1
|
Deng T, Gong S, Cheng Y, Wang J, Zhang H, Li K, Nie Y, Shen B. Stochastic lattice-based porous implant design for improving the stress transfer in unicompartmental knee arthroplasty. J Orthop Surg Res 2024; 19:499. [PMID: 39175032 PMCID: PMC11340161 DOI: 10.1186/s13018-024-05006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Unicompartmental knee arthroplasty (UKA) has been proved to be a successful treatment for osteoarthritis patients. However, the stress shielding caused by mismatch in mechanical properties between human bones and artificial implants remains as a challenging issue. This study aimed to properly design a bionic porous tibial implant and evaluate its biomechanical effect in reconstructing stress transfer pathway after UKA surgery. METHODS Voronoi structures with different strut sizes and porosities were designed and manufactured with Ti6Al4V through additive manufacturing and subjected to quasi-static compression tests. The Gibson-Ashby model was used to relate mechanical properties with design parameters. Subsequently, finite element models were developed for porous UKA, conventional UKA, and native knee to evaluate the biomechanical effect of tibial implant with designed structures during the stance phase. RESULTS The internal stress distribution on the tibia plateau in the medial compartment of the porous UKA knee was found to closely resemble that of the native knee. Furthermore, the mean stress values in the medial regions of the tibial plateau of the porous UKA knee were at least 44.7% higher than that of the conventional UKA knee for all subjects during the most loading conditions. The strain shielding reduction effect of the porous UKA knee model was significant under the implant and near the load contact sites. For subject 1 to 3, the average percentages of nodes in bone preserving and building region (strain values range from 400 to 3000 μm/m) of the porous UKA knee model, ranging from 68.7 to 80.5%, were higher than that of the conventional UKA knee model, ranging from 61.6 to 68.6%. CONCLUSIONS The comparison results indicated that the tibial implant with designed Voronoi structure offered better biomechanical functionality on the tibial plateau after UKA. Additionally, the model and associated analysis provide a well-defined design process and dependable selection criteria for design parameters of UKA implants with Voronoi structures.
Collapse
Grants
- 2020YFB1711500 the National Key Research and Development Program of China
- ZYYC21004 the 1•3•5 project for disciplines of excellence, West China Hospital, Sichuan University
- ZYGX2022YGRH007 Medico-Engineering Cooperation Funds from University of Electronic Science and Technology by the Fundamental Research Funds for the Central Universities
- 2023YFB4606700 National Key Research and Development Program
- ZYAI24038 1•3•5 project for disciplines of excellence, West China Hospital, Sichuan University
- 2022SCUH0015 0-1 Innovation Project of Sichuan University
- 2023HXFH024 1·3·5 project for disciplines of excellence-Clinical Research Fund, West China Hospital, Sichuan University
- the Interdisciplinary Crossing and Integration of Medicine and Engineering for Talent Training Fund, West China Hospital, Sichuan University
- 1·3·5 project for disciplines of excellence–Clinical Research Fund, West China Hospital, Sichuan University
Collapse
Affiliation(s)
- Tao Deng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Shan Gong
- Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu, 610207, China
| | - Yiwei Cheng
- Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu, 610207, China
| | - Junqing Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Kang Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| | - Yong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Microscale compressive behavior of hydrated lamellar bone at high strain rates. Acta Biomater 2021; 131:403-414. [PMID: 34245895 DOI: 10.1016/j.actbio.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022]
Abstract
The increased risk of fracture in the elderly associated with metabolic conditions like osteoporosis poses a significant strain on health care systems worldwide. Due to bone's hierarchical nature, it is necessary to study its mechanical properties and failure mechanisms at several length scales. We conducted micropillar compression experiments on ovine cortical bone to assess the anisotropic mechanical response at the lamellar scale over a wide range of strain rates (10-4 to 8·102 s-1). At the microscale, lamellar bone exhibits a strain rate sensitivity similar to what is reported at the macroscale suggesting that it is an intrinsic property of the extracellular matrix. Significant shear band thickening was observed at high strain rates by HRSEM and STEM imaging. This is likely caused by the material's inability to accommodate the imposed deformation by propagation of thin kink bands and shear cracks at high strain rates, leading to shear band thickening and nucleation. The post-yield behavior is strain rate and direction dependent: hardening was observed for