Hassani F, Hajiaghalou S, Fathi R. Simple bioelectrical microsensor: oocyte quality prediction via membrane electrophysiological characterization. LAB ON A CHIP 2024; 24:3909-3929. [PMID: 38985018 DOI: 10.1039/d3lc01120h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Oocyte selection is a crucial step of assisted reproductive treatment. The most common approach relies on the embryologist experience which is inevitably prone to human error. One potential approach could be the use of an electrical-based approach as an ameliorative alternative. Here, we developed a simple electrical microsensor to characterize mouse oocytes. The sensor is designed similarly to embryo culture dishes and is familiar to embryologists. Different microelectrode models were simulated for oocyte cells and a more sensitive model was determined. The final microsensor was fabricated. A differential measuring technique was proposed based on the cell presence/absence. We predicted oocyte quality by using three electrical characteristics, oocyte radii, and zona thicknesses, and also these predictions were compared with an embryologist evaluation. The evaluation of the oocyte membrane capacitance, as an electrophysiological characteristic, was found to be a more reliable method for predicting oocytes with fertilization and blastocyst formation success competence. It achieved 94% and 58% prediction accuracies, respectively, surpassing other methods and yielding lower errors. This groundbreaking research represents the first of its kind in this field and we hope that this will be a step towards improving the accuracy of the treatment.
Collapse
Affiliation(s)
- Peyman Palay
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Davood Fathi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Hassan Saffari
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Fatemeh Hassani
- Department of Embryology, Reproductive Biomedicine Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Reproductive Biomedicine, Tehran, Iran.
| | - Samira Hajiaghalou
- Department of Embryology, Reproductive Biomedicine Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Reproductive Biomedicine, Tehran, Iran.
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Reproductive Biomedicine, Tehran, Iran.
| |
Collapse
|
5
|
Wu T, Yan J, Nie K, Chen Y, Wu Y, Wang S, Zhang J. Microfluidic chips in female reproduction: a systematic review of status, advances, and challenges. Theranostics 2024; 14:4352-4374. [PMID: 39113805 PMCID: PMC11303079 DOI: 10.7150/thno.97301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/06/2024] [Indexed: 08/10/2024] Open
Abstract
The female reproductive system is essential to women's health, human reproduction and societal well-being. However, the clinical translation of traditional research models is restricted due to the uncertain effects and low efficiency. Emerging evidence shows that microfluidic chips provide valuable platforms for studying the female reproductive system, while no paper has ever comprehensively discussed the topic. Here, a total of 161 studies out of 14,669 records are identified in PubMed, Scopus, Web of Science, ScienceDirect and IEEE Xplore databases. Among these, 61 studies focus on oocytes, which further involves culture, cell surgeries (oocyte separation, rotation, enucleation, and denudation), evaluation and cryopreservation. Forty studies investigate embryo manipulation via microfluidic chips, covering in vitro fertilization, cryopreservation and functional evaluation. Forty-six studies reconstitute both the physiological and pathological statuses of in vivo organs, mostly involved in placenta and fetal membrane research. Fourteen studies perform drug screening and toxicity testing. In this review, we summarize the current application of microfluidic chips in studying the female reproductive system, the advancements in materials and methods, and discuss the future challenges. The present evidence suggests that microfluidic chips-assisted reproductive system reconstruction is promising and more studies are urgently needed.
Collapse
Affiliation(s)
- Tong Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfeng Yan
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Kebing Nie
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Ma J, Xie Q, Zhang Y, Xiao Q, Liu X, Qiao C, Tian Y. Advances in microfluidic technology for sperm screening and in vitro fertilization. Anal Bioanal Chem 2024; 416:3717-3735. [PMID: 38189916 DOI: 10.1007/s00216-023-05120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
About 18% of reproductive-age adults worldwide are affected by infertility. In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are widely used assisted reproductive technologies (ARTs) aimed at improving clinical outcomes. Efficient and noninvasive selection and isolation of highly motile sperm with intact DNA are essential for the success of IVF and ICSI and can potentially impact the therapeutic efficacy and the health of the offspring. Compared to traditional methods, microfluidic technology offers significant advantages such as low sample consumption, high efficiency, minimal damage, high integration, similar microenvironment, and high automation, providing a new platform for ARTs. Here, we review the current situation of microfluidic technology in the field of sperm motility screening and evaluation and IVF research. First, we focus on the working principle, structural design, and screening results of sperm selection microfluidic platforms. We then highlight how the multiple steps of the IVF process can be facilitated and integrated into a microfluidic chip, including oocyte capture, sperm collection and isolation, sperm sorting, fertilization, and embryo culture. Ultimately, we summarize how microfluidics can complement and optimize current sperm sorting and IVF protocols, and challenges and possible solutions are discussed.
