1
|
Zhu Y, Babazadeh-Naseri A, Brake MRW, Akin JE, Li G, Lewis VO, Fregly BJ. Evaluation of finite element modeling methods for predicting compression screw failure in a custom pelvic implant. Front Bioeng Biotechnol 2024; 12:1420870. [PMID: 39234264 PMCID: PMC11372789 DOI: 10.3389/fbioe.2024.1420870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction: Three-dimensional (3D)-printed custom pelvic implants have become a clinically viable option for patients undergoing pelvic cancer surgery with resection of the hip joint. However, increased clinical utilization has also necessitated improved implant durability, especially with regard to the compression screws used to secure the implant to remaining pelvic bone. This study evaluated six different finite element (FE) screw modeling methods for predicting compression screw pullout and fatigue failure in a custom pelvic implant secured to bone using nine compression screws. Methods: Three modeling methods (tied constraints (TIE), bolt load with constant force (BL-CF), and bolt load with constant length (BL-CL)) generated screw axial forces using functionality built into Abaqus FE software; while the remaining three modeling methods (isotropic pseudo-thermal field (ISO), orthotropic pseudo-thermal field (ORT), and equal-and-opposite force field (FOR)) generated screw axial forces using iterative physics-based relationships that can be implemented in any FE software. The ability of all six modeling methods to match specified screw pretension forces and predict screw pullout and fatigue failure was evaluated using an FE model of a custom pelvic implant with total hip replacement. The applied hip contact forces in the FE model were estimated at two locations in a gait cycle. For each of the nine screws in the custom implant FE model, likelihood of screw pullout failure was predicted using maximum screw axial force, while likelihood of screw fatigue failure was predicted using maximum von Mises stress. Results: The three iterative physics-based modeling methods and the non-iterative Abaqus BL-CL method produced nearly identical predictions for likelihood of screw pullout and fatigue failure, while the other two built-in Abaqus modeling methods yielded vastly different predictions. However, the Abaqus BL-CL method required the least computation time, largely because an iterative process was not needed to induce specified screw pretension forces. Of the three iterative methods, FOR required the fewest iterations and thus the least computation time. Discussion: These findings suggest that the BL-CL screw modeling method is the best option when Abaqus is used for predicting screw pullout and fatigue failure in custom pelvis prostheses, while the iterative physics-based FOR method is the best option if FE software other than Abaqus is used.
Collapse
Affiliation(s)
- Yuhui Zhu
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Ata Babazadeh-Naseri
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Matthew R W Brake
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - John E Akin
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Geng Li
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Valerae O Lewis
- Department of Orthopedic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Benjamin J Fregly
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
2
|
Kou W, Liang Y, Wang Z, Liang Q, Sun L, Kuang S. An Integrated Method of Biomechanics Modeling for Pelvic Bone and Surrounding Soft Tissues. Bioengineering (Basel) 2023; 10:736. [PMID: 37370667 DOI: 10.3390/bioengineering10060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The pelvis and its surrounding soft tissues create a complicated mechanical environment that greatly affects the success of fixing broken pelvic bones with surgical navigation systems and/or surgical robots. However, the modeling of the pelvic structure with the more complex surrounding soft tissues has not been considered in the current literature. The study developed an integrated finite element model of the pelvis, which includes bone and surrounding soft tissues, and verified it through experiments. Results from the experiments showed that including soft tissue in the model reduced stress and strain on the pelvis compared to when it was not included. The stress and strain distribution during pelvic loading was similar to what is typically seen in research studies and more accurate in modeling the pelvis. Additionally, the correlation with the experimental results from the predecessor's study was strong (R2 = 0.9627). The results suggest that the integrated model established in this study, which includes surrounding soft tissues, can enhance the comprehension of the complex biomechanics of the pelvis and potentially advance clinical interventions and treatments for pelvic injuries.
Collapse
Affiliation(s)
- Wei Kou
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China
| | - Yefeng Liang
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China
| | - Zhixing Wang
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China
| | - Qingxi Liang
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China
| | - Lining Sun
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China
| | - Shaolong Kuang
- Department of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China
- College of Health Science and Environment Engineering, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
3
|
Peng L, Wu Y, Lakshminarayanan K, Zhang A, Gan Y, Li Y, Yao Y. The relationship between shear wave velocity in transverse carpal ligament and carpal tunnel pressure: A finite element analysis. Med Eng Phys 2023; 116:103995. [PMID: 37230698 DOI: 10.1016/j.medengphy.2023.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Elevated carpal tunnel pressure in carpal tunnel syndrome (CTS) patients is one of the major causes of nerve damage but cannot be measured non-invasively. This study proposed to use shear wave velocity (SWV) in the transverse carpal ligament (TCL) to measure the surrounding carpal tunnel pressure. The relationship between the carpal tunnel pressure and the SWV in the TCL was investigated through a subject-specific carpal tunnel finite element model reconstrued by MRI imaging. Parametric analysis was conducted to study the effect of TCL Young's modulus and carpal tunnel pressure on the TCL SWV. The SWV in TCL was found to be strongly dependent on the carpal tunnel pressure and TCL Young's modulus. The calculated SWV ranged from 8.0 m/s to 22.6 m/s under a combination of carpal tunnel pressure (0-200 mmHg) and TCL Young's modulus (1.1-11 MPa). An empirical equation was used to fit the relationship between the SWV in TCL and carpal tunnel pressure, with TCL Young's modulus as a confounding factor. The equation proposed in this study provided an approach to estimate carpal tunnel pressure by measuring the SWV in the TCL for a potential non-invasive diagnosis of CTS and may shed light on the mechanical nerve damage mechanism.
