1
|
Papamatthaiou S, Menelaou P, El Achab Oussallam B, Moschou D. Recent advances in bio-microsystem integration and Lab-on-PCB technology. MICROSYSTEMS & NANOENGINEERING 2025; 11:78. [PMID: 40335457 PMCID: PMC12059025 DOI: 10.1038/s41378-025-00940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 05/09/2025]
Abstract
The concept of micro-total analysis systems (µTAS) introduced in the early 1990s revolutionized the development of lab-on-a-chip (LoC) technologies by miniaturizing and automating complex laboratory processes. Despite their potential in diagnostics, drug development, and environmental monitoring, the widespread adoption of LoC systems has been hindered by challenges in scalability, integration, and cost-effective mass production. Traditional substrates like silicon, glass, and polymers struggle to meet the multifunctional requirements of practical applications. Lab-on-Printed Circuit Board (Lab-on-PCB) technology has emerged as a transformative solution, leveraging the cost-efficiency, scalability, and precision of PCB fabrication techniques. This platform facilitates the seamless integration of microfluidics, sensors, and actuators within a single device, enabling complex, multifunctional systems suitable for real-world deployment. Recent advancements have demonstrated Lab-on-PCB's versatility across biomedical applications, such as point-of-care diagnostics, electrochemical biosensing, and molecular detection, as well as drug development and environmental monitoring. This review examines the evolution of Lab-on-PCB technology over the past eight years, focusing on its applications and impact within the research community. By analyzing recent progress in PCB-based microfluidics and biosensing, this work highlights how Lab-on-PCB systems address key technical barriers, paving the way for scalable and practical lab-on-chip solutions. The growing academic and industrial interest in Lab-on-PCB is underscored by a notable increase in publications and patents, signaling its potential for commercialization and broader adoption.
Collapse
Affiliation(s)
- Sotirios Papamatthaiou
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK.
| | - Pavlos Menelaou
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| | | | - Despina Moschou
- Department of Electronic and Electrical Engineering, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
2
|
Zhang T, Dong X, Gao X, Yang Y, Song W, Song J, Bi H, Guo Y, Song J. Applications of Metals and Metal Compounds in Improving the Sensitivity of Microfluidic Biosensors - A Review. Chemistry 2024; 30:e202400578. [PMID: 38801721 DOI: 10.1002/chem.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The enhancement of detection sensitivity in microfluidic sensors has been a continuously explored field. Initially, many strategies for sensitivity improvement involved introducing enzyme cascade reactions, but enzyme-based reactions posed challenges in terms of cost, stability, and storage. Therefore, there is an urgent need to explore enzyme-free cascade amplification methods, which are crucial for expanding the application range and improving detection stability. Metal or metal compound nanomaterials have gained great attention in the exploitation of microfluidic sensors due to their ease of preparation, storage, and lower cost. The unique physical properties of metallic nanomaterials, including surface plasmon resonance, surface-enhanced Raman scattering, metal-enhanced fluorescence, and surface-enhanced infrared absorption, contribute significantly to enhancing detection capabilities. The metal-based catalytic nanomaterials, exemplified by Fe3O4 nanoparticles and metal-organic frameworks, are considered viable alternatives to biological enzymes due to their excellent performance. Herein, we provide a detailed overview of the applications of metals and metal compounds in improving the sensitivity of microfluidic biosensors. This review not only highlights the current developments but also critically analyzes the challenges encountered in this field. Furthermore, it outlines potential directions for future research, contributing to the ongoing development of microfluidic biosensors with improved detection sensitivity.
Collapse
Affiliation(s)
- Taiyi Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xuezhen Dong
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Yujing Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Weidu Song
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jike Song
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250353, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yurong Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, P. R. China
| |
Collapse
|
3
|
Jurina T, Sokač Cvetnić T, Šalić A, Benković M, Valinger D, Gajdoš Kljusurić J, Zelić B, Jurinjak Tušek A. Application of Spectroscopy Techniques for Monitoring (Bio)Catalytic Processes in Continuously Operated Microreactor Systems. Catalysts 2023. [DOI: 10.3390/catal13040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
In the last twenty years, the application of microreactors in chemical and biochemical industrial processes has increased significantly. The use of microreactor systems ensures efficient process intensification due to the excellent heat and mass transfer within the microchannels. Monitoring the concentrations in the microchannels is critical for a better understanding of the physical and chemical processes occurring in micromixers and microreactors. Therefore, there is a growing interest in performing in-line and on-line analyses of chemical and/or biochemical processes. This creates tremendous opportunities for the incorporation of spectroscopic detection techniques into production and processing lines in various industries. In this work, an overview of current applications of ultraviolet–visible, infrared, Raman spectroscopy, NMR, MALDI-TOF-MS, and ESI-MS for monitoring (bio)catalytic processes in continuously operated microreactor systems is presented. The manuscript includes a description of the advantages and disadvantages of the analytical methods listed, with particular emphasis on the chemometric methods used for spectroscopic data analysis.
