1
|
Wei N. Sex differences in cardiac dynamics during myocardial ischemia using a single cell approach. Sci Rep 2025; 15:9153. [PMID: 40097687 PMCID: PMC11914424 DOI: 10.1038/s41598-025-94055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
Myocardial ischemia, arising from severe blockages in coronary arteries, poses a significant global health risk due to its potential to cause arrhythmia and heart failure, often leading to sudden cardiac death. During acute myocardial ischemia, profound changes occur in cardiac electrophysiology and anatomy, influencing action potential morphology and propagation, which increased susceptibility to arrhythmias. Sex differences play a critical role in myocardial ischemia and arrhythmogenesis. Females exhibit distinct genetic and hormonal influences on ion channel expression and cardiac function, affecting susceptibility to arrhythmias like Torsade de Pointes. Using the O'Hara-Rudy dynamic (ORd) model, this study shows that females are more likely than males to exhibit cardiac alternans (2:2), a periodic variation in action potential duration between consecutive heartbeats, as well as 2:1 arrhythmic behaviors-characterized by inexcitability in the even beats-under ischemic conditions. Additionally, hormones further exacerbate these gender differences. Moreover, females show a higher propensity than males to terminate 2:2 and 2:1 arrhythmic responses during ischemia treatment. This manuscript aims to uncover sex-specific disparities in electrophysiological responses and drug reactions during myocardial ischemia using the optimized ORd model. These findings underscore the importance of considering sex-specific factors in cardiovascular research and clinical practice.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Martinez-Navarro H, Zhou X, Bueno-Orovio A, Rodriguez B. Electrophysiological and anatomical factors determine arrhythmic risk in acute myocardial ischaemia and its modulation by sodium current availability. Interface Focus 2020; 11:20190124. [PMID: 33335705 PMCID: PMC7739909 DOI: 10.1098/rsfs.2019.0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial ischaemia caused by coronary artery disease is one of the main causes of sudden cardiac death. Even though sodium current blockers are used as anti-arrhythmic drugs, decreased sodium current availability, also caused by mutations, has been shown to increase arrhythmic risk in ischaemic patients. The mechanisms are still unclear. Our goal is to exploit perfect control and data transparency of over 300 high-performance computing simulations to investigate arrhythmia mechanisms in acute myocardial ischaemia with variable sodium current availability. The human anatomically based torso-biventricular electrophysiological model used includes representation of realistic ventricular anatomy and fibre architecture, as well as ionic to electrocardiographic properties. Simulations show that reduced sodium current availability increased arrhythmic risk in acute regional ischaemia due to both electrophysiological (increased dispersion of refractoriness across the ischaemic border zone) and anatomical factors (conduction block from the thin right ventricle to thick left ventricle). The asymmetric ventricular anatomy caused high arrhythmic risk specifically for ectopic stimuli originating from the right ventricle and ventricular base. Increased sodium current availability was ineffective in reducing arrhythmic risk for septo-basal ectopic excitation. Human-based multiscale modelling and simulations reveal key electrophysiological and anatomical factors determining arrhythmic risk in acute ischaemia with variable sodium current availability.
Collapse
Affiliation(s)
- Hector Martinez-Navarro
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Parks Road, Oxford OX1 3QD, UK
| | - Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Parks Road, Oxford OX1 3QD, UK
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Parks Road, Oxford OX1 3QD, UK
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Parks Road, Oxford OX1 3QD, UK
| |
Collapse
|
3
|
High arrhythmic risk in antero-septal acute myocardial ischemia is explained by increased transmural reentry occurrence. Sci Rep 2019; 9:16803. [PMID: 31728039 PMCID: PMC6856379 DOI: 10.1038/s41598-019-53221-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial ischemia is a precursor of sudden arrhythmic death. Variability in its manifestation hampers understanding of arrhythmia mechanisms and challenges risk stratification. Our aim is to unravel the mechanisms underlying how size, transmural extent and location of ischemia determine arrhythmia vulnerability and ECG alterations. High performance computing simulations using a human torso/biventricular biophysically-detailed model were conducted to quantify the impact of varying ischemic region properties, including location (LAD/LCX occlusion), transmural/subendocardial ischemia, size, and normal/slow myocardial propagation. ECG biomarkers and vulnerability window for reentry were computed in over 400 simulations for 18 cases evaluated. Two distinct mechanisms explained larger vulnerability to reentry in transmural versus subendocardial ischemia. Macro-reentry around the ischemic region was the primary mechanism increasing arrhythmic risk in transmural versus subendocardial ischemia, for both LAD and LCX occlusion. Transmural micro-reentry at the ischemic border zone explained arrhythmic vulnerability in subendocardial ischemia, especially in LAD occlusion, as reentries were favoured by the ischemic region intersecting the septo-apical region. ST elevation reflected ischemic extent in transmural ischemia for LCX and LAD occlusion but not in subendocardial ischemia (associated with mild ST depression). The technology and results presented can inform safety and efficacy evaluation of anti-arrhythmic therapy in acute myocardial ischemia.