Collapse
Affiliation(s)
- Linjing Peng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yu Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Olin College of Engineering, 1000 Olin Way, Needham, 02492, US
| | - Kishor Lakshminarayanan
- Department of Sensors and Biomedical Engineering, Vellore Institute of Technology, Ranipet Katpadi Road Vellore, 632 014, Tamil Nadu, India
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yaokai Gan
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Department of Orthopedics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China, 200011
| | - Yiming Li
- Department of Orthopedics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China, 200011
| | - Yifei Yao
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| |
Collapse
|
4
|
Effect of osteoporosis-related reduction in the mechanical properties of bone on the acetabular fracture during a sideways fall: A parametric finite element approach. PLoS One 2022; 17:e0263458. [PMID: 35130332 PMCID: PMC8820641 DOI: 10.1371/journal.pone.0263458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose The incidence of acetabular fractures due to low-energy falls is increasing among the geriatric population. Studies have shown that several biomechanical factors such as body configuration, impact velocity, and trochanteric soft-tissue thickness contribute to the severity and type of acetabular fracture. The effect of reduction in apparent density and elastic modulus of bone as well as other bone mechanical properties due to osteoporosis on low-energy acetabular fractures has not been investigated. Methods The current comprehensive finite element study aimed to study the effect of reduction in bone mechanical properties (trabecular, cortical, and trabecular + cortical) on the risk and type of acetabular fracture. Also, the effect of reduction in the mechanical properties of bone on the load-transferring mechanism within the pelvic girdle was examined. Results We observed that while the reduction in the mechanical properties of trabecular bone considerably affects the severity and area of trabecular bone failure, reduction in mechanical properties of cortical bone moderately influences both cortical and trabecular bone failure. The results also indicated that by reducing bone mechanical properties, the type of acetabular fracture turns from elementary to associated, which requires a more extensive intervention and rehabilitation period. Finally, we observed that the cortical bone plays a substantial role in load transfer, and by increasing reduction in the mechanical properties of cortical bone, a greater share of load is transmitted toward the pubic symphysis. Conclusion This study increases our understanding of the effect of osteoporosis progression on the incidence of low-energy acetabular fractures. The osteoporosis-related reduction in the mechanical properties of cortical bone appears to affect both the cortical and trabecular bones. Also, during the extreme reduction in the mechanical properties of bone, the acetabular fracture type will be more complicated. Finally, during the final stages of osteoporosis (high reduction in mechanical properties of bone) a smaller share of impact load is transferred by impact-side hemipelvis to the sacrum, therefore, an osteoporotic pelvis might mitigate the risk of sacral fracture.
Collapse
|
5
|
Shi Y, Xie YZ, Zhou Q, Yu Y, Fan XH. The biomechanical effect of the relevant segments after facet-disectomy in different diameters under posterior lumbar percutaneous endoscopes: a three-dimensional finite element analysis. J Orthop Surg Res 2021; 16:593. [PMID: 34649582 PMCID: PMC8515756 DOI: 10.1186/s13018-021-02733-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To evaluate the biomechanical influence after percutaneous endoscopic lumbar facetectomy in different diameters on segmental range of motion (ROM) and intradiscal pressure (IDP) of the relevant segments by establishing three dimensional finite element (FE) model. METHODS An intact L3-5 model was successfully constructed from the CT of a healthy volunteer as Model A (MA). The Model B (MB), Model C (MC) and Model D (MD) were obtained through facetectomy on L4 inferior facet in diameters 7.5 mm, 10 mm and 15 mm on MA for simulation. The ROM and IDP of L3/4 and L4/5 of four models were all compared in forward flexion, backward extension, left and right bending, left and right rotation. RESULTS Compared with MA, the ROM of L4/5 of MB, MC and MD all increased. MD changed more significantly than MB and MC in backward extension, right bending and right rotation. But that of MB and MC on L3/4 had no prominent change, while MD had a slight increase in backward extension. The IDP of MB and MC on L4/5 in six states was similar to MA, yet MD increased obviously in backward extension, right bending, left and right rotation. The IDP on L3/4 of MB and MC was resemble to MA in six conditions, nevertheless MD increased slightly only in backward extension. CONCLUSION Compared with the facetectomy in diameters 7.5 mm and 10 mm, the mechanical effect brought by facetectomy in diameter 15 mm on the operating segment changed more significantly, and had a corresponding effect on the adjacent segments.