transverse oriented micropillars and hardening modulus increases with strain rate by a factor of almost 2, while axially oriented micropillars showed strain softening and an increase of the softening peak width and work to ultimate stress as a function of strain rate. This suggests that for compression at the micrometer scale, energy absorption in bone increases with strain rate. This study highlights the importance of investigating bone strength and post-yield behavior at lower length scales, under hydrated conditions and at clinically relevant strain rates. STATEMENT OF SIGNIFICANCE: We performed micropillar compression experiments of ovine cortical bone at two different orientations and over seven orders of magnitude of strain rate. Experiments were performed under humid condition to mimic the natural conditions of bone in a human body using a newly developed micro-indenter setup. The strain rate sensitivity was found to be of a similar magnitude to what has been reported for higher length scales, suggesting that the strain rate sensitivity is an intrinsic property of the bone extracellular matrix. In addition, localized shear deformation in thick bands was observed for the first time at high strain rates, highlighting the importance of investigating bone under conditions representative of an accident or fall at several length scales.
Collapse
|
3
|
Fluid-structure interaction (FSI) modeling of bone marrow through trabecular bone structure under compression. Biomech Model Mechanobiol 2021; 20:957-968. [PMID: 33547975 DOI: 10.1007/s10237-021-01423-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
The present study has sought to investigate the fluid characteristic and mechanical properties of trabecular bone using fluid-structure interaction (FSI) approach under different trabecular bone orientations. This method imposed on trabecular bone structure at both longitudinal and transverse orientations to identify effects on shear stress, permeability, stiffness and stress regarded to the trabeculae. Sixteen FSI models were performed on different range trabecular cubes of 27 mm3 with eight models developed for each longitudinal and transverse direction. Results show that there was a moderate correlation between permeability and porosity, and surface area in the longitudinal and transverse orientations. For the longitudinal orientation, the permeability values varied between 3.66 × 10-8 and 1.9 × 10-7 and the sheer stress values varied between 0.05 and 1.8 Pa, whilst for the transverse orientation, the permeability values varied between 5.95 × 10-10 and 1.78 × 10-8 and the shear stress values varied between 0.04 and 3.1 Pa. Here, transverse orientation limits the fluid flow from passing through the trabeculae due to high shear stress disturbance generated within the trabecular bone region. Compared to physiological loading direction (longitudinal orientation), permeability is higher within the range known to trigger a response in bone cells. Additionally, shear stresses also increase with bone surface area. This study suggests the shear stress within bone marrow in real trabecular architecture could provide the mechanical signal to marrow cells that leads to bone anabolism and can depend on trabecular orientation.
Collapse
|
4
|
Weinstein RS, Hogan EA, Borrelli MJ, Liachenko S, O’Brien CA, Manolagas SC. The Pathophysiological Sequence of Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Male Mice. Endocrinology 2017; 158:3817-3831. [PMID: 28938402 PMCID: PMC5695837 DOI: 10.1210/en.2017-00662] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022]
Abstract
In search of the sequence of pathogenic events leading to glucocorticoid-induced osteonecrosis, we determined the molecular, biomechanical, cellular, and vascular changes in the femur of C57BL/6 mice receiving prednisolone for 14, 28, or 42 days. The femoral head, but not the distal femur, of mice treated for 14 days showed a decrease in the expression of the hypoxia-inducible factor (Hif)-1α and vascular endothelial growth factor (VEGF), the number of osteoblasts, and bone formation rate and strength and showed an increase in osteoclasts. These changes were accompanied by conversion of the normal dendritic vasculature to pools of edema as detected by magnetic resonance imaging, providing robust diagnostic evidence of early osteonecrosis. At that time point, there were no detectable changes in bone density, cortical or cancellous bone architecture, midshaft or distal cancellous bone, or osteocyte apoptosis. In mice treated for 28 days, femoral head cancellous density, cortical width, and trabecular thickness decreased, and by 42 days the femoral heads had full-depth cortical penetrations and cancellous tissue osteonecrosis. These results indicate that the femoral head is a particularly sensitive anatomical site to the adverse effects of glucocorticoid excess on bone and that decreases of Hif-1α and VEGF expression, bone vascularity, and strength precede the loss of bone mass and microarchitectural deterioration, thus rendering the femoral head vulnerable to collapse.