Collapse
|
4
|
Dutta S, Mincholé A, Quinn TA, Rodriguez B. Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 129:40-52. [PMID: 28223156 DOI: 10.1016/j.pbiomolbio.2017.02.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/30/2016] [Accepted: 02/15/2017] [Indexed: 11/18/2022]
Abstract
Acute myocardial ischemia is one of the main causes of sudden cardiac death. The mechanisms have been investigated primarily in experimental and computational studies using different animal species, but human studies remain scarce. In this study, we assess the ability of four human ventricular action potential models (ten Tusscher and Panfilov, 2006; Grandi et al., 2010; Carro et al., 2011; O'Hara et al., 2011) to simulate key electrophysiological consequences of acute myocardial ischemia in single cell and tissue simulations. We specifically focus on evaluating the effect of extracellular potassium concentration and activation of the ATP-sensitive inward-rectifying potassium current on action potential duration, post-repolarization refractoriness, and conduction velocity, as the most critical factors in determining reentry vulnerability during ischemia. Our results show that the Grandi and O'Hara models required modifications to reproduce expected ischemic changes, specifically modifying the intracellular potassium concentration in the Grandi model and the sodium current in the O'Hara model. With these modifications, the four human ventricular cell AP models analyzed in this study reproduce the electrophysiological alterations in repolarization, refractoriness, and conduction velocity caused by acute myocardial ischemia. However, quantitative differences are observed between the models and overall, the ten Tusscher and modified O'Hara models show closest agreement to experimental data.
Collapse
Affiliation(s)
- Sara Dutta
- Department of Computer Science, University of Oxford, Oxford, UK.
| | - Ana Mincholé
- Department of Computer Science, University of Oxford, Oxford, UK
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Gemmell P, Burrage K, Rodríguez B, Quinn TA. Rabbit-specific computational modelling of ventricular cell electrophysiology: Using populations of models to explore variability in the response to ischemia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:169-84. [PMID: 27320382 PMCID: PMC5405055 DOI: 10.1016/j.pbiomolbio.2016.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/13/2016] [Indexed: 11/04/2022]
Abstract
Computational modelling, combined with experimental investigations, is a powerful method for investigating complex cardiac electrophysiological behaviour. The use of rabbit-specific models, due to the similarities of cardiac electrophysiology in this species with human, is especially prevalent. In this paper, we first briefly review rabbit-specific computational modelling of ventricular cell electrophysiology, multi-cellular simulations including cellular heterogeneity, and acute ischemia. This mini-review is followed by an original computational investigation of variability in the electrophysiological response of two experimentally-calibrated populations of rabbit-specific ventricular myocyte action potential models to acute ischemia. We performed a systematic exploration of the response of the model populations to varying degrees of ischemia and individual ischemic parameters, to investigate their individual and combined effects on action potential duration and refractoriness. This revealed complex interactions between model population variability and ischemic factors, which combined to enhance variability during ischemia. This represents an important step towards an improved understanding of the role that physiological variability may play in electrophysiological alterations during acute ischemia.