Collapse
Affiliation(s)
- Yin Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Yi-Zhou Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Qun Zhou
- Chengdu University of Traditional Chinese Medicine, No. 1166 Liu-tai Avenue, Chengdu, 611137 Sichuan Province People’s Republic of China
| | - Yang Yu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Xiao-Hong Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| |
Collapse
|
6
|
Salo Z, Kreder H, Whyne CM. The Impact of an Open-Book Pelvic Ring Injury on Bone Strain: Validation of a Finite Element Model and Analysis Within the Gait Cycle. J Biomech Eng 2021; 143:071005. [PMID: 33704380 DOI: 10.1115/1.4050459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Indexed: 11/08/2022]
Abstract
The threshold for surgical stabilization for an open-book pelvic fracture is not well defined. The purpose of this research was to validate the biomechanical behavior of a specimen-specific pelvic finite element (FE) model with an open-book fracture with the biomechanical behavior of a cadaveric pelvis in double leg stance configuration under physiologic loading, and to utilize the validated model to compare open book versus intact strain patterns during gait. A cadaveric pelvis was experimentally tested under compressive loading in double leg stance, intact, and with a simulated open-book fracture. An intact FE model of this specimen was reanalyzed with an equivalent simulated open-book fracture. Comparison of the FE generated and experimentally measured strains yielded an R2 value of 0.92 for the open-book fracture configuration. Strain patterns in the intact and fractured models were compared throughout the gait cycle. In double leg stance and heel-strike/heel-off models, tensile strains decreased, especially in the pubic ramus contralateral to the injury, and compressive strains increased in the sacroiliac region of the injured side. In the midstance/midswing gait configuration, higher tensile and compressive FE strains were observed on the midstance side of the fractured versus intact model and decreased along the superior and inferior pubic rami and ischium, with midswing side strains reduced almost to zero in the fractured model. Identified in silico patterns align with clinical understanding of open-book fracture pathology suggesting future potential of FE models to quantify instability and optimize fixation strategies.
Collapse
Affiliation(s)
- Zoryana Salo
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M4N 3M5, Canada; Holland Bone and Joint Research Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hans Kreder
- Department of Surgery, Division of Orthopaedics, University of Toronto, Toronto, ON M4N 3M5, Canada; Holland Bone and Joint Research Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Cari Marisa Whyne
- University of Toronto, Institute of Biomaterials and Biomedical Engineering, Toronto, ON M4N 3M5, CanadaHolland Bone and Joint Research Program, Sunnybrook Research Institute, 2075 Bayview Avenue, S6 20, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
7
|
Borges M, Moura R, Oliveira D, Parente M, Mascarenhas T, Natal R. Effect of the birthing position on its evolution from a biomechanical point of view. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105921. [PMID: 33422852 DOI: 10.1016/j.cmpb.2020.105921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE During vaginal delivery, several positions can be adopted by the mother to be more comfortable and to help the labor process. The positions chosen are very influenced by factors such as monitoring and intervention during the second stage of labor. However, there is limited evidence to support the most ideal birthing position. This work aims at contributing to a better knowledge associated with the widening of the pubic symphysis and the biomechanics of flexible and non-flexible sacrum positions that can be adopted during the second stage of labor, as well as their resulting pathophysiological consequences. METHODS A validated computational model composed by the pelvic floor muscles attached to the bones, and a fetus head was used to simulate vaginal deliveries. This model was modified to mimic two birthing positions: one that allows the free movement of the coccyx as in flexible sacrum positions and other in which this movement is more restricted as in non-flexible sacrum positions. The widening of the pubic symphysis was also considered to facilitate the passage of the fetus head. RESULTS The results obtained showed that, in non-flexible sacrum positions, where the coccyx movement is restricted, occur a rotation of 3.6° of the coccyx and a widening of 6 mm of the pubic symphysis. In contrast, in flexible sacrum positions, where the coccyx is free to move, occur a rotation of 15.7° of the coccyx and a widening of the pubic symphysis of 3 mm, appearing to be more beneficial for the mother's pelvis, but slightly higher stresses were detected in the pelvic floor muscles. CONCLUSIONS Globally, the results obtained allow to conclude that different birthing positions lead to changes in the female pelvic space, so certain positions can be adopted by the mother during the second stage of labor to reduce the risk of obstructed labor and the development of several dysfunctions. More specifically, flexible sacrum positions, such as kneeling, standing, squatting and sitting positions, are more beneficial for the bone structure of her pelvis as they allow a higher coccyx movement and lower widening of the pubic symphysis.