Collapse
Affiliation(s)
- Jingtong Ma
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Qianlin Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Yusongjia Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Qirui Xiao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang, 110003, China.
| | - Chong Qiao
- Department of Obstetrics and Gynecology of Shengjing Hospital of China Medical University, Shenyang, 110022, China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, 110022, China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China.
| |
Collapse
|
7
|
Wu T, Wu Y, Yan J, Zhang J, Wang S. Microfluidic chip as a promising evaluation method in assisted reproduction: A systematic review. Bioeng Transl Med 2024; 9:e10625. [PMID: 38435817 PMCID: PMC10905557 DOI: 10.1002/btm2.10625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The aim of assisted reproductive technology (ART) is to select the high-quality sperm, oocytes, and embryos, and finally achieve a successful pregnancy. However, functional evaluation is hindered by intra- and inter-operator variability. Microfluidic chips emerge as the one of the most powerful tools to analyze biological samples for reduced size, precise control, and flexible extension. Herein, a systematic search was conducted in PubMed, Scopus, Web of Science, ScienceDirect, and IEEE Xplore databases until March 2023. We displayed and prospected all detection strategies based on microfluidics in the ART field. After full-text screening, 71 studies were identified as eligible for inclusion. The percentages of human and mouse studies equaled with 31.5%. The prominent country in terms of publication number was the USA (n = 13). Polydimethylsiloxane (n = 49) and soft lithography (n = 28) were the most commonly used material and fabrication method, respectively. All articles were classified into three types: sperm (n = 38), oocytes (n = 20), and embryos (n = 13). The assessment contents included motility, counting, mechanics, permeability, impedance, secretion, oxygen consumption, and metabolism. Collectively, the microfluidic chip technology facilitates more efficient, accurate, and objective evaluation in ART. It can even be combined with artificial intelligence to assist the daily activities of embryologists. More well-designed clinical studies and affordable integrated microfluidic chips are needed to validate the safety, efficacy, and reproducibility. Trial registration: The protocol was registered in the Open Science Frame REGISTRIES (identification: osf.io/6rv4a).
Collapse
Affiliation(s)
- Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yangyang Wu
- College of Animal Science and TechnologySichuan Agricultural UniversityYa'anSichuanChina
| | - Jinfeng Yan
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
8
|
Palay P, Fathi D, Fathi R. Oocyte quality evaluation: a review of engineering approaches toward clinical challenges. Biol Reprod 2023; 108:393-407. [PMID: 36495197 DOI: 10.1093/biolre/ioac219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Although assisted reproductive technology has been very successful for the treatment of infertility, its steps are still dependent on direct human opinion. An important step of assisted reproductive treatments in lab for women is choosing an oocyte that has a better quality. This step would predict which oocyte has developmental competence leading to healthy baby. Observation of the oocyte morphological quality indicators under microscope by an embryologist is the most common evaluation method of oocyte quality. Such subjective method which relies on embryologist's experience may vary and leads to misdiagnosis. An alternative solution to eliminate human misjudging in traditional methods and overcome the limitations of them is always using engineering-based procedure. In this review article, we deeply study and categorize engineering-based methods applied for the evaluation of oocyte quality. Then, the challenges in laboratories and clinics settings move forward with translational medicine perspective in mind for all those methods which had been studied were discussed. Finally, a standardized process was presented, which may help improving and focusing the research in this field. Moreover, effective suggestion techniques were introduced that are expected they would be complementary methods to accelerate future researches. The aim of this review was to create a new prospect with the engineering approaches to evaluate oocyte quality and we hope this would help infertile couples to get a baby.
Collapse
Affiliation(s)
- Peyman Palay
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Davood Fathi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| |
Collapse
|
9
|
Fang Y, Wu R, Lee JM, Chan LHM, Chan KYJ. Microfluidic in-vitro fertilization technologies: Transforming the future of human reproduction. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Sarabi MR, Yigci D, Alseed MM, Mathyk BA, Ata B, Halicigil C, Tasoglu S. Disposable Paper-Based Microfluidics for Fertility Testing. iScience 2022; 25:104986. [PMID: 36105592 PMCID: PMC9465368 DOI: 10.1016/j.isci.2022.104986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fifteen percent of couples of reproductive age suffer from infertility globally and the burden of infertility disproportionately impacts residents of developing countries. Assisted reproductive technologies (ARTs), including in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), have been successful in overcoming various reasons for infertility including borderline and severe male factor infertility which consists of 20%–30% of all infertile cases. Approximately half of male infertility cases stem from suboptimal sperm parameters. Therefore, healthy/normal sperm enrichment and sorting remains crucial in advancing reproductive medicine. Microfluidic technologies have emerged as promising tools to develop in-home rapid fertility tests and point-of-care (POC) diagnostic tools. Here, we review advancements in fabrication methods for paper-based microfluidic devices and their emerging fertility testing applications assessing sperm concentration, sperm motility, sperm DNA analysis, and other sperm functionalities, and provide a glimpse into future directions for paper-based fertility microfluidic systems. Paper-based technologies are emerging to develop in-home rapid fertility tests Fabrication methods for paper-based microfluidic devices are presented Emerging disposable paper-based fertility testing applications are reviewed