Collapse
Affiliation(s)
- Philip Gemmell
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Kevin Burrage
- Department of Computer Science, University of Oxford, Oxford, UK; School of Mathematical Sciences and ARC Centre of Excellence, ACEMS, Queensland University of Technology, Brisbane, Australia
| | - Blanca Rodríguez
- Department of Computer Science, University of Oxford, Oxford, UK
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, 5850 College St, Lab 3F, Halifax, NS B3H 4R2, Canada; School of Biomedical Engineering, Dalhousie University, 5850 College St, Lab 3F, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
6
|
Yuan Y, Bai X, Luo C, Wang K, Zhang H. The virtual heart as a platform for screening drug cardiotoxicity. Br J Pharmacol 2015; 172:5531-5547. [PMID: 25363597 PMCID: PMC4667856 DOI: 10.1111/bph.12996] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 01/01/2023] Open
Abstract
To predict the safety of a drug at an early stage in its development is a major challenge as there is a lack of in vitro heart models that correlate data from preclinical toxicity screening assays with clinical results. A biophysically detailed computer model of the heart, the virtual heart, provides a powerful tool for simulating drug-ion channel interactions and cardiac functions during normal and disease conditions and, therefore, provides a powerful platform for drug cardiotoxicity screening. In this article, we first review recent progress in the development of theory on drug-ion channel interactions and mathematical modelling. Then we propose a family of biomarkers that can quantitatively characterize the actions of a drug on the electrical activity of the heart at multi-physical scales including cellular and tissue levels. We also conducted some simulations to demonstrate the application of the virtual heart to assess the pro-arrhythmic effects of cisapride and amiodarone. Using the model we investigated the mechanisms responsible for the differences between the two drugs on pro-arrhythmogenesis, even though both prolong the QT interval of ECGs. Several challenges for further development of a virtual heart as a platform for screening drug cardiotoxicity are discussed.
Collapse
Affiliation(s)
- Yongfeng Yuan
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Xiangyun Bai
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Cunjin Luo
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Kuanquan Wang
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
| | - Henggui Zhang
- School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
- Biological Physics GroupSchool of Physics and AstronomyThe University of ManchesterManchesterUK
| |
Collapse
|
7
|
Ferrero JM, Trenor B, Romero L. Multiscale computational analysis of the bioelectric consequences of myocardial ischaemia and infarction. Europace 2014; 16:405-15. [PMID: 24569895 DOI: 10.1093/europace/eut405] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ischaemic heart disease is considered as the single most frequent cause of death, provoking more than 7 000 000 deaths every year worldwide. A high percentage of patients experience sudden cardiac death, caused in most cases by tachyarrhythmic mechanisms associated to myocardial ischaemia and infarction. These diseases are difficult to study using solely experimental means due to their complex dynamics and unstable nature. In the past decades, integrative computational simulation techniques have become a powerful tool to complement experimental and clinical research when trying to elucidate the intimate mechanisms of ischaemic electrophysiological processes and to aid the clinician in the improvement and optimization of therapeutic procedures. The purpose of this paper is to briefly review some of the multiscale computational models of myocardial ischaemia and infarction developed in the past 20 years, ranging from the cellular level to whole-heart simulations.
Collapse
Affiliation(s)
- Jose M Ferrero
- Departamento de Ingeniería Electrónica, Instituto I3BH, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | |
Collapse
|
8
|
Ramirez E, Saiz J, Romero L, Ferrero JM, Trenor B. In silico ischaemia-induced reentry at the Purkinje-ventricle interface. Europace 2014; 16:444-51. [PMID: 24569899 DOI: 10.1093/europace/eut386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS This computational modelling work illustrates the influence of hyperkalaemia and electrical uncoupling induced by defined ischaemia on action potential (AP) propagation and the incidence of reentry at the Purkinje-ventricle interface in mammalian hearts. METHODS AND RESULTS Unidimensional and bidimensional models of the Purkinje-ventricle subsystem, including ischaemic conditions (defined as phase 1B) in the ventricle and an ischaemic border zone, were developed by altering several important electrophysiological parameters of the Luo-Rudy AP model of the ventricular myocyte. Purkinje electrical activity was modelled using the equations of DiFrancesco and Noble. Our study suggests that an extracellular potassium concentration [K(+)]o >14 mM and a slight decrease in intercellular coupling induced by ischaemia in ventricle can cause conduction block from Purkinje to ventricle. Under these conditions, propagation from ventricle to Purkinje is possible. Thus, unidirectional block (UDB) and reentry can result. When conditions of UDB are met, retrograde propagation with a long delay (320 ms) may re-excite Purkinje cells, and give rise to a reentrant pathway. This induced reentry may be the origin of arrhythmias observed in phase 1B ischaemia. CONCLUSION In a defined setting of ischaemia (phase 1B), a small amount of uncoupling between ventricular cells, as well as between Purkinje and ventricular tissue, may induce UDBs and reentry. Hyperkalaemia is also confirmed to be an important factor in the genesis of reentrant rhythms, since it regulates the range of coupling in which UDBs may be induced.