Collapse
Affiliation(s)
- Margarida Borges
- INEGI-LAETA, Faculty of Engineering, University of Porto, Campus FEUP, Rua Dr. Roberto Frias, 400, 4600-465 Porto, Portugal.
| | - Rita Moura
- INEGI-LAETA, Faculty of Engineering, University of Porto, Campus FEUP, Rua Dr. Roberto Frias, 400, 4600-465 Porto, Portugal
| | - Dulce Oliveira
- INEGI-LAETA, Faculty of Engineering, University of Porto, Campus FEUP, Rua Dr. Roberto Frias, 400, 4600-465 Porto, Portugal
| | - Marco Parente
- INEGI-LAETA, Faculty of Engineering, University of Porto, Campus FEUP, Rua Dr. Roberto Frias, 400, 4600-465 Porto, Portugal
| | - Teresa Mascarenhas
- Centro Hospitalar Universitário de São João, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Renato Natal
- INEGI-LAETA, Faculty of Engineering, University of Porto, Campus FEUP, Rua Dr. Roberto Frias, 400, 4600-465 Porto, Portugal
| |
Collapse
|
8
|
The effect of body configuration on the strain magnitude and distribution within the acetabulum during sideways falls: A finite element approach. J Biomech 2020; 114:110156. [PMID: 33302183 DOI: 10.1016/j.jbiomech.2020.110156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/17/2023]
Abstract
While the incidence of hip fractures has declined during the last decades, the incidence of acetabular fractures resulting from low-energy sideways falls has increased, and the mechanisms responsible for this trend remain unknown. Previous studies have suggested that body configuration during the impact plays an important role in a hip fracture. Thus, the aim of this study was to investigate the effect of body configuration angles (trunk tilt angle, trunk flexion angle, femur horizontal rotation angle, and femur diaphysis angle) on low-energy acetabular fractures via a parametric analysis. A computed tomography-based (CT) finite element model of the ground-proximal femur-pelvis complex was created, and strain magnitude, time-history response, and distribution within the acetabulum were evaluated. Results showed that while the trunk tilt angle and femur diaphysis angle have the greatest effect on strain magnitude, the direction of the fall (lateral vs. posterolateral) contributes to strain distribution within the acetabulum. The results also suggest that strain level and distribution within the proximal femur and acetabulum resulting from a sideways fall are not similar and, in some cases, even opposite. Taken together, our simulations suggest that a more horizontal trunk and femoral shaft at the impact phase can increase the risk of low-energy acetabular fractures.
Collapse
|
9
|
Duan J, Wang K, Chang T, Wang L, Zhang S, Niu W. Tai Chi Is Safe and Effective for the Hip Joint: A Biomechanical Perspective. J Aging Phys Act 2020; 28:415-425. [PMID: 31756718 DOI: 10.1123/japa.2019-0129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/10/2019] [Accepted: 09/20/2019] [Indexed: 11/18/2022]
Abstract
There is little research related to the biomechanical effects of Tai Chi on the hip joint. This study was aimed to analyze the biomechanical characteristic of a typical Tai Chi movement, Brush Knee and Twist Step. A total of 12 experienced older men voluntarily participated in this study. Each participant was requested to perform standard Brush Knee and Twist Step and normal walking. The scaled-generic musculoskeletal model of each participant was developed. A finite element model of the hip joint and pelvis was established and validated. Data from each trail were input to the model for simulation, and the biomechanics were compared between Brush Knee and Twist Step and walking. Compared with walking, Tai Chi may have better improvement in the range of motion of the hip joint and the coordination of the neuromuscular system under safer condition. It is suitable for patients with hip osteoarthritis and the older adults with severe muscle loss, and clinical studies are required to confirm it further.
Collapse
|
10
|
Ricci PL, Maas S, Gerich T, Kelm J. Influence of pubic symphysis stiffness on pelvic load distribution during single leg stance. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3319. [PMID: 32017442 DOI: 10.1002/cnm.3319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
This study focuses on the influence of the softening and stiffening of pubic symphysis on the load distribution within the bones of the pelvic ring under the physiological loadings of the single leg stance. Muscle forces and joint reaction forces were first determined by inverse dynamics and applied to a linear finite element model of the pelvis. With normal pubic symphysis stiffness, high Von Mises stresses are located on the anterior surface to the sacrum around the sacroiliac joint and on the superior ramus, both on the side of the weight-bearing leg. Softening of the pubic symphysis redirects the load backward, decreases the stresses at the anterior pelvis, and increases them at the posterior pelvis. A stiffening of the pubic symphysis redirects the load forward, increases the load on the posterior pelvis, and decreases them at the anterior pelvis. This investigation highlights the significance of the pubic symphysis on the load distribution of the pelvis and in maintaining the integrity of the structures. Its role should not be neglected when analyzing the pelvis.