Collapse
Affiliation(s)
- Robert S. Weinstein
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Erin A. Hogan
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Michael J. Borrelli
- Department of Radiology, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Serguei Liachenko
- National Center for Toxicological Research/Food and Drug Administration, Jefferson, Arkansas 72079
| | - Charles A. O’Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Stavros C. Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
5
|
Liu Y, Cui Y, Zhang X, Gao X, Su Y, Xu B, Wu T, Chen W, Cui L. Effects of salvianolate on bone metabolism in glucocorticoid-treated lupus-prone B6.MRL-Fas (lpr) /J mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2535-46. [PMID: 27563234 PMCID: PMC4984994 DOI: 10.2147/dddt.s110125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aim To investigate the bone-protective effects of salvianolate (Sal), a total polyphenol from Radix Salviae miltiorrhizae, on bone tissue in the spontaneous lupus-prone mouse model, B6.MRL-Faslpr/J, undergoing glucocorticoid (GC) treatment. Methods Fifteen-week-old female B6.MRL-Faslpr/J mice were administered either a daily dose of saline (lupus group), prednisone 6 mg/kg (GC group), Sal 60 mg/kg (Sal group); or GC plus Sal (GC + Sal group) for a duration of 12 weeks. Age-matched female C57BL/6J wild-type (WT) mice were used for control. Micro-computed tomography assessments, bone histomorphometry analysis, bone biomechanical test, immunohistochemistry and immunoblotting analysis for bone markers, and renal histology analysis were performed to support our research endeavor. Results Lupus mice developed a marked bone loss and deterioration of mechanical properties of bone due to an increase in bone resorption rather than suppression of bone formation. GC treatment strongly inhibited bone formation in lupus mice. Sal treatment significantly attenuated osteogenic inhibition, and also suppressed hyperactive bone resorption, which recovered the bone mass and mechanical properties of bone in both the untreated and GC-treated lupus mice. Conclusion The data support further preclinical investigation of Sal as a potential therapeutic strategy for the treatment of systemic lupus erythematosus-related bone loss.
Collapse
Affiliation(s)
- Yanzhi Liu
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou City; Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang
| | - Yang Cui
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangzhou
| | - Xiao Zhang
- Department of Rheumatology, Guangdong Provincial People's Hospital, Guangzhou
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Yanjie Su
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang
| | - Bilian Xu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang
| | - Tie Wu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang
| | - Wenshuang Chen
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang
| | - Liao Cui
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou City; Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang
| |
Collapse
|
6
|
Granke M, Does MD, Nyman JS. The Role of Water Compartments in the Material Properties of Cortical Bone. Calcif Tissue Int 2015; 97:292-307. [PMID: 25783011 PMCID: PMC4526331 DOI: 10.1007/s00223-015-9977-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022]
Abstract
Comprising ~20% of the volume, water is a key determinant of the mechanical behavior of cortical bone. It essentially exists in two general compartments: within pores and bound to the matrix. The amount of pore water-residing in the vascular-lacunar-canalicular space-primarily reflects intracortical porosity (i.e., open spaces within the matrix largely due to Haversian canals and resorption sites) and as such is inversely proportional to most mechanical properties of bone. Movement of water according to pressure gradients generated during dynamic loading likely confers hydraulic stiffening to the bone as well. Nonetheless, bound water is a primary contributor to the mechanical behavior of bone in that it is responsible for giving collagen the ability to confer ductility or plasticity to bone (i.e., allows deformation to continue once permanent damage begins to form in the matrix) and decreases with age along with fracture resistance. Thus, dehydration by air-drying or by solvents with less hydrogen bonding capacity causes bone to become brittle, but interestingly, it also increases stiffness and strength across the hierarchical levels of organization. Despite the importance of matrix hydration to fracture resistance, little is known about why bound water decreases with age in hydrated human bone. Using (1)H nuclear magnetic resonance (NMR), both bound and pore water concentrations in bone can be measured ex vivo because the proton relaxation times differ between the two water compartments, giving rise to two distinct signals. There are also emerging techniques to measure bound and pore water in vivo with magnetic resonance imaging (MRI). The NMR/MRI-derived bound water concentration is positively correlated with both the strength and toughness of hydrated bone and may become a useful clinical marker of fracture risk.