Collapse
Affiliation(s)
- Esteban Ramirez
- Laboratorio de Bioingenieria, Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Cuautla, Cuautla, Morelos 62745, Mexico
| | | | | | | | | |
Collapse
|
9
|
Regulation of ion gradients across myocardial ischemic border zones: a biophysical modelling analysis. PLoS One 2013; 8:e60323. [PMID: 23577101 PMCID: PMC3618345 DOI: 10.1371/journal.pone.0060323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/24/2013] [Indexed: 12/19/2022] Open
Abstract
The myocardial ischemic border zone is associated with the initiation and sustenance of arrhythmias. The profile of ionic concentrations across the border zone play a significant role in determining cellular electrophysiology and conductivity, yet their spatial-temporal evolution and regulation are not well understood. To investigate the changes in ion concentrations that regulate cellular electrophysiology, a mathematical model of ion movement in the intra and extracellular space in the presence of ionic, potential and material property heterogeneities was developed. The model simulates the spatial and temporal evolution of concentrations of potassium, sodium, chloride, calcium, hydrogen and bicarbonate ions and carbon dioxide across an ischemic border zone. Ischemia was simulated by sodium-potassium pump inhibition, potassium channel activation and respiratory and metabolic acidosis. The model predicted significant disparities in the width of the border zone for each ionic species, with intracellular sodium and extracellular potassium having discordant gradients, facilitating multiple gradients in cellular properties across the border zone. Extracellular potassium was found to have the largest border zone and this was attributed to the voltage dependence of the potassium channels. The model also predicted the efflux of [Formula: see text] from the ischemic region due to electrogenic drift and diffusion within the intra and extracellular space, respectively, which contributed to [Formula: see text] depletion in the ischemic region.
Collapse
|
10
|
Mirams GR, Davies MR, Cui Y, Kohl P, Noble D. Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing. Br J Pharmacol 2012; 167:932-45. [PMID: 22568589 PMCID: PMC3492977 DOI: 10.1111/j.1476-5381.2012.02020.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/23/2012] [Accepted: 04/26/2012] [Indexed: 12/19/2022] Open
Abstract
Concerns over cardiac side effects are the largest single cause of compound attrition during pharmaceutical drug development. For a number of years, biophysically detailed mathematical models of cardiac electrical activity have been used to explore how a compound, interfering with specific ion-channel function, may explain effects at the cell-, tissue- and organ-scales. With the advent of high-throughput screening of multiple ion channels in the wet-lab, and improvements in computational modelling of their effects on cardiac cell activity, more reliable prediction of pro-arrhythmic risk is becoming possible at the earliest stages of drug development. In this paper, we review the current use of biophysically detailed mathematical models of cardiac myocyte electrical activity in drug safety testing, and suggest future directions to employ the full potential of this approach.
Collapse
Affiliation(s)
- Gary R Mirams
- Computational Biology, Department of Computer Science, University of OxfordOxford, UK
| | - Mark R Davies
- Computational Biology, Discovery SciencesAstraZeneca, Alderley Park, UK
| | - Yi Cui
- Safety Pharmacology, Safety Assessment, GlaxoSmithKline, R&D WareUK
| | - Peter Kohl
- Computational Biology, Department of Computer Science, University of OxfordOxford, UK
- National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - Denis Noble
- Computational Biology, Department of Computer Science, University of OxfordOxford, UK
- Department of Physiology, Anatomy & Genetics, University of OxfordOxford, UK
| |
Collapse
|
11
|
Carusi A, Burrage K, Rodríguez B. Bridging experiments, models and simulations: an integrative approach to validation in computational cardiac electrophysiology. Am J Physiol Heart Circ Physiol 2012; 303:H144-55. [PMID: 22582088 DOI: 10.1152/ajpheart.01151.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computational models in physiology often integrate functional and structural information from a large range of spatiotemporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and skepticism concerning how computational methods can improve our understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fundamental requirement to fulfill these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present study aims at informing strategies for validation by elucidating the complex interrelations among experiments, models, and simulations in cardiac electrophysiology. We describe the processes, data, and knowledge involved in the construction of whole ventricular multiscale models of cardiac electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. We argue that validation is part of the whole MSE system and is contingent upon 1) understanding and coping with sources of biovariability; 2) testing and developing robust techniques and tools as a prerequisite to conducting physiological investigations; 3) defining and adopting standards to facilitate the interoperability of experiments, models, and simulations; 4) and understanding physiological validation as an iterative process that contributes to defining the specific aspects of cardiac electrophysiology the MSE system targets, rather than being only an external test, and that this is driven by advances in experimental and computational methods and the combination of both.