Collapse
Affiliation(s)
| | - Defne Yigci
- School of Medicine, Koç University, Istanbul, Türkiye 34450
| | - M. Munzer Alseed
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye 34684
| | - Begum Aydogan Mathyk
- Department of Obstetrics and Gynecology, HCA Healthcare, University of South Florida Morsani College of Medicine GME, Brandon Regional Hospital, Florida 33511, USA
| | - Baris Ata
- School of Medicine, Koç University, Istanbul, Türkiye 34450
- ART Fertility Clinics, Dubai, United Arab Emirates 337-1500
| | - Cihan Halicigil
- Yale School of Medicine, Yale University, Connecticut 06520, USA
| | - Savas Tasoglu
- School of Mechanical Engineering, Koç University, Istanbul, Türkiye 34450
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye 34684
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul, Türkiye 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul, Türkiye 34450
- Koç University Is Bank Artificial Intelligence Lab (KUIS AI Lab), Koç University, Istanbul, Türkiye 34450
- Corresponding author
| |
Collapse
|
11
|
Rabbi F, Dabbagh SR, Angin P, Yetisen AK, Tasoglu S. Deep Learning-Enabled Technologies for Bioimage Analysis. MICROMACHINES 2022; 13:mi13020260. [PMID: 35208385 PMCID: PMC8880650 DOI: 10.3390/mi13020260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023]
Abstract
Deep learning (DL) is a subfield of machine learning (ML), which has recently demonstrated its potency to significantly improve the quantification and classification workflows in biomedical and clinical applications. Among the end applications profoundly benefitting from DL, cellular morphology quantification is one of the pioneers. Here, we first briefly explain fundamental concepts in DL and then we review some of the emerging DL-enabled applications in cell morphology quantification in the fields of embryology, point-of-care ovulation testing, as a predictive tool for fetal heart pregnancy, cancer diagnostics via classification of cancer histology images, autosomal polycystic kidney disease, and chronic kidney diseases.
Collapse
Affiliation(s)
- Fazle Rabbi
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey; (F.R.); (S.R.D.)
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey; (F.R.); (S.R.D.)
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Koc University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Turkey
| | - Pelin Angin
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey;
| | - Ali Kemal Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey; (F.R.); (S.R.D.)
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Koc University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Turkey
- Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Correspondence:
| |
Collapse
|
12
|
Dabbagh SR, Alseed MM, Saadat M, Sitti M, Tasoglu S. Biomedical Applications of Magnetic Levitation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering Koç University Sariyer Istanbul Turkey 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR) Koç University Sariyer Istanbul Turkey 34450
| | - M. Munzer Alseed
- Institute of Biomedical Engineering Boğaziçi University Çengelköy Istanbul Turkey 34684
| | - Milad Saadat
- Department of Mechanical Engineering Koç University Sariyer Istanbul Turkey 34450
| | - Metin Sitti
- Department of Mechanical Engineering Koç University Sariyer Istanbul Turkey 34450
- School of Medicine Koç University Istanbul 34450 Turkey
- Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany
| | - Savas Tasoglu
- Department of Mechanical Engineering Koç University Sariyer Istanbul Turkey 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR) Koç University Sariyer Istanbul Turkey 34450
- Institute of Biomedical Engineering Boğaziçi University Çengelköy Istanbul Turkey 34684
- Physical Intelligence Department Max Planck Institute for Intelligent Systems 70569 Stuttgart Germany
| |
Collapse
|
13
|
Sohrabi Kashani A, Packirisamy M. Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. Int J Mol Sci 2021; 22:9587. [PMID: 34502495 PMCID: PMC8431109 DOI: 10.3390/ijms22179587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
With the advancement of nanotechnology, the nano-bio-interaction field has emerged. It is essential to enhance our understanding of nano-bio-interaction in different aspects to design nanomedicines and improve their efficacy for therapeutic and diagnostic applications. Many researchers have extensively studied the toxicological responses of cancer cells to nano-bio-interaction, while their mechanobiological responses have been less investigated. The mechanobiological properties of cells such as elasticity and adhesion play vital roles in cellular functions and cancer progression. Many studies have noticed the impacts of cellular uptake on the structural organization of cells and, in return, the mechanobiology of human cells. Mechanobiological changes induced by the interactions of nanomaterials and cells could alter cellular functions and influence cancer progression. Hence, in addition to biological responses, the possible mechanobiological responses of treated cells should be monitored as a standard methodology to evaluate the efficiency of nanomedicines. Studying the cancer-nano-interaction in the context of cell mechanics takes our knowledge one step closer to designing safe and intelligent nanomedicines. In this review, we briefly discuss how the characteristic properties of nanoparticles influence cellular uptake. Then, we provide insight into the mechanobiological responses that may occur during the nano-bio-interactions, and finally, the important measurement techniques for the mechanobiological characterizations of cells are summarized and compared. Understanding the unknown mechanobiological responses to nano-bio-interaction will help with developing the application of nanoparticles to modulate cell mechanics for controlling cancer progression.