Collapse
Affiliation(s)
- Pierre-Louis Ricci
- University of Luxembourg, Research Unit in Engineering Science, Luxembourg, Luxembourg
| | - Stefan Maas
- University of Luxembourg, Research Unit in Engineering Science, Luxembourg, Luxembourg
| | - Torsten Gerich
- Centre Hospitalier de Luxembourg, Service de Traumatologie, Luxembourg, Luxembourg
| | - Jens Kelm
- Chirurgisch-Orthopädisches Zentrum, Illingen/Saar, Germany
| |
Collapse
|
11
|
Zaharie DT, Phillips ATM. Pelvic Construct Prediction of Trabecular and Cortical Bone Structural Architecture. J Biomech Eng 2019; 140:2678341. [PMID: 29801165 DOI: 10.1115/1.4039894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 11/08/2022]
Abstract
The pelvic construct is an important part of the body as it facilitates the transfer of upper body weight to the lower limbs and protects a number of organs and vessels in the lower abdomen. In addition, the importance of the pelvis is highlighted by the high mortality rates associated with pelvic trauma. This study presents a mesoscale structural model of the pelvic construct and the joints and ligaments associated with it. Shell elements were used to model cortical bone, while truss elements were used to model trabecular bone and the ligaments and joints. The finite element (FE) model was subjected to an iterative optimization process based on a strain-driven bone adaptation algorithm. The bone model was adapted to a number of common daily living activities (walking, stair ascent, stair descent, sit-to-stand, and stand-to-sit) by applying onto it joint and muscle loads derived using a musculoskeletal modeling framework. The cortical thickness distribution and the trabecular architecture of the adapted model were compared qualitatively with computed tomography (CT) scans and models developed in previous studies, showing good agreement. The sensitivity of the model to changes in material properties of the ligaments and joint cartilage and changes in parameters related to the adaptation algorithm was assessed. Changes to the target strain had the largest effect on predicted total bone volumes. The model showed low sensitivity to changes in all other parameters. The minimum and maximum principal strains predicted by the structural model compared to a continuum CT-derived model in response to a common test loading scenario showed good agreement with correlation coefficients of 0.813 and 0.809, respectively. The developed structural model enables a number of applications such as fracture modeling, design, and additive manufacturing of frangible surrogates.
Collapse
Affiliation(s)
- Dan T Zaharie
- The Royal British Legion Centre for Blast Injury Studies, Imperial College London, London SW7 2AZ, UK.,Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, Skempton Building, South Kensington Campus, London SW7 2AZ, UK e-mail:
| | - Andrew T M Phillips
- The Royal British Legion Centre for Blast Injury Studies, , London SW7 2AZ, UK.,Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, , London SW7 2AZ, UK e-mail:
| |
Collapse
|
12
|
In Silico Pelvis and Sacroiliac Joint Motion: Refining a Model of the Human Osteoligamentous Pelvis for Assessing Physiological Load Deformation Using an Inverted Validation Approach. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3973170. [PMID: 30729122 PMCID: PMC6343175 DOI: 10.1155/2019/3973170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023]
Abstract
Introduction. Computational modeling of the human pelvis using the finite elements (FE) method has become increasingly important to understand the mechanisms of load distribution under both healthy and pathologically altered conditions and to develop and assess novel treatment strategies. The number of accurate and validated FE models is however small, and given models fail resembling the physiologic joint motion in particular of the sacroiliac joint. This study is aimed at using an inverted validation approach, using in vitro load deformation data to refine an existing FE model under the same mode of load application and to parametrically assess the influence of altered morphology and mechanical data on the kinematics of the model. Materials and Methods. An osteoligamentous FE model of the pelvis including the fifth lumbar vertebra was used, with highly accurate representations of ligament orientations. Material properties were altered parametrically for bone, cartilage, and ligaments, followed by changes in bone geometry (solid versus 3 and 2 mm shell) and material models (linear elastic, viscoelastic, and hyperelastic isotropic), and the effects of varying ligament fiber orientations were assessed. Results. Elastic modulus changes were more decisive in both linear elastic and viscoelastic bone, cartilage, and ligaments models, especially if shell geometries were used for the pelvic bones. Viscoelastic material properties gave more realistic results. Surprisingly little change was observed as a consequence of altering SIJ ligament orientations. Validation with in vitro experiments using cadavers showed close correlations for movements especially for 3 mm shell viscoelastic model. Discussion. This study has used an inverted validation approach to refine an existing FE model, to give realistic and accurate load deformation data of the osteoligamentous pelvis and showed which variation in the outcomes of the models are attributed to altered material properties and models. The given approach furthermore shows the value of accurate validation and of using the validation data to fine tune FE models.