Collapse
Affiliation(s)
- Mathilde Granke
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark D. Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
| |
Collapse
|
7
|
Abstract
Bone fragility is a major health concern, as the increased risk of bone fractures has devastating outcomes in terms of mortality, decreased autonomy, and healthcare costs. Efforts made to address this problem have considerably increased our knowledge about the mechanisms that regulate bone formation and resorption. In particular, we now have a much better understanding of the cellular events that are triggered when bones are mechanically stimulated and how these events can lead to improvements in bone mass. Despite these findings at the molecular level, most exercise intervention studies reveal either no effects or only minor benefits of exercise programs in improving bone mineral density (BMD) in osteoporotic patients. Nevertheless, and despite that BMD is the gold standard for diagnosing osteoporosis, this measure is only able to provide insights regarding the quantity of bone tissue. In this article, we review the complex structure of bone tissue and highlight the concept that its mechanical strength stems from the interaction of several different features. We revisited the available data showing that bone mineralization degree, hydroxyapatite crystal size and heterogeneity, collagen properties, osteocyte density, trabecular and cortical microarchitecture, as well as whole bone geometry, are determinants of bone strength and that each one of these properties may independently contribute to the increased or decreased risk of fracture, even without meaningful changes in aBMD. Based on these findings, we emphasize that while osteoporosis (almost) always causes bone fragility, bone fragility is not always caused just by osteoporosis, as other important variables also play a major role in this etiology. Furthermore, the results of several studies showing compelling data that physical exercise has the potential to improve bone quality and to decrease fracture risk by influencing each one of these determinants are also reviewed. These findings have meaningful clinical repercussions as they emphasize the fact that, even without leading to improvements in BMD, exercise interventions in patients with osteoporosis may be beneficial by improving other determinants of bone strength.
Collapse
|
8
|
Cloete TJ, Paul G, Ismail EB. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130210. [PMID: 24711493 PMCID: PMC3982653 DOI: 10.1098/rsta.2013.0210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Detailed knowledge of the dynamic viscoelastic properties of bone is required to understand the mechanisms of macroscopic bone fracture in humans, and other terrestrial mammals, during impact loading events (e.g. falls, vehicle accidents, etc.). While the dynamic response of bone has been studied for several decades, high-quality data remain limited, and it is only within the last decade that techniques for conducting dynamic compression tests on bone at near-constant strain rates have been developed. Furthermore, there appears to be a lack of published bone data in the intermediate strain rate (ISR) range (i.e. 1-100 s(-1)), which represents a regime in which many dynamic bone fractures occur. In this paper, preliminary results for the dynamic compression of bovine cortical bone in the ISR regime are presented. The results are obtained using two Hopkinson-bar-related techniques, namely the conventional split Hopkinson bar arrangement incorporating a novel cone-in-tube striker design, and the recently developed wedge bar apparatus. The experimental results show a rapid transition in the strain rate sensitive behaviour of bovine cortical bone in the ISR range. Finally, a new viscoelastic model is proposed that captures the observed transition behaviour.