Collapse
Affiliation(s)
| | - Muthukumaran Packirisamy
- Optical Bio-Microsystem Lab, Micro-Nano-Bio-Integration Centre, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8, Canada;
| |
Collapse
|
14
|
Iwayama H, Yamashita M. Quantitative evaluation of intercellular local deformation of human oocytes during Piezo-assisted intracytoplasmic sperm injection using video-based motion analysis. F&S SCIENCE 2021; 2:124-134. [PMID: 35559747 DOI: 10.1016/j.xfss.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the relationship between the quantitative properties of local deformation of the ooplasm during Piezo-assisted intracytoplasmic sperm injection (Piezo-ICSI) and oocyte developmental fate after Piezo-ICSI. DESIGN Video-based motion analysis and case-control study. SETTING Private fertility center. PATIENT(S) A total of 99 couples assigned to the standard Piezo-ICSI program. INTERVENTION(S) Video recordings of the sperm injection process during Piezo-ICSI. MAIN OUTCOME MEASURE(S) Quantitative deformation properties consisting of the orientation of deformation perpendicular (Perp) or parallel (Para) to the oolemma and the mechanical response of the ooplasm (elongation, contraction, and total): Perp-elongation, Perp-contraction, Perp-total, Para-elongation, Perp-contraction, and Para-total. RESULT(S) The deformation parameters were compared among different angular ranges of 30°-60°, 60°-90°, 90°-120°, and 120°-150° (defined as 0° at the 3 o'clock puncture site). The Perp-total value at 30°-60° was significantly greater than that at the other angles (130.2 vs. 57.7-85.5, respectively) primarily due to substantially greater Perp-elongation values. The Para-total value at 30°-60° was significantly greater than that at the other angles (20.1 vs. 6.7-10.3, respectively) primarily due to substantially smaller Para-contraction values. The deformation parameters of the ooplasm adjacent to the first polar body were also compared among different developmental fates (fertilization failure, cleavage arrest, and blastocyst development). The Perp-total value of oocytes derived from blastocyst formation was significantly smaller than those derived from other developmental fates (58.1 vs. 70.0-87.3, respectively). CONCLUSION(S) The Piezo-ICSI process induced deformation with various mechanical behaviors in different regions within a single oocyte. Furthermore, the exposure of the ooplasm adjacent to the first polar body to excessive deformation was found to be a possible trigger for adverse fertilization and embryo development after Piezo-ICSI.
Collapse
|
15
|
Ustun M, Rahmani Dabbagh S, Ilci IS, Bagci-Onder T, Tasoglu S. Glioma-on-a-Chip Models. MICROMACHINES 2021; 12:490. [PMID: 33926127 PMCID: PMC8145995 DOI: 10.3390/mi12050490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
Glioma, as an aggressive type of cancer, accounts for virtually 80% of malignant brain tumors. Despite advances in therapeutic approaches, the long-term survival of glioma patients is poor (it is usually fatal within 12-14 months). Glioma-on-chip platforms, with continuous perfusion, mimic in vivo metabolic functions of cancer cells for analytical purposes. This offers an unprecedented opportunity for understanding the underlying reasons that arise glioma, determining the most effective radiotherapy approach, testing different drug combinations, and screening conceivable side effects of drugs on other organs. Glioma-on-chip technologies can ultimately enhance the efficacy of treatments, promote the survival rate of patients, and pave a path for personalized medicine. In this perspective paper, we briefly review the latest developments of glioma-on-chip technologies, such as therapy applications, drug screening, and cell behavior studies, and discuss the current challenges as well as future research directions in this field.
Collapse
Affiliation(s)
- Merve Ustun
- Graduate School of Sciences and Engineering, Koc University, Sariyer, 34450 Istanbul, Turkey;
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Irem Sultan Ilci
- Department of Bioengineering, Yildiz Technical University, 34220 Istanbul, Turkey;
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey;
- Koç University Research Center for Translational Medicine, Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, 34450 Istanbul, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Sariyer, 34450 Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Bebek, 34342 Istanbul, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, 34684 Istanbul, Turkey
| |
Collapse
|
16
|
Temirel M, Dabbagh SR, Tasoglu S. Hemp-Based Microfluidics. MICROMACHINES 2021; 12:mi12020182. [PMID: 33673025 PMCID: PMC7917756 DOI: 10.3390/mi12020182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Hemp is a sustainable, recyclable, and high-yield annual crop that can be used to produce textiles, plastics, composites, concrete, fibers, biofuels, bionutrients, and paper. The integration of microfluidic paper-based analytical devices (µPADs) with hemp paper can improve the environmental friendliness and high-throughputness of µPADs. However, there is a lack of sufficient scientific studies exploring the functionality, pros, and cons of hemp as a substrate for µPADs. Herein, we used a desktop pen plotter and commercial markers to pattern hydrophobic barriers on hemp paper, in a single step, in order to characterize the ability of markers to form water-resistant patterns on hemp. In addition, since a higher resolution results in densely packed, cost-effective devices with a minimized need for costly reagents, we examined the smallest and thinnest water-resistant patterns plottable on hemp-based papers. Furthermore, the wicking speed and distance of fluids with different viscosities on Whatman No. 1 and hemp papers were compared. Additionally, the wettability of hemp and Whatman grade 1 paper was compared by measuring their contact angles. Besides, the effects of various channel sizes, as well as the number of branches, on the wicking distance of the channeled hemp paper was studied. The governing equations for the wicking distance on channels with laser-cut and hydrophobic side boundaries are presented and were evaluated with our experimental data, elucidating the applicability of the modified Washburn equation for modeling the wicking distance of fluids on hemp paper-based microfluidic devices. Finally, we validated hemp paper as a substrate for the detection and analysis of the potassium concentration in artificial urine.