Collapse
|
12
|
Cardona K, Trénor B, Moltó G, Martínez M, Ferrero JM, Starmer F, Saiz J. Exploring the role of pH in modulating the effects of lidocaine in virtual ischemic tissue. Am J Physiol Heart Circ Physiol 2010; 299:H1615-24. [PMID: 20709860 DOI: 10.1152/ajpheart.00425.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lidocaine is a class I antiarrhytmic drug that blocks Na(+) channels and exists in both neutral and charged forms at a physiological pH. In this work, a mathematical model of pH and the frequency-modulated effects of lidocaine has been developed and incorporated into the Luo-Rudy model of the ventricular action potential. We studied the effects of lidocaine on Na(+) current, maximum upstroke velocity, and conduction velocity and demonstrated that a decrease of these parameters was dependent on pH, frequency, and concentration. We also tested the action of lidocaine under pathological conditions. Specifically, we investigated its effects on conduction block under acute regional ischemia. Our results in one-dimensional fiber simulations showed a reduction of the window of block in the presence of lidocaine, thereby highlighting the role of reduced conduction velocity and safe conduction. This reduction may be related to the antifibrillatory effects of the drug by hampering wavefront fragmentation. In bidimensional acute ischemic tissue, lidocaine increased the vulnerable window for reentry and exerted proarrhythmic effects. In conclusion, the present simulation study used a newly formulated model of lidocaine, which considers pH and frequency modulation, and revealed the mechanisms by which lidocaine facilitates the onset of reentries. The results of this study also help to increase our understanding of the potential antifibrillatory effects of the drug.
Collapse
Affiliation(s)
- Karen Cardona
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada al Ser Humano Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Romero L, Trénor B, Alonso JM, Tobón C, Saiz J, Ferrero JM. The relative role of refractoriness and source-sink relationship in reentry generation during simulated acute ischemia. Ann Biomed Eng 2009; 37:1560-71. [PMID: 19495982 DOI: 10.1007/s10439-009-9721-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 05/20/2009] [Indexed: 11/28/2022]
Abstract
During acute myocardial ischemia, reentrant episodes may lead to ventricular fibrillation (VF), giving rise to potentially mortal arrhythmias. VF has been traditionally related to dispersion of refractoriness and more recently to the source-sink relationship. Our goal is to theoretically investigate the relative role of dispersion of refractoriness and source-sink mismatch in vulnerability to reentry in the specific situation of regional myocardial acute ischemia. The electrical activity of a regionally ischemic tissue was simulated using a modified version of the Luo-Rudy dynamic model. Ischemic conditions were varied to simulate the time-course of acute ischemia. Our results showed that dispersion of refractoriness increased with the severity of ischemia. However, no correlation between dispersion of refractoriness and the width of the vulnerable window was found. Additionally, in approximately 50% of the reentries, unidirectional block (UDB) took place in cells completely recovered from refractoriness. We examined patterns of activation after premature stimulation and they were intimately related to the source-sink relationship, quantified by the safety factor (SF). Moreover, the isoline where the SF dropped below unity matched the area where propagation failed. It was concluded that the mismatch of the source-sink relationship, rather than solely refractoriness, was the ultimate cause of the UDB leading to reentry. The SF represents a very powerful tool to study the mechanisms responsible for reentry.