Collapse
Affiliation(s)
- Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Anita Šalić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Bruno Zelić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
- Department for Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, 48 000 Koprivnica, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| |
Collapse
|
4
|
Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS OMEGA 2023; 8:10656-10668. [PMID: 37008124 PMCID: PMC10061522 DOI: 10.1021/acsomega.2c06242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Colorectal cancer (CRC) is one of the universally established cancers with a higher incidence rate. Novel progression toward cancer prevention and cancer care among countries in transition should be considered seriously for controlling CRC. Hence, several cutting edge technologies are ongoing for high performance cancer therapeutics over the past few decades. Several drug-delivery systems of the nanoregime are relatively new in this arena compared to the previous treatment modes such as chemo- or radiotherapy to mitigate cancer. Based on this background, the epidemiology, pathophysiology, clinical presentation, treatment possibilities, and theragnostic markers for CRC were revealed. Since the use of carbon nanotubes (CNTs) for the management of CRC has been less studied, the present review analyzes the preclinical studies on the application of carbon nanotubes for drug delivery and CRC therapy owing to their inherent properties. It also investigates the toxicity of CNTs on normal cells for safety testing and the clinical use of carbon nanoparticles (CNPs) for tumor localization. To conclude, this review recommends the clinical application of carbon-based nanomaterials further for the management of CRC in diagnosis and as carriers or therapeutic adjuvants.
Collapse
Affiliation(s)
- Jiheng Ma
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Guofang Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Xiaoyu Ding
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Fulin Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Chunning Zhu
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Yunxia Rong
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| |
Collapse
|
5
|
Saikia A, Newar R, Das S, Singh A, Deuri DJ, Baruah A. Scopes and Challenges of Microfluidic Technology for Nanoparticle Synthesis, Photocatalysis and Sensor Applications: A Comprehensive Review. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Elfadil D, Silveri F, Palmieri S, Della Pelle F, Sergi M, Del Carlo M, Amine A, Compagnone D. Liquid-phase exfoliated 2D graphene nanoflakes electrochemical sensor coupled to molecularly imprinted polymers for the determination of citrinin in food. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Shooshtari M, Rahbarpour S, Ghafoorifard H. Improvement in gas sensitivity of carbon nanotube to volatile organic compounds by covering zinc oxide nanowire. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2166076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mostafa Shooshtari
- Department of Electrical Engineering Tehran, Shahed University, Tehran, Iran
| | - Saeideh Rahbarpour
- Department of Electrical Engineering Tehran, Shahed University, Tehran, Iran
| | - Hasan Ghafoorifard
- Electrical Engineering Department Tehran, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Bagherzadeh M, Safarkhani M, Daneshgar H, Radmanesh F, Taghavimandi F, Ghadiri AM, Kiani M, Fatahi Y, Safari-Alighiarloo N, Ahmadi S, Rabiee N. Magnetic carbon–based nanocomposite decorated with palladium complex for co-delivery of DOX/pCRISPR. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Torabi N, Ebrahimi F, Maktabdaran G, Sahimi M. Friction versus flow enhancement in nanotube structures with heterojunctions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Seo S, Bae J, Jeon H, Lee S, Kim T. Pervaporation-assisted in situ formation of nanoporous microchannels with various material and structural properties. LAB ON A CHIP 2022; 22:1474-1485. [PMID: 35262125 DOI: 10.1039/d1lc01184g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoporous structures are crucial for developing mixed-scale micro-/nanofluidic devices because they facilitate the manipulation of molecule transport along the microfluidic channel networks. Particularly, self-assembled particles have been used for fabricating various nanoporous membranes. However, previous self-assembly mechanisms relied on the material and structural homogeneities of the nanopores. Here, we present a pervaporation-assisted in situ fabrication method that integrates nanoporous membrane structures into microfluidic devices. The microfluidic devices contain a control-channel layer at the top, which induces local and addressable pervaporation, and the main-channel layer, which is present at the bottom with pre-designated locations for nanoporous microchannels; the layers are separated using a gas-permeable film. The target particle suspensions are loaded into the main channels, and their pervaporation is controlled through the gas-permeable film, which successfully assembles the particles at the pre-designated locations. This method yields nanoporous microchannels with various material and structural properties by fabricating heterogeneous nanopore arrays/junctions in series and other diverse structures along the microchannels. We validate the basic working principle of microfluidic devices containing nanoporous microchannels. Furthermore, we theoretically analyze the fundamental experimental results, which suggest the remarkable potential of our strategy to fabricate nanopore networks without using conventional nanofabrication methods.