Collapse
Affiliation(s)
- T. J. Cloete
- Blast Impact and Survivability Research Unit (BISRU), University of Cape Town, Private bag X3, Rondebosch 7701, South Africa
- Department of Mechanical Engineering, University of Cape Town, Private bag X3, Rondebosch 7701, South Africa
| | - G. Paul
- Blast Impact and Survivability Research Unit (BISRU), University of Cape Town, Private bag X3, Rondebosch 7701, South Africa
- Department of Mechanical Engineering, University of Cape Town, Private bag X3, Rondebosch 7701, South Africa
| | - E. B. Ismail
- Blast Impact and Survivability Research Unit (BISRU), University of Cape Town, Private bag X3, Rondebosch 7701, South Africa
- Department of Mechanical Engineering, University of Cape Town, Private bag X3, Rondebosch 7701, South Africa
| |
Collapse
|
9
|
Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength. J Biomech 2013; 46:2115-21. [DOI: 10.1016/j.jbiomech.2013.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/29/2013] [Accepted: 07/05/2013] [Indexed: 11/20/2022]
|
10
|
Currey JD, Shahar R. Cavities in the compact bone in tetrapods and fish and their effect on mechanical properties. J Struct Biol 2013; 183:107-22. [PMID: 23664869 DOI: 10.1016/j.jsb.2013.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/12/2023]
Abstract
Bone includes cavities in various length scales, from nanoporosities occurring between the collagen fibrils and the mineral crystals all the way to macrocavities like the medullary cavity. In particular, bone is permeated by a vast number of channels (the lacunar-canalicular system), that reduce the stiffness and, more importantly, the strength of the bone that they permeate. These consequences are presumably a price worth paying for the ability of the lacunar-canalicular system to detect changes in the strain environment within the bone material and, when deleterious, to trigger processes like modeling or remodeling which 'rectify' it. Here we review the size and density of the various types of cavities in bone, and discuss their effect on the mechanical properties of cortical bone. In this respect the bones of advanced teleost fish species (probably the majority of all vertebrate species) are an unsolved conundrum because they lack bone cells (and therefore lacunae and canaliculi) in their skeleton. Yet, despite being acellular, some of these fish can undergo considerable remodeling in at least some parts of their skeleton. We address, but do not solve this mystery.
Collapse
Affiliation(s)
- John D Currey
- Department of Biology, University of York, York YO10 5DD, UK.
| | | |
Collapse
|
11
|
Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis. PLoS One 2012; 7:e34647. [PMID: 22493705 PMCID: PMC3321026 DOI: 10.1371/journal.pone.0034647] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/05/2012] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10−6 mol/L to 10−7 mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with or without adipocyte inducement in MSC. We conclude that Sal B prevented bone loss in GC-treated rats through stimulation of osteogenesis, bone marrow angiogenesis and inhibition of adipogenesis.
Collapse
|
12
|
Lemaire T, Lemonnier S, Naili S. On the paradoxical determinations of the lacuno-canalicular permeability of bone. Biomech Model Mechanobiol 2011; 11:933-46. [DOI: 10.1007/s10237-011-0363-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022]
|
13
|
Weinstein RS, O'Brien CA, Almeida M, Zhao H, Roberson PK, Jilka RL, Manolagas SC. Osteoprotegerin prevents glucocorticoid-induced osteocyte apoptosis in mice. Endocrinology 2011; 152:3323-31. [PMID: 21771887 PMCID: PMC3159783 DOI: 10.1210/en.2011-0170] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The adverse skeletal effects of glucocorticoid excess are due to increased osteoclast survival, decreased production of osteoblasts, and increased apoptosis of osteoblasts and osteocytes, but it remains unknown which of these is the principle cause of the decrease in bone strength. Previous studies suggested that osteocytes contribute to bone strength independently of changes in bone mass. Administration of the receptor activator for nuclear factor κB ligand (RANKL) antagonist osteoprotegerin (OPG) rapidly decreases osteoclasts followed by a decrease in osteoblasts but should not affect the long-lived osteocytes. Therefore, to distinguish between glucocorticoid effects on osteoclasts, osteoblasts, or osteocytes, we administered glucocorticoids, alone or in combination with OPG with the fragment crystallizable region of Ig heavy chains (OPG-Fc), to mice. The suppressive effect of glucocorticoids on spinal bone mineral density, cortical thickness, and strength was prevented by OPG-Fc. OPG-Fc, with or without glucocorticoids, profoundly reduced osteoclasts, osteoblasts, and bone formation. Unexpectedly, OPG-Fc prevented the glucocorticoid-induced increase in osteocyte apoptosis and reduction in solute transport from the systemic circulation to the osteocyte-lacunar-canalicular network. The fluid in the osteocyte-lacunar-canalicular network was inversely related to osteocyte apoptosis and directly related to bone mineral density. Consistent with the in vivo findings, Both OPG-Fc and OPG decreased glucocorticoid-induced apoptosis of MLO-Y4 osteocytic cells. OPG can also bind and antagonizes the activity of the TNF-related apoptosis-inducing ligand (TRAIL), but glucocorticoids did not change TRAIL expression, and knockdown of TRAIL did not prevent OPG-Fc from reducing glucocorticoid-induced osteocyte apoptosis. Based on these results, we conclude that at least part of the OPG-induced preservation of bone strength is due to the maintenance of osteocyte viability and the lacunar-canalicular network.