Collapse
|
13
|
Hammer N, Höch A, Klima S, Le Joncour JB, Rouquette C, Ramezani M. Effects of Cutting the Sacrospinous and Sacrotuberous Ligaments. Clin Anat 2018; 32:231-237. [PMID: 30281852 DOI: 10.1002/ca.23291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/13/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023]
Abstract
The sacrospinous (SS) and sacrotuberous (ST) ligaments form a complex at the posterior pelvis, with an assumed role as functional stabilizers. Experimental and clinical research has yielded controversial results regarding their function, both proving and disproving their role as pelvic stabilizers. These findings have implications for strategies for treating pelvic injury and pain syndromes. The aim of the present simulation study was to assess the influence of altered ligament function on pelvis motion. A finite elements computer model was used. The two-leg stance was simulated, with the load of body weight applied via the fifth lumbar vertebra and both femora, allowing for nutation of the sacroiliac joint. The in-silico kinematics were validated with in-vitro experiments using the same scenario of load application following SS and ST transection in six human cadavers. Modeling of partial or complete ligament failure caused significant increases in pelvis motion. This effect was most pronounced if the SS and ST were affected with 164% and 182%, followed by the sacroiliac and iliolumbar ligaments with 123% and 147%, and the pubic ligaments with 113% and 119%, for partial and complete disruption, respectively. Simultaneous ligament transection multiplied the effects on pelvis motion by up to 490%. Unilateral ligament injury altered the motion at the pelvis contralaterally. The experiments presented here provide strong evidence for the stabilizing role of the SS and ST. A fortiori, the instability resulting from partial or complete SS and ST injury merits consideration in treatment strategies involving these ligaments as important stabilizers. Clin. Anat. 32:231-237, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niels Hammer
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Orthopedic, Trauma and Plastic Surgery, University Clinics of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Machine Tools and Forming Technology IWU, Dresden, Germany
| | - Andreas Höch
- Department of Orthopedic, Trauma and Plastic Surgery, University Clinics of Leipzig, Leipzig, Germany
| | - Stefan Klima
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Orthopedic, Trauma and Plastic Surgery, University Clinics of Leipzig, Leipzig, Germany
| | - Jean-Baptiste Le Joncour
- Supméca-Institut Supérieur de Mécanique de Paris, Paris, France.,Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand
| | - Corentin Rouquette
- Supméca-Institut Supérieur de Mécanique de Paris, Paris, France.,Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand
| | - Maziar Ramezani
- Supméca-Institut Supérieur de Mécanique de Paris, Paris, France
| |
Collapse
|
14
|
Salo Z, Beek M, Wright D, Maloul A, Whyne CM. Analysis of pelvic strain in different gait configurations in a validated cohort of computed tomography based finite element models. J Biomech 2017; 64:120-130. [DOI: 10.1016/j.jbiomech.2017.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/11/2022]
|
15
|
Watson PJ, Dostanpor A, Fagan MJ, Dobson CA. The effect of boundary constraints on finite element modelling of the human pelvis. Med Eng Phys 2017; 43:48-57. [DOI: 10.1016/j.medengphy.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/19/2017] [Accepted: 02/05/2017] [Indexed: 11/27/2022]
|
16
|
Development of a Patient-Specific Finite Element Model for Predicting Implant Failure in Pelvic Ring Fracture Fixation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:9403821. [PMID: 28255332 PMCID: PMC5309420 DOI: 10.1155/2017/9403821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022]
Abstract
Introduction. The main purpose of this study is to develop an efficient technique for generating FE models of pelvic ring fractures that is capable of predicting possible failure regions of osteosynthesis with acceptable accuracy. Methods. Patient-specific FE models of two patients with osteoporotic pelvic fractures were generated. A validated FE model of an uninjured pelvis from our previous study was used as a master model. Then, fracture morphologies and implant positions defined by a trauma surgeon in the preoperative CT were manually introduced as 3D splines to the master model. Four loading cases were used as boundary conditions. Regions of high stresses in the models were compared with actual locations of implant breakages and loosening identified from follow-up X-rays. Results. Model predictions and the actual clinical outcomes matched well. For Patient A, zones of increased tension and maximum stress coincided well with the actual locations of implant loosening. For Patient B, the model predicted accurately the loosening of the implant in the anterior region. Conclusion. Since a significant reduction in time and labour was achieved in our mesh generation technique, it can be considered as a viable option to be implemented as a part of the clinical routine to aid presurgical planning and postsurgical management of pelvic ring fracture patients.
Collapse
|
17
|
Salo Z, Beek M, Wright D, Whyne CM. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: Generation of patient specific models of the human pelvis without segmentation. J Biomech 2015; 48:1125-32. [DOI: 10.1016/j.jbiomech.2015.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
Affiliation(s)
- Zoryana Salo
- University of Toronto Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada
| | - Maarten Beek
- Sunnybrook Research Institute, Holland Musculoskeletal Research Program, Toronto, ON, Canada
| | - David Wright
- Sunnybrook Research Institute, Holland Musculoskeletal Research Program, Toronto, ON, Canada
| | - Cari Marisa Whyne
- Sunnybrook Research Institute, Holland Musculoskeletal Research Program, Toronto, ON, Canada.