Collapse
Affiliation(s)
- Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Juyeol Bae
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Hwisu Jeon
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sungyoon Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
11
|
Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional 2D cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, an overview of multi-sensing for Body-on-Chip platforms is given. Finally, one gives the perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
Collapse
Affiliation(s)
- Hanie Kavand
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Rohollah Nasiri
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| |
Collapse
|
12
|
Silveri F, Della Pelle F, Scroccarello A, Ain Bukhari QU, Del Carlo M, Compagnone D. Modular graphene mediator film-based electrochemical pocket device for chlorpyrifos determination. Talanta 2022; 240:123212. [PMID: 35026635 DOI: 10.1016/j.talanta.2022.123212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
In this work, a redox-graphene (Rx-Gr) film with electron-mediating ability has been integrated into a modular flexible pocket device, giving rise to a reusable biosensing platform. The Rx-Gr has been obtained in water from graphite taking advantage of catechin, a redox-antioxidant, able to assist the sonochemical layered-material exfoliation, conferring electron mediating feature. A film composed exclusively of Rx-Gr has been transferred via thermal rolling onto a flexible PET-support that was used as the biosensor base. The biosensing platform, composed of office-grade materials, was then fabricated using a cutter-plotter and assembled by thermal lamination; an interchangeable paper-based strip was used to host the enzymatic reaction and drive the capillary flow. An acetylcholinesterase-based inhibition assay has been optimized onboard the pocket device to determine chlorpyriphos, a widespread environmental pesticide. The proposed set-up allows the determination of chlorpyriphos at low overpotential (0.2 V) with satisfactory sensitivity (LOD = 0.2 ppb), thanks to the straightforward electroactivity of the Rx-Gr film towards thiocholine (enzymatic product). The modular design allows 5 consecutive complete inhibition assays (control + inhibition measure) retaining the performance (RSD = 5.4%; n = 5). The coupling of bench-top technologies and a new functional graphene film resulted in the development of a cost-effective, reusable, transportable, and within everyone's reach biosensing platform.
Collapse
Affiliation(s)
- Filippo Silveri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.
| | - Annalisa Scroccarello
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Qurat Ul Ain Bukhari
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Michele Del Carlo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
13
|
Wang Y, Gao Y, Yin Y, Pan Y, Wang Y, Song Y. Nanomaterial-assisted microfluidics for multiplex assays. Mikrochim Acta 2022; 189:139. [PMID: 35275267 DOI: 10.1007/s00604-022-05226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Simultaneous detection of different biomarkers from a single specimen in a single test, allowing more rapid, efficient, and low-cost analysis, is of great significance for accurate diagnosis of disease and efficient monitoring of therapy. Recently, developments in microfabrication and nanotechnology have advanced the integration of nanomaterials in microfluidic devices toward multiplex assays of biomarkers, combining both the advantages of microfluidics and the unique properties of nanomaterials. In this review, we focus on the state of the art in multiplexed detection of biomarkers based on nanomaterial-assisted microfluidics. Following an overview of the typical microfluidic analytical techniques and the most commonly used nanomaterials for biochemistry analysis, we highlight in detail the nanomaterial-assisted microfluidic strategies for different biomarkers. These highly integrated platforms with minimum sample consumption, high sensitivity and specificity, low detection limit, enhanced signals, and reduced detection time have been extensively applied in various domains and show great potential in future point-of-care testing and clinical diagnostics.
Collapse
Affiliation(s)
- Yanping Wang
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Farah J, Gravel E, Doris E, Malloggi F. Direct integration of gold-carbon nanotube hybrids in continuous-flow microfluidic chips: A versatile approach for nanocatalysis. J Colloid Interface Sci 2022; 613:359-367. [PMID: 35042033 DOI: 10.1016/j.jcis.2021.12.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
A carbon nanotube-based packed-bed microreactor was developed for the on-chip oxidation of silanes. The process is catalyzed by a heterogeneous gold-carbon nanotube hybrid that was embedded in the device using a micrometric restriction zone. Integration of the nanohybrid permitted efficient flow aerobic oxidation of the substrates into the corresponding silanols with high selectivity and under sustainable conditions.