Collapse
Affiliation(s)
- Lucía Romero
- Instituto de Investigación e Innovación en Bioingeniería, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
14
|
A note on a method for determining advantageous properties of an anti-arrhythmic drug based on a mathematical model of cardiac cells. Math Biosci 2008; 217:167-73. [PMID: 19135068 DOI: 10.1016/j.mbs.2008.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/20/2008] [Accepted: 12/05/2008] [Indexed: 01/25/2023]
Abstract
Regional hyperkalemia during acute ischemia may provoke cardiac arrhythmias such as ventricular fibrillation. Despite intense research efforts over the last decades, the problem of finding an efficient anti-arrhythmic drug without dangerous side effects is still open. One approach to analyze the effect of anti-arrhythmic drugs is to do simulations based on mathematical models of collections of cardiomyocytes. Such simulations have recently illuminated the pro-arrhythmic capability of well-established anti-arrhythmic drugs. The purpose of the present note is to introduce a method intended for computing advantageous properties of an anti-arrhythmic drug. For a given model of a normal and an ischemic cell, we introduce a drug as a vector of non-negative real numbers whose components are multiplied by individual terms representing specific ionic currents. The drug vector is computed such that the action potentials of the resulting drugged cells are as close as possible to the action potential of a normal (not drugged) cell. Numerical simulations based on the Luo-Rudy I model and the Hund-Rudy model show that the classical shortened action potential obtained due to hyperkalemia is prolonged by using the drug computed by this method. Furthermore, for both models a 2D collection of spatially coupled ischemic cells give arrhythmogenic solutions before the drug is applied, and stable solutions after the drug is applied. It is emphasized that we do not address the possibility of realizing a drug with the properties computed in this note.
Collapse
|
15
|
Brennan T, Fink M, Rodriguez B. Multiscale modelling of drug-induced effects on cardiac electrophysiological activity. Eur J Pharm Sci 2008; 36:62-77. [PMID: 19061955 DOI: 10.1016/j.ejps.2008.09.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/08/2008] [Indexed: 01/09/2023]
Abstract
Many drugs fail in the clinical trials and therefore do not reach the market due to adverse effects on cardiac electrical function. This represents a growing concern for both regulatory and pharmaceutical agencies as it translates into important socio-economic costs. Drugs affecting cardiac activity come from diverse pharmacological groups and their interaction with cardiac electrophysiology can result in increased risk of potentially life threatening arrhythmias, such as Torsade de Pointes. The mechanisms of drug interaction with the heart are very complex and the effects span from the ion channel to the whole organ level. This makes their investigation using solely experimental in vitro and in vivo techniques very difficult. Computational modelling of cardiac electrophysiological behaviour has provided insight into the mechanisms of cardiac arrhythmogenesis, with high spatio-temporal resolution, from the ion channel to the whole organ level. It therefore represents a powerful tool in investigating mechanisms of drug-induced changes in cardiac behaviour and in their pro-arrhythmic potential. This article presents a comprehensive review of the recent advances in detailed models of drug action on cardiac electrophysiological activity.
Collapse
Affiliation(s)
- T Brennan
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
16
|
Noble D. Computational models of the heart and their use in assessing the actions of drugs. J Pharmacol Sci 2008; 107:107-17. [PMID: 18566519 DOI: 10.1254/jphs.cr0070042] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Models of cardiac cells are sufficiently well developed to answer questions concerning the actions of drugs on repolarization and the initiation of arrhythmias. These models can be used to characterize drug-receptor action profiles that would be expected to avoid arrhythmia and so help to identify drugs that may be safer. Several examples of such action profiles are presented here, including a recently-developed blocker of persistent sodium current, ranolazine. The models have also been incorporated into tissue and organ models that enable arrhythmia to be modelled also at these levels. Work at these levels can reproduce both re-entrant arrhythmia and fibrillation.
Collapse
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Alonso JM, Ferrero JM, Hernández V, Moltó G, Saiz J, Trénor B. A grid computing-based approach for the acceleration of simulations in cardiology. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE : A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 2008; 12:138-44. [PMID: 18348943 DOI: 10.1109/titb.2007.907982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper combines high-performance computing and grid computing technologies to accelerate multiple executions of a biomedical application that simulates the action potential propagation on cardiac tissues. First, a parallelization strategy was employed to accelerate the execution of simulations on a cluster of personal computers (PCs). Then, grid computing was employed to concurrently perform the multiple simulations that compose the cardiac case studies on the resources of a grid deployment, by means of a service-oriented approach. This way, biomedical experts are provided with a gateway to easily access a grid infrastructure for the execution of these research studies. Emphasis is stressed on the methodology employed. In order to assess the benefits of the grid, a cardiac case study, which analyzes the effects of premature stimulation on reentry generation during myocardial ischemia, has been carried out. The collaborative usage of a distributed computing infrastructure has reduced the time required for the execution of cardiac case studies, which allows, for example, to take more accurate decisions when evaluating the effects of new antiarrhythmic drugs on the electrical activity of the heart.