Collapse
Affiliation(s)
- Mikail Temirel
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
- Koc University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34470, Turkey
- Correspondence:
| |
Collapse
|
17
|
Ozdalgic B, Ustun M, Dabbagh SR, Haznedaroglu BZ, Kiraz A, Tasoglu S. Microfluidics for microalgal biotechnology. Biotechnol Bioeng 2021; 118:1545-1563. [PMID: 33410126 DOI: 10.1002/bit.27669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 01/09/2023]
Abstract
Microalgae have expanded their roles as renewable and sustainable feedstocks for biofuel, smart nutrition, biopharmaceutical, cosmeceutical, biosensing, and space technologies. They accumulate valuable biochemical compounds from protein, carbohydrate, and lipid groups, including pigments and carotenoids. Microalgal biomass, which can be adopted for multivalorization under biorefinery settings, allows not only the production of various biofuels but also other value-added biotechnological products. However, state-of-the-art technologies are required to optimize yield, quality, and the economical aspects of both upstream and downstream processes. As such, the need to use microfluidic-based devices for both fundamental research and industrial applications of microalgae, arises due to their microscale sizes and dilute cultures. Microfluidics-based devices are superior to their competitors through their ability to perform multiple functions such as sorting and analyzing small amounts of samples (nanoliter to picoliter) with higher sensitivities. Here, we review emerging applications of microfluidic technologies on microalgal processes in cell sorting, cultivation, harvesting, and applications in biofuels, biosensing, drug delivery, and nutrition.
Collapse
Affiliation(s)
- Berin Ozdalgic
- Graduate School of Sciences and Engineering, Koc University, Sariyer, Istanbul, Turkey.,Department of Medical Services and Techniques, Advanced Vocational School, Dogus University, Istanbul, Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koc University, Sariyer, Istanbul, Turkey
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Engineering Faculty, Koc University, Sariyer, Istanbul, Turkey.,Koc University Arcelik Research Center for Creative Industries (KUAR), Koc University, Sariyer, Istanbul, Turkey
| | - Berat Z Haznedaroglu
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul, Turkey.,Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey
| | - Alper Kiraz
- Department of Physics, Koc University, Sariyer, Istanbul, Turkey.,Department of Electrical Engineering, Koc University, Sariyer, Istanbul, Turkey.,Koc University Research Center for Translational Medicine, Koc University, Sariyer, Istanbul, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Engineering Faculty, Koc University, Sariyer, Istanbul, Turkey.,Koc University Arcelik Research Center for Creative Industries (KUAR), Koc University, Sariyer, Istanbul, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul, Turkey.,Koc University Research Center for Translational Medicine, Koc University, Sariyer, Istanbul, Turkey.,Institute of Biomedical Engineering, Bogazici University, Cengelkoy, Istanbul, Turkey
| |
Collapse
|
18
|
Harada H, Kaneko M, Ito H. Rotational manipulation of a microscopic object inside a microfluidic channel. BIOMICROFLUIDICS 2020; 14:054106. [PMID: 33163134 PMCID: PMC7595745 DOI: 10.1063/5.0013309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/11/2020] [Indexed: 03/31/2024]
Abstract
Observations and analyses of a microscopic object are essential processes in various fields such as chemical engineering and life science. Microfluidic techniques with various functions and extensions have often been used for such purposes to investigate the mechanical properties of microscopic objects such as biological cells. One of such extensions proposed in this context is a real-time visual feedback manipulation system, which is composed of a high-speed camera and a piezoelectric actuator with a single-line microfluidic channel. Although the on-chip manipulation system enables us to control the 1 degree-of-freedom position of a target object by the real-time pressure control, it has suffered from unintended changes in the object orientation, which is out of control in the previous system. In this study, we propose and demonstrate a novel shear-flow-based mechanism for the control of the orientation of a target object in addition to the position control in a microchannel to overcome the problem of the unintended rotation. We designed a tributary channel using a three-dimensional hydrodynamic simulation with boundary conditions appropriate for the particle manipulation to apply shear stress to the target particle placed at the junction and succeeded in rotating the particle at an angular velocity of 0.2 rad/s even under the position control in the experiment. The proposed mechanism would be applied to feedback controls of a target object in a microchannel to be in a desired orientation and at a desired position, which could be a universally useful function for various microfluidic platforms.