Collapse
Affiliation(s)
- Robert S Weinstein
- Division of Endocrinology and Metabolism, Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Fonseca H, Moreira-Gonçalves D, Esteves JLS, Viriato N, Vaz M, Mota MP, Duarte JA. Voluntary exercise has long-term in vivo protective effects on osteocyte viability and bone strength following ovariectomy. Calcif Tissue Int 2011; 88:443-54. [PMID: 21416225 DOI: 10.1007/s00223-011-9476-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/25/2011] [Indexed: 12/12/2022]
Abstract
Osteocytes are recognized as having a pivotal role in bone tissue homeostasis, and stimuli that increase osteocyte death result in decreased bone tissue quality. Previous in vitro studies have shown that mechanical stimulation prevents osteocyte death; however, in vivo evidence of this protective effect is limited. The aim of this study was to investigate if mechanical stimulation provided by voluntary exercise reduces osteocyte death caused by estrogen deficiency. Thirty-two female Wistar rats (5 months old) were either sacrificed as baseline controls (BSL, n = 7), ovariectomized or sham-operated and housed in cages with a voluntary running wheel (OVXEX, n = 7; SHAMEX, n = 6), or ovariectomized or sham-operated and housed in standard cages of equivalent size (OVXSED, n = 6; SHAMSED, n = 6) and sacrificed at age 14 months. Histomorphometric analysis of femur mid-diaphysis cortical bone revealed a significantly higher osteocyte number (N.Ot) and lower empty lacunae number (N.Lc) in both the OVXEX and SHAMEX groups compared to their SED counterparts. Intracortical porosity (Po.Ar) was also lower in both EX groups compared to their SED counterparts and significantly correlated with N.Lc (r = 0.616; P < 0.001). Three-point bending testing showed a significantly higher Young's modulus and ultimate stress in OVXEX compared to OVXSED and significant correlations between N.Lc and both yield stress (r = -0.376, P < 0.05) and ultimate stress (r = -0.369, P < 0.05) and between intracortical porosity and bone ultimate stress (r = -0.451, P < 0.05). Our results show that voluntary exercise prevented osteocyte death and that this protective effect was associated with increases in femur ultimate stress, which could be partially explained by decreases in Po.Ar.
Collapse
|
15
|
Johnson T, Socrate S, Boyce M. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates. Acta Biomater 2010; 6:4073-80. [PMID: 20417735 DOI: 10.1016/j.actbio.2010.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/17/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
The stress-strain behavior of cortical bone is well known to be strain-rate dependent, exhibiting both viscoelastic and viscoplastic behavior. Viscoelasticity has been demonstrated in literature data with initial modulus increasing by more than a factor of 2 as applied strain rate is increased from 0.001 to 1500 s(-1). A strong dependence of yield on strain rate has also been reported in the literature, with the yield stress at 250 s(-1) having been observed to be more than twice that at 0.001 s(-1), demonstrating the material viscoplasticity. Constitutive models which capture this rate-dependent behavior from very low to very high strain rates are required in order to model and simulate the full range of loading conditions which may be experienced in vivo; particularly those involving impact, ballistic and blast events. This paper proposes a new viscoelastic, viscoplastic constitutive model which has been developed to meet these requirements. The model is fitted to three sets of stress-strain measurements from the literature and shown to be valid at strain rates ranging over seven orders of magnitude.