| |
Collapse
|
18
|
Böhme J, Lingslebe U, Steinke H, Werner M, Slowik V, Josten C, Hammer N. The extent of ligament injury and its influence on pelvic stability following type II anteroposterior compression pelvic injuries--A computer study to gain insight into open book trauma. J Orthop Res 2014; 32:873-9. [PMID: 24664964 DOI: 10.1002/jor.22618] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/20/2014] [Indexed: 02/04/2023]
Abstract
Surgical stabilization of the pelvis following type II anteroposterior compression pelvic injuries (APCII) is based on the assumption that the anterior sacroiliac, sacrospinous, and sacrotuberous ligaments disrupt simultaneously. Recent data on the ligaments contradict this concept. We aimed at determining the mechanisms of ligament failure in APCII computationally. In an individual osteoligamentous computer model of the pelvis, ligament load, and strain were observed for the two-leg stance, APCII with 100-mm symphyseal widening and for two-leg stance with APCII-related ligament failure, and validated with body donors. The anterior sacroiliac and sacrotuberous ligaments had the greatest load with 80% and 17% of the total load, respectively. APCII causes partial failure of the anterior sacroiliac ligament and the pelvis to become horizontally instable. The other ligaments remained intact. The sacrospinous ligament was negligibly loaded but stabilized the pelvis vertically. The interosseous sacroiliac and sacrotuberous ligaments are likely responsible for reducing the symphysis and might serve as an indicator of vertical stability. The sacrospinous ligament appears to be of minor significance in APCII but plays an important role in vertical stabilization. Further research is necessary to determine the influence of alterations in ligament and bone material properties.
Collapse
Affiliation(s)
- Jörg Böhme
- Department of Trauma and Reconstructive Surgery, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Lottering N, Reynolds MS, MacGregor DM, Meredith M, Gregory LS. Morphometric modelling of ageing in the human pubic symphysis: Sexual dimorphism in an Australian population. Forensic Sci Int 2014; 236:195.e1-11. [DOI: 10.1016/j.forsciint.2013.12.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022]
|
20
|
Abstract
A three-dimensional multi-body model of the 50th percentile male human and discretized neck was built to evaluate the effect of active head restraint on cervical vertebrae injuries lessening in vehicle rear impact. The discretized neck includes of cervical spine vertebrae, intervertebral discs, ligaments, and muscles. The BioRID-II adult male dummy restrained using safety belt was seated on a sled, whose longitudinal velocity measured from rear impact FEM simulation was applied to simulate the relative motion of the head and neck. According to the interspinous ligament loads and the ligamenta flava loads of the cervical spine, an active head restraint and an impact absorber were designed to lessening the neck injuries in vehicle rear end collisions.
Collapse
|
21
|
Hammer N, Steinke H, Lingslebe U, Bechmann I, Josten C, Slowik V, Böhme J. Ligamentous influence in pelvic load distribution. Spine J 2013; 13:1321-30. [PMID: 23755919 DOI: 10.1016/j.spinee.2013.03.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 01/03/2013] [Accepted: 03/20/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The influence of the posterior pelvic ring ligaments on pelvic stability is poorly understood. Low back pain and sacroiliac joint (SIJ) pain are described being related to these ligaments. Computational approaches involving finite element (FE) modeling may aid to determine their influence. Previous FE models lacked in precise ligament geometries and material properties, which might have influence on the results. PURPOSE AND STUDY DESIGN The aim of this study is to investigate ligamentous influence in pelvic stability by means of FE using precise ligament material properties and morphometries. METHODS An FE model of the pelvis bones was created from computer tomography, including the pubic symphysis joint (PSJ) and the SIJ. Ligament data were used from 55 body donors: anterior (ASL), interosseous (ISL), and posterior (PSL) sacroiliac ligaments; iliolumbar (IL), inguinal (IN), pubic (PL), sacrospinous (SS), and sacrotuberous (ST) ligaments; and obturator membrane (OM). Stress-strain data were gained from iliotibial tract specimens. A vertical load of 600 N was applied. Pelvic motion related to altered ligament and cartilage stiffness was determined in a range of 50% to 200%. Ligament strain was investigated in the standing and sitting positions. RESULTS Tensile and compressive stresses were found at the SIJ and the PSJ. The center of sacral motion was at the level of the second sacral vertebra. At the acetabula and the PSJ, higher ligament and cartilage stiffnesses decrease pelvic motion in the following order: SIJ cartilage>ISL>ST+SS>IL+ASL+PSL. Similar effects were found for the sacrum (SIJ cartilage>ISL>IL+ASL+PSL) but increased ST+SS stiffnesses increased sacral motion. The influence of the IN, OM, and PL was less than 0.1%. Compared with standing, total ligament strain was reduced to 90%. Increased strains were found for the IL, ISL, and PSL. CONCLUSIONS Posterior pelvic ring cartilage and ligaments significantly contribute to pelvic stability. Their effects are region- and stiffness dependent. While sitting, load concentrations occur at the IL, ISL, and PSL, which goes in coherence with the clinical findings of these ligaments serving as generators of low back pain.