Collapse
Affiliation(s)
- Joseph Farah
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France; Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
15
|
Sridhar A, Kapoor A, Kumar PS, Ponnuchamy M, Sivasamy B, Vo DVN. Lab-on-a-chip technologies for food safety, processing, and packaging applications: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 20:901-927. [PMID: 34803553 PMCID: PMC8590809 DOI: 10.1007/s10311-021-01342-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The advent of microfluidic systems has led to significant developments in lab-on-a-chip devices integrating several functions onto a single platform. Over the years, these miniature devices have become a promising tool for faster analytical testing, displaying high precision and efficiency. Nonetheless, most microfluidic systems are not commercially available. Research is actually undergoing on the application of these devices in environmental, food, biomedical, and healthcare industries. The lab-on-a-chip industry is predicted to grow annually by 20%. Here, we review the use of lab-on-a-chip devices in the food sector. We present fabrication technologies and materials to developing lab-on-a-chip devices. We compare electrochemical, optical, colorimetric, chemiluminescence and biological methods for the detection of pathogens and microorganisms. We emphasize emulsion processing, food formulation, nutraceutical development due to their promising characteristics. Last, smart packaging technologies like radio frequency identification and indicators are highlighted because they allow better product identification and traceability.
Collapse
Affiliation(s)
- Adithya Sridhar
- School of Food Science and Nutrition, Faculty of Environment, The University of Leeds, Leeds, LS2 9JT UK
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Balasubramanian Sivasamy
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu 641407 India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, Karimi M, Webster TJ, Hamblin MR, Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine 2021; 16:1681-1706. [PMID: 33688185 PMCID: PMC7936533 DOI: 10.2147/ijn.s299448] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
The unique properties of carbon nanotubes (CNTs) (such as their high surface to volume ratios, enhanced conductivity and strength, biocompatibility, ease of functionalization, optical properties, etc.) have led to their consideration to serve as novel drug and gene delivery carriers. CNTs are effectively taken up by many different cell types through several mechanisms. CNTs have acted as carriers of anticancer molecules (including docetaxel (DTX), doxorubicin (DOX), methotrexate (MTX), paclitaxel (PTX), and gemcitabine (GEM)), anti-inflammatory drugs, osteogenic dexamethasone (DEX) steroids, etc. In addition, the unique optical properties of CNTs have led to their use in a number of platforms for improved photo-therapy. Further, the easy surface functionalization of CNTs has prompted their use to deliver different genes, such as plasmid DNA (PDNA), micro-RNA (miRNA), and small interfering RNA (siRNA) as gene delivery vectors for various diseases such as cancers. However, despite all of these promises, the most important continuous concerns raised by scientists reside in CNT nanotoxicology and the environmental effects of CNTs, mostly because of their non-biodegradable state. Despite a lack of widespread FDA approval, CNTs have been studied for decades and plenty of in vivo and in vitro reports have been published, which are reviewed here. Lastly, this review covers the future research necessary for the field of CNT medicine to grow even further.
Collapse
Affiliation(s)
- Hossein Zare
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Biomaterials Group, Materials Science and Engineering Department, Iran University of Science and Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | - Mohammad Ghanbari
- School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, MA, Iran
| | - Thomas J Webster
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, MA, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ebrahim Mostafavi
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, MA, Iran
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Rabiee N, Ahmadi S, Fatahi Y, Rabiee M, Bagherzadeh M, Dinarvand R, Bagheri B, Zarrintaj P, Saeb MR, Webster TJ. Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine (Lond) 2021; 16:237-258. [PMID: 33501839 DOI: 10.2217/nnm-2020-0353] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
With significant advancements in research technologies, and an increasing global population, microfluidic and nanofluidic systems (such as point-of-care, lab-on-a-chip, organ-on-a-chip, etc) have started to revolutionize medicine. Devices that combine micron and nanotechnologies have increased sensitivity, precision and versatility for numerous medical applications. However, while there has been extensive research on microfluidic and nanofluidic systems, very few have experienced wide-spread commercialization which is puzzling and deserves our collective attention. For the above reasons, in this article, we review research advances that combine micro and nanotechnologies to create the next generation of nanomaterial-based microfluidic systems, the latest in their commercialization success and failure and highlight the value of these devices both in industry and in the laboratory.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Bagheri
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
18
|
Microfluidics in Biotechnology: Quo Vadis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:355-380. [PMID: 33495924 DOI: 10.1007/10_2020_162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The emerging technique of microfluidics offers new approaches for precisely controlling fluidic conditions on a small scale, while simultaneously facilitating data collection in both high-throughput and quantitative manners. As such, the so-called lab-on-a-chip (LOC) systems have the potential to revolutionize the field of biotechnology. But what needs to happen in order to truly integrate them into routine biotechnological applications? In this chapter, some of the most promising applications of microfluidic technology within the field of biotechnology are surveyed, and a few strategies for overcoming current challenges posed by microfluidic LOC systems are examined. In addition, we also discuss the intensifying trend (across all biotechnology fields) of using point-of-use applications which is being facilitated by new technological achievements.
Collapse
|
19
|
Sun L, Yang W, Chu H, Yang R, Yu H. Dynamic fabrication of microfluidic systems for particles separation based on optical projection lithography. Biomed Microdevices 2020; 22:80. [PMID: 33170362 DOI: 10.1007/s10544-020-00535-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 11/30/2022]
Abstract
Microfluidic systems are widely used for applications in biology, medicine and chemistry. Particles separation by microfluidics is a scientific subject that requires ongoing research efforts. In this article, we demonstrate a micropillar-based particles separator fabricated using digital micromirror device (DMD)-based optical projection lithography from the perspectives of theory, design, simulation and experiments. Micropillars can be fabricated with customized shapes and sizes which shows high flexible and efficient. The particles separator employs the physical separation of a cylindrical array, a rectangular array, or a triangular array to separate particles. The simulation and experiment results indicate that the device with different micropillars could achieve separation of 20 and 200 μm polystyrene microspheres. Furthermore, the separation efficiency depended on flow rate and the shape of micropillars. All the results can be used to support the redesign of microfluidic structures to address particles separation needs.
Collapse
Affiliation(s)
- Lujing Sun
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| | - Honghui Chu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Rendi Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
20
|
Rabbani MT, Sonker M, Ros A. Carbon nanotube dielectrophoresis: Theory and applications. Electrophoresis 2020; 41:1893-1914. [PMID: 32474942 DOI: 10.1002/elps.202000049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023]
Abstract
Carbon nanotubes (CNTs) are one of the most extensively studied nanomaterials in the 21st century. Since their discovery in 1991, many studies have been reported advancing our knowledge in terms of their structure, properties, synthesis, and applications. CNTs exhibit unique electrothermal and conductive properties which, combined with their mechanical strength, have led to tremendous attention of CNTs as a nanoscale material in the past two decades. To introduce the various types of CNTs, we first provide basic information on their structure followed by some intriguing properties and a brief overview of synthesis methods. Although impressive advances have been demonstrated with CNTs, critical applications require purification, positioning, and separation to yield desired properties and functional elements. Here, we review a versatile technique to manipulate CNTs based on their dielectric properties, namely dielectrophoresis (DEP). A detailed discussion on the DEP aspects of CNTs including the theory and various technical microfluidic realizations is provided. Various advancements in DEP-based manipulations of single-walled and multiwalled CNTs are also discussed with special emphasis on applications involving separation, purification, sensing, and nanofabrication.
Collapse
Affiliation(s)
- Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
21
|
Kim D, Sonker M, Ros A. Dielectrophoresis: From Molecular to Micrometer-Scale Analytes. Anal Chem 2018; 91:277-295. [DOI: 10.1021/acs.analchem.8b05454] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
22
|
Wongkaew N, Simsek M, Griesche C, Baeumner AJ. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem Rev 2018; 119:120-194. [DOI: 10.1021/acs.chemrev.8b00172] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Marcel Simsek
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Christian Griesche
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
23
|
Ghasemi A, Rabiee N, Ahmadi S, Hashemzadeh S, Lolasi F, Bozorgomid M, Kalbasi A, Nasseri B, Shiralizadeh Dezfuli A, Aref AR, Karimi M, Hamblin MR. Optical assays based on colloidal inorganic nanoparticles. Analyst 2018; 143:3249-3283. [PMID: 29924108 PMCID: PMC6042520 DOI: 10.1039/c8an00731d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs in nanocomposites can have additional advantages. Magnetic NPs and ZnO, TiO2 and ZnS as well as insulator NPs including SiO2 can be employed in colorimetric assays, and some can act as peroxidase mimics in catalytic applications. This review covers the synthesis and stabilization of inorganic NPs and their diverse applications in colorimetric and optical assays for analytes related to environmental contamination (metal ions and pesticides), and for early diagnosis and monitoring of diseases, using medically important biomarkers.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran and Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Ahmadi
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Shabnam Hashemzadeh
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran and Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Farshad Lolasi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran and Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mahnaz Bozorgomid
- Department of Pharmaceutical Chemistry, Islamic Azad University of Pharmaceutical Sciences Branch, Tehran, Iran
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran and Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Amin Shiralizadeh Dezfuli
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|