Collapse
|
16
|
Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 2010; 31:266-300. [PMID: 20051526 PMCID: PMC3365845 DOI: 10.1210/er.2009-0024] [Citation(s) in RCA: 876] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogen deficiency has been considered the seminal mechanism of osteoporosis in both women and men, but epidemiological evidence in humans and recent mechanistic studies in rodents indicate that aging and the associated increase in reactive oxygen species (ROS) are the proximal culprits. ROS greatly influence the generation and survival of osteoclasts, osteoblasts, and osteocytes. Moreover, oxidative defense by the FoxO transcription factors is indispensable for skeletal homeostasis at any age. Loss of estrogens or androgens decreases defense against oxidative stress in bone, and this accounts for the increased bone resorption associated with the acute loss of these hormones. ROS-activated FoxOs in early mesenchymal progenitors also divert ss-catenin away from Wnt signaling, leading to decreased osteoblastogenesis. This latter mechanism may be implicated in the pathogenesis of type 1 and 2 diabetes and ROS-mediated adverse effects of diabetes on bone formation. Attenuation of Wnt signaling by the activation of peroxisome proliferator-activated receptor gamma by ligands generated from lipid oxidation also contributes to the age-dependent decrease in bone formation, suggesting a mechanistic explanation for the link between atherosclerosis and osteoporosis. Additionally, increased glucocorticoid production and sensitivity with advancing age decrease skeletal hydration and thereby increase skeletal fragility by attenuating the volume of the bone vasculature and interstitial fluid. This emerging evidence provides a paradigm shift from the "estrogen-centric" account of the pathogenesis of involutional osteoporosis to one in which age-related mechanisms intrinsic to bone and oxidative stress are protagonists and age-related changes in other organs and tissues, such as ovaries, accentuate them.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205-7199, USA.
| |
Collapse
|
17
|
Weinstein RS, Wan C, Liu Q, Wang Y, Almeida M, O'Brien CA, Thostenson J, Roberson PK, Boskey AL, Clemens TL, Manolagas SC. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell 2010; 9:147-61. [PMID: 20047574 DOI: 10.1111/j.1474-9726.2009.00545.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging or glucocorticoid excess decrease bone strength more than bone mass in humans and mice, but an explanation for this mismatch remains elusive. We report that aging in C57BL/6 mice was associated with an increase in adrenal production of glucocorticoids as well as bone expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1, the enzyme that activates glucocorticoids. Aging also decreased the volume of the bone vasculature and solute transport from the peripheral circulation to the lacunar-canalicular system. The same changes were reproduced by pharmacologic hyperglucocorticoidism. Furthermore, mice in which osteoblasts and osteocytes were shielded from glucocorticoids via cell-specific transgenic expression of 11beta-HSD type 2, the enzyme that inactivates glucocorticoids, were protected from the adverse effects of aging on osteoblast and osteocyte apoptosis, bone formation rate and microarchitecture, crystallinity, vasculature volume, interstitial fluid, and strength. In addition, glucocorticoids suppressed angiogenesis in fetal metatarsals and hypoxia inducible factor-1alpha transcription and vascular endothelial growth factor production in osteoblasts and osteocytes. These results, together with the evidence that dehydration of bone decreases strength, reveal that endogenous glucocorticoids increase skeletal fragility in old age as a result of cell autonomous effects on osteoblasts and osteocytes leading to interconnected decrements in bone angiogenesis, vasculature volume, and osteocyte-lacunar-canalicular fluid.