Collapse
Affiliation(s)
- Hiroyuki Harada
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Makoto Kaneko
- Division of Mechanical Engineering, Graduate School of Science and Technology, Meijo University, Aichi 468-0073, Japan
| | - Hiroaki Ito
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
19
|
Dai C, Xin L, Zhang Z, Shan G, Wang T, Zhang K, Wang X, Chu LT, Ru C, Sun Y. Design and Control of a Piezo Drill for Robotic Piezo-Driven Cell Penetration. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2019.2958734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Dai C, Zhang Z, Lu Y, Shan G, Wang X, Zhao Q, Ru C, Sun Y. Robotic Manipulation of Deformable Cells for Orientation Control. IEEE T ROBOT 2020. [DOI: 10.1109/tro.2019.2946746] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
He L, Luo Z, Bai B. Release of a trapped droplet in a single micro pore throat. J Colloid Interface Sci 2019; 554:1-8. [PMID: 31265964 DOI: 10.1016/j.jcis.2019.06.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
The critical condition (i.e., critical capillary number Cac) for the release of trapped droplets is of practical importance in enhanced oil recovery and droplet microfluidics. In a recent study, Cac was obtained for a long droplet with a size much larger than the channel size. However, in real applications, trapped droplets are often finite with a size comparable to the channel, in which capillary and hydrostatic pressures alternate significantly. We hypothesize that Cac of finite droplets has a discrepancy from that of long droplets. Microfluidic experiments were performed to obtain the critical condition for the release of a finite droplet trapped in a single pore throat. A theoretical prediction via analyzing capillary and hydrostatic pressures was derived for Cac of both finite and long droplets. We find that Cac strongly depends on the droplet-to-channel size ratio (i.e., the droplet-to-convergent channel length ratio L/Lc). In particular, Cac increases with L/Lc for finite droplets (i.e., L/Lc < 1) but shows an opposite tendency for long droplets (i.e., L/Lc > 1), as demonstrated in previous studies. Via theoretical analysis, we established a predictive criterion for Cac versus L/Lc, and this criterion quantitatively agrees well with experimental data for both finite and long droplets.
Collapse
Affiliation(s)
- Long He
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhengyuan Luo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bofeng Bai
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
22
|
Weng L. IVF-on-a-Chip: Recent Advances in Microfluidics Technology for In Vitro Fertilization. SLAS Technol 2019; 24:373-385. [PMID: 31145861 DOI: 10.1177/2472630319851765] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vitro fertilization (IVF) has been one of the most exciting modern medical technologies. It has transformed the landscape of human infertility treatment. However, current IVF procedures still provide limited accessibility and affordability to most infertile couples because of the multiple cumbersome processes and heavy dependence on technically skilled personnel. Microfluidics technology offers unique opportunities to automate IVF procedures, reduce stress imposed upon gametes and embryos, and minimize the operator-to-operator variability. This article describes the rapidly evolving state of the application of microfluidics technology in the field of IVF, summarizes the diverse angles of how microfluidics has been complementing or transforming current IVF protocols, and discusses the challenges that motivate continued innovation in this field.
Collapse
|
23
|
Microfluidic Devices for Gamete Processing and Analysis, Fertilization and Embryo Culture and Characterization. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
24
|
Abstract
![]()
Hydrodynamic phenomena
are ubiquitous in living organisms and can
be used to manipulate cells or emulate physiological microenvironments
experienced in vivo. Hydrodynamic effects influence multiple cellular
properties and processes, including cell morphology, intracellular
processes, cell–cell signaling cascades and reaction kinetics,
and play an important role at the single-cell, multicellular, and
organ level. Selected hydrodynamic effects can also be leveraged to
control mechanical stresses, analyte transport, as well as local temperature
within cellular microenvironments. With a better understanding of
fluid mechanics at the micrometer-length scale and the advent of microfluidic
technologies, a new generation of experimental tools that provide
control over cellular microenvironments and emulate physiological
conditions with exquisite accuracy is now emerging. Accordingly, we
believe that it is timely to assess the concepts underlying hydrodynamic
control of cellular microenvironments and their applications and provide
some perspective on the future of such tools in in vitro cell-culture
models. Generally, we describe the interplay between living cells,
hydrodynamic stressors, and fluid flow-induced effects imposed on
the cells. This interplay results in a broad range of chemical, biological,
and physical phenomena in and around cells. More specifically, we
describe and formulate the underlying physics of hydrodynamic phenomena
affecting both adhered and suspended cells. Moreover, we provide an
overview of representative studies that leverage hydrodynamic effects
in the context of single-cell studies within microfluidic systems.