Collapse
Affiliation(s)
- Niels Hammer
- Faculty of Medicine, Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; Department of Trauma and Reconstructive Surgery, Faculty of Medicine, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim JE, Hsieh MH, Soni BK, Zayzafoon M, Allison DB. Childhood obesity as a risk factor for bone fracture: a mechanistic study. Obesity (Silver Spring) 2013; 21:1459-66. [PMID: 23512354 PMCID: PMC3740028 DOI: 10.1002/oby.20355] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/03/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To investigate the risk of bone fracture sustained by obese children exposed to falls. The bone fracture risk of obese children would be greater than that of their nonobese counterparts was hypothesized. DESIGN AND METHODS Finite element-based computational models for children that reflected various levels of obesity by varying body mass and the thickness of the subcutaneous adipose tissue layer was developed. The models took account of both the momentum effect of variation of body mass and the cushion effect of variation of soft tissue thickness and examined these two contradictory effects on pelvic bone fracture risk through a set of sideways fall simulations with a range of impact speeds. RESULTS The critical impact speed that yielded pelvic bone fracture decreased as the levels of obesity increased, which meant that the momentum effect of a greater body mass took precedence over the cushion effect of the soft tissue layer. CONCLUSIONS The result suggests that obese children have a greater risk of pelvic bone fracture than do their nonobese counterparts in sideways falls. A further implication is that current child safety devices, systems, and regulations will need to be revisited as the prevalence of child obesity increases.
Collapse
Affiliation(s)
- Jong-Eun Kim
- Department of Mechanical Engineering, University of Alabama at Birmingham, AL, USA.
| | | | | | | | | |
Collapse
|
23
|
Jiang S, Su Z, Yang Z, Liu J, Liu Z. THE POTENTIAL FIELD-BASED TRAJECTORY PLANNING FOR NEEDLE INSERTION IN A SOFT-TISSUE MODEL. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2013. [DOI: 10.4015/s1016237213500178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper presents a 3D dynamic trajectory planning method for the insertion of a rigid needle into soft tissue. The optimal needle tip orientation was calculated in which applying an artificial potential field method to determine the 3D distribution of repulsive and attractive forces surrounding the target object and adjacent obstacles, e.g. bones, nerves, or arteries. Soft-tissue deformation occurs dynamically and continuously during the needle insertion. The trajectory planning was therefore temporally discretized, and the compartment searching method used in each time step. This trajectory planning method was then validated by a dynamic finite element method (FEM) simulation. The dynamic finite element model is built for the important displacement parameters of deformation node in needle insertion process. The Mooney–Rivlin material model combined with solid cubic element and an explicit center differencing scheme was used to compute the soft-tissue deformation at each time step and dynamically identify the target and obstacle positions. The proposed trajectory planning method can optimize the insertion path to achieve the target position while avoiding obstacles.
Collapse
Affiliation(s)
- Shan Jiang
- Center for Advanced Mechanisms and Robotics, Department of Mechanical Engineering, Tianjin University, Tianjin 300072, China
| | - Zhiliang Su
- Center for Advanced Mechanisms and Robotics, Department of Mechanical Engineering, Tianjin University, Tianjin 300072, China
| | - Zhiyong Yang
- Center for Advanced Mechanisms and Robotics, Department of Mechanical Engineering, Tianjin University, Tianjin 300072, China
| | - Jun Liu
- Department of Magnetic Resonance, Tianjin Union Medicine Center, Tianjin 300121, China
| | - Zhenxing Liu
- Department of Magnetic Resonance, Tianjin Union Medicine Center, Tianjin 300121, China
| |
Collapse
|
24
|
Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction. INTERNATIONAL ORTHOPAEDICS 2013; 37:653-8. [PMID: 23318936 DOI: 10.1007/s00264-012-1756-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/11/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to investigate the biomechanics of the pelvis reconstructed with a modular hemipelvic prosthesis using finite element (FE) analysis. METHODS A three-dimensional FE model of the postoperative pelvis was developed and input into the Abaqus FEA software version 6.7.1. Mesh refinement tests were then performed and a force of 500 N was applied at the lamina terminalis of the fifth lumbar vertebra along the longitudinal axis of the normal pelvis and the postoperative pelvis for three positions: sitting, standing on two feet, and standing on the foot of the affected side. Stress distribution analysis was performed between the normal pelvis and postoperative pelvis at these three static positions. RESULTS In the normal pelvis, stress distribution was concentrated on the superior area of the acetabulum, arcuate line, sacroiliac joint, sacral midline and, in particular, the superior area of the greater sciatic notch. In the affected postoperative hemipelvis, stress distribution was concentrated on the proximal area of the pubic plate, the top of the acetabular cup, the connection between the CS-fixator and acetabular cup and the fixation between the prosthesis and sacroiliac joint. CONCLUSIONS Stress distribution of the postoperative pelvis was similar