Collapse
Affiliation(s)
- Robert S Weinstein
- Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Weinstein RS. Glucocorticoids, osteocytes, and skeletal fragility: the role of bone vascularity. Bone 2010; 46:564-70. [PMID: 19591965 PMCID: PMC2823999 DOI: 10.1016/j.bone.2009.06.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 01/23/2023]
Abstract
Glucocorticoid administration is required for many inflammatory and autoimmune diseases, but use of these drugs is associated with skeletal side effects including bone loss, fractures, and osteonecrosis. Fractures often occur without a reduction in bone mineral density, strongly suggesting that glucocorticoid excess adversely affects other aspects of bone strength. Although the primary effects of glucocorticoid excess on the skeleton are directly on bone cells, a vascular connection between these cells and the loss of bone strength appears likely. This review examines this connection and how it may explain the greater decline in bone strength than loss of bone mass that occurs with glucocorticoid excess.
Collapse
Affiliation(s)
- Robert S Weinstein
- Department of Internal Medicine and the Central Arkansas Veterans Healthcare System,University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| |
Collapse
|
19
|
Goldenstein J, Kazakia G, Majumdar S. In vivo evaluation of the presence of bone marrow in cortical porosity in postmenopausal osteopenic women. Ann Biomed Eng 2009; 38:235-46. [PMID: 19953321 PMCID: PMC2815796 DOI: 10.1007/s10439-009-9850-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 11/17/2009] [Indexed: 11/28/2022]
Abstract
This is the first observational study examining cortical porosity in vivo in postmenopausal osteopenic women and to incorporate data from two different imaging modalities to further examine the nature of cortical porosity. The goal of this study was to combine high-resolution peripheral computed tomography (HR-pQCT) images, which contain high spatial resolution information of the cortical structure, and magnetic resonance (MR) images, which allow the visualization of soft tissues such as bone marrow, to observe the amount of cortical porosity that contains bone marrow in postmenopausal osteopenic women. The radius of 49 and the tibia of 51 postmenopausal osteopenic women (age 56 ± 3.7) were scanned using both HR-pQCT and MR imaging. A normalized mutual information registration algorithm was used to obtain a three-dimensional rigid transform which aligned the MR image to the HR-pQCT image. The aligned images allowed for the visualization of bone marrow in cortical pores. From the HR-pQCT image, the percent cortical porosity, the number of cortical pores, and the size of each cortical pore was determined. By overlaying the aligned MR and HR-pQCT images, the percent of cortical pores containing marrow, the number of cortical pores containing marrow, and the size of each cortical pore containing marrow were measured. While the amount of cortical porosity did not vary greatly between subjects, the type of cortical pore, containing marrow vs. not containing marrow, varied highly between subjects. The results suggest that cortical pore spaces contain components of varying composition, and that there may be more than one mechanism for the development of cortical porosity.
Collapse
Affiliation(s)
- Janet Goldenstein
- Musculoskeletal and Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | | | | |
Collapse
|
20
|
Deligianni DD, Apostolopoulos CA. Multilevel finite element modeling for the prediction of local cellular deformation in bone. Biomech Model Mechanobiol 2007; 7:151-9. [PMID: 17431696 DOI: 10.1007/s10237-007-0082-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
The underlying mechanisms by which bone cells respond to mechanical stimuli or how mechanical loads act on osteocytes housed in lacunae in bone are not well understood. In this study, a multilevel finite element (FE) approach is applied to predict local cell deformations in bone tissue. The local structure of the matrix dictates the local mechanical environment of an osteocyte. Cell deformations are predicted from detailed linear FE analysis of the microstructure, consisting of an arrangement of cells embedded in bone matrix material. This work has related the loads applied to a whole femur during the stance phase of the gait cycle to the strain of a single lacuna and of canaliculi. The predicted bone matrix strains around osteocyte lacunae and canaliculi were nonuniform and differed significantly from the macroscopically measured strains. Peak stresses and strains in the walls of the lacuna were up to six times those in the bulk extracellular matrix. Significant strain concentrations were observed at sites where the process meets the cell body.
Collapse
Affiliation(s)
- D D Deligianni
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering and Aeronautics, University of Patras, Rion, 26500, Greece.
| | | |
Collapse
|