Collapse
Affiliation(s)
- Deborah Huber
- IBM Research-Zürich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland.,Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Ali Oskooei
- IBM Research-Zürich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Xavier Casadevall I Solvas
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Andrew deMello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Govind V Kaigala
- IBM Research-Zürich , Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
25
|
Kashaninejad N, Shiddiky MJA, Nguyen N. Advances in Microfluidics‐Based Assisted Reproductive Technology: From Sperm Sorter to Reproductive System‐on‐a‐Chip. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700197] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| | | | - Nam‐Trung Nguyen
- Queensland Micro‐ and Nanotechnology Centre Nathan Campus Griffith University 170 Kessels Road Brisbane QLD 4111 Australia
| |
Collapse
|
26
|
Smith GD, Takayama S. Application of microfluidic technologies to human assisted reproduction. Mol Hum Reprod 2017; 23:257-268. [PMID: 28130394 DOI: 10.1093/molehr/gaw076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Microfluidics can be considered both a science and a technology. It is defined as the study of fluid behavior at a sub-microliter level and the investigation into its application to cell biology, chemistry, genetics, molecular biology and medicine. There are at least two characteristics of microfluidics, mechanical and biochemical, which can be influential in the field of mammalian gamete and preimplantation embryo biology. These microfluidic characteristics can assist in basic biological studies on sperm, oocyte and preimplantation embryo structure, function and environment. The mechanical and biochemical characteristics of microfluidics may also have practical and/or technical application(s) to assisted reproductive technologies (ART) in rodents, domestic species, endangered species and humans. This review will consider data in mammals, and when available humans, addressing the potential application(s) of microfluidics to assisted reproduction. There are numerous sequential steps in the clinical assisted reproductive laboratory process that work, yet could be improved. Cause and effect relations of procedural inefficiencies can be difficult to identify and/or remedy. Data will be presented that consider microfluidic applications to sperm isolation, oocyte cumulus complex isolation, oocyte denuding, oocyte mechanical manipulation, conventional insemination, intracytoplasmic sperm injection, embryo culture, embryo analysis and oocyte and embryo cryopreservation. While these studies have progressed in animal models, data with human gametes and embryos are significantly lacking. These data from clinical trials are requisite for making future evidence-based decisions regarding the application of microfluidics in human ART.
Collapse
Affiliation(s)
- Gary D Smith
- Departments of Obstetrics and Gynecology, Physiology and Urology, University of Michigan, 6428 Medical Sciences I, 1301 E Catherine Street, Ann Arbor, MI 48108-1649, USA
| | - Shuichi Takayama
- Departments of Biomedical Engineering and Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Luo ZY, Bai BF. Off-center motion of a trapped elastic capsule in a microfluidic channel with a narrow constriction. SOFT MATTER 2017; 13:8281-8292. [PMID: 29071316 DOI: 10.1039/c7sm01425b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Owing to their significance in capsule-related engineering and biomedical applications, a number of studies have considered the dynamics of elastic capsules flowing in constricted microchannels. However, these studies have focused on capsules moving along the channel centerline. In the present study, we numerically investigate the transient motion of an elastic capsule in a microfluidic channel with a rectangular constriction, which is initially trapped at the constriction inlet while off the channel centerline (i.e., on the channel bottom-wall). Under the push of the surrounding flow, the capsule can squeeze into the constriction, but only if the capsule deformability or the constriction size is sufficiently large. We find that the critical capillary number leading to the penetration of the capsule into the constriction is larger for off-centerline capsules compared to centered capsules. The centered capsule is stationary at the steady state when it remains stuck at the constriction; in contrast, the off-centerline capsule is not stationary but exhibits a tank-treading motion, i.e., its overall shape maintains a nonspherical shape with a protrusion into the constriction while its membrane exhibits a continuous rotation. Further, we examine the dependence of the capsule motion type, capsule deformation degree and membrane tension distribution on the capillary number (measuring the effects of flow strength and membrane mechanics) and constriction geometries (including the constriction height and width). Finally, we discuss the mechanism governing the capsule motion by analyzing the hydrodynamic forces acting on the capsule. The shear force acting on the capsule top owing to the fluid flow in the gap between the capsule top and the channel top-wall is the main source inducing the membrane tank-treading rotation.
Collapse
Affiliation(s)
- Zheng Yuan Luo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | | |
Collapse
|
28
|
Berenguel-Alonso M, Sabés-Alsina M, Morató R, Ymbern O, Rodríguez-Vázquez L, Talló-Parra O, Alonso-Chamarro J, Puyol M, López-Béjar M. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing. SLAS Technol 2017; 22:507-517. [DOI: 10.1177/2472555216684625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Assisted reproductive technology (ART) can benefit from the features of microfluidic technologies, such as the automation of time-consuming labor-intensive procedures, the possibility to mimic in vivo environments, and the miniaturization of the required equipment. To date, most of the proposed approaches are based on polydimethylsiloxane (PDMS) as platform substrate material due to its widespread use in academia, despite certain disadvantages, such as the elevated cost of mass production. Herein, we present a rapid fabrication process for a cyclic olefin copolymer (COC) monolithic microfluidic device combining hot embossing—using a low-temperature cofired ceramic (LTCC) master—and micromilling. The microfluidic device was suitable for trapping and maturation of bovine oocytes, which were further studied to determine their ability to be fertilized. Furthermore, another COC microfluidic device was fabricated to store sperm and assess its quality parameters over time. The study herein presented demonstrates a good biocompatibility of the COC when working with gametes, and it exhibits certain advantages, such as the nonabsorption of small molecules, gas impermeability, and low fabrication costs, all at the prototyping and mass production scale, thus taking a step further toward fully automated microfluidic devices in ART.