Collapse
Affiliation(s)
- José M Alonso
- Department of Information Systems and Computation, Universidad Politécnica de Valencia, 46022 Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Potse M, Coronel R, LeBlanc AR, Vinet A. The role of extracellular potassium transport in computer models of the ischemic zone. Med Biol Eng Comput 2007; 45:1187-99. [PMID: 17968605 DOI: 10.1007/s11517-007-0276-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 10/04/2007] [Indexed: 11/25/2022]
Abstract
Ischemic heart disease is associated with large mortality and morbidity. Understanding of the relations between coronary artery occlusion, geometry of the ischemic region, physiology of ischemia, and the resulting changes in electrocardiogram (ECG) leads and catheter signals is important to support diagnosis and treatment. Computer models play an important role in understanding ischemia, by linking experimental to clinical results. In this paper we argue that the observed transport of extracellular potassium should be represented in such models. We used a diffusion equation to describe the transport mechanism. This model reproduced the measured spatial distribution of potassium, and its temporal development. We discuss the role of potassium transport next to other aspects of ischemia: the mechanism of changes in action potential and ECG, cellular coupling, anisotropic bidomain tissue conductivity, and the geometry of the ischemic zone.
Collapse
Affiliation(s)
- Mark Potse
- Research Center, Sacré-Coeur hospital, 5400 Boulevard Gouin Ouest, Montreal, QC, Canada, H4J 1C5.
| | | | | | | |
Collapse
|
19
|
Trénor B, Romero L, Ferrero JM, Sáiz J, Moltó G, Alonso JM. Vulnerability to reentry in a regionally ischemic tissue: a simulation study. Ann Biomed Eng 2007; 35:1756-70. [PMID: 17616818 DOI: 10.1007/s10439-007-9353-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Sudden cardiac death is mainly provoked by arrhythmogenic processes. During myocardial ischemia many malignant arrhythmias, such as reentry, take place and can degenerate into ventricular fibrillation. It is thus of great interest to unravel the intricate mechanisms underlying the initiation and maintenance of a reentry. In this computational study, we analyze the probability of reentry during different stages of the acute phase of ischemia. We also aimed at the understanding of the role of its main components: hypoxia, hyperkalemia, and acidosis analyzing the intricate ionic mechanisms responsible for reentry generation. We simulated the electrical activity of a ventricular tissue affected by regional ischemia based on a modified version of the Luo-Rudy model (LRd00). The ischemic conditions were varied to simulate different stages of this pathology. After premature stimulation, we evaluated the vulnerability to reentry. We obtained an unimodal behavior for the vulnerable window as ischemia progressed, peaking at the eighth minute after the onset of ischemia where the vulnerable window yielded 58 ms. Under more severe conditions the vulnerable window decreased and became zero for minute 8.75. The present work provides insight into the mechanisms of reentry generation during ischemia, highlighting the role of acidosis and hypoxia when hyperkalemia is present.
Collapse
Affiliation(s)
- Beatriz Trénor
- Centro de Investigación e Innovación en Bioingeniería, Universidad Politécnica de Valencia, Camino de Vera s/n, Valencia, 46022, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Myocardial ischemia is one of the main causes of sudden cardiac death, with 80% of victims suffering from coronary heart disease. In acute myocardial ischemia, the obstruction of coronary flow leads to the interruption of oxygen flow, glucose, and washout in the affected tissue. Cellular metabolism is impaired and severe electrophysiological changes in ionic currents and concentrations ensue, which favor the development of lethal cardiac arrhythmias such as ventricular fibrillation. Due to the burden imposed by ischemia in our societies, a large body of research has attempted to unravel the mechanisms of initiation, sustenance, and termination of cardiac arrhythmias in acute ischemia, but the rapidity and complexity of ischemia-induced changes as well as the limitations in current experimental techniques have hampered evaluation of ischemia-induced alterations in cardiac electrical activity and understanding of the underlying mechanisms. Over the last decade, computer simulations have demonstrated the ability to provide insight, with high spatiotemporal resolution, into ischemic abnormalities in cardiac electrophysiological behavior from the ionic channel to the whole organ. This article aims to review and summarize the results of these studies and to emphasize the role of computer simulations in improving the understanding of ischemia-related arrhythmias and how to efficiently terminate them.
Collapse
Affiliation(s)
- Blanca Rodríguez
- Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, UK.
| | | | | |
Collapse
|