Collapse
Affiliation(s)
- Miguel Berenguel-Alonso
- Group of Sensors and Biosensors, Chemistry Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Sabés-Alsina
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Roser Morató
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Oriol Ymbern
- Group of Sensors and Biosensors, Chemistry Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Rodríguez-Vázquez
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Oriol Talló-Parra
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Julián Alonso-Chamarro
- Group of Sensors and Biosensors, Chemistry Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mar Puyol
- Group of Sensors and Biosensors, Chemistry Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
29
|
Johnson W, Dai C, Liu J, Wang X, Luu DK, Zhang Z, Ru C, Zhou C, Tan M, Pu H, Xie S, Peng Y, Luo J, Sun Y. A Flexure-Guided Piezo Drill for Penetrating the Zona Pellucida of Mammalian Oocytes. IEEE Trans Biomed Eng 2017; 65:678-686. [PMID: 28600237 DOI: 10.1109/tbme.2017.2713302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mammalian oocytes such as mouse oocytes have a highly elastic outer membrane, zona pellucida (ZP) that cannot be penetrated without significantly deforming the oocyte, even with a sharp micropipette. Piezo drill devices leverage lateral and axial vibration of the micropipette to accomplish ZP penetration with greatly reduced oocyte deformation. However, existing piezo drills all rely on a large lateral micropipette vibration amplitude ( 20 ) and a small axial vibration amplitude (0.1 ). The very large lateral vibration amplitude has been deemed to be necessary for ZP penetration although it also induces larger oocyte deformation and more oocyte damage. This paper reports on a new piezo drill device that uses a flexure guidance mechanism and a systematically designed pulse train with an appropriate base frequency. Both simulation and experimental results demonstrate that a small lateral vibration amplitude (e.g., 2 ) and an axial vibration amplitude as large as 1.2 were achieved. Besides achieving 100% effectiveness in the penetration of mouse oocytes (n = 45), the new piezo device during ZP penetration induced a small oocyte deformation of 3.4 versus larger than 10 using existing piezo drill devices.
Collapse
|
30
|
Berenguel-Alonso M, Sabés-Alsina M, Morató R, Ymbern O, Rodríguez-Vázquez L, Talló-Parra O, Alonso-Chamarro J, Puyol M, López-Béjar M. Rapid Prototyping of a Cyclic Olefin Copolymer Microfluidic Device for Automated Oocyte Culturing. SLAS Technol 2017; 22:2472630316684625. [PMID: 28346053 DOI: 10.1177/2472630316684625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Assisted reproductive technology (ART) can benefit from the features of microfluidic technologies, such as the automation of time-consuming labor-intensive procedures, the possibility to mimic in vivo environments, and the miniaturization of the required equipment. To date, most of the proposed approaches are based on polydimethylsiloxane (PDMS) as platform substrate material due to its widespread use in academia, despite certain disadvantages, such as the elevated cost of mass production. Herein, we present a rapid fabrication process for a cyclic olefin copolymer (COC) monolithic microfluidic device combining hot embossing-using a low-temperature cofired ceramic (LTCC) master-and micromilling. The microfluidic device was suitable for trapping and maturation of bovine oocytes, which were further studied to determine their ability to be fertilized. Furthermore, another COC microfluidic device was fabricated to store sperm and assess its quality parameters over time. The study herein presented demonstrates a good biocompatibility of the COC when working with gametes, and it exhibits certain advantages, such as the nonabsorption of small molecules, gas impermeability, and low fabrication costs, all at the prototyping and mass production scale, thus taking a step further toward fully automated microfluidic devices in ART.
Collapse
Affiliation(s)
- Miguel Berenguel-Alonso
- 1 Group of Sensors and Biosensors, Chemistry Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Sabés-Alsina
- 2 Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Roser Morató
- 3 Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Oriol Ymbern
- 1 Group of Sensors and Biosensors, Chemistry Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Rodríguez-Vázquez
- 2 Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Oriol Talló-Parra
- 2 Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Julián Alonso-Chamarro
- 1 Group of Sensors and Biosensors, Chemistry Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mar Puyol
- 1 Group of Sensors and Biosensors, Chemistry Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Manel López-Béjar
- 2 Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
31
|
Arslan-Yildiz A, Assal RE, Chen P, Guven S, Inci F, Demirci U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 2016; 8:014103. [DOI: 10.1088/1758-5090/8/1/014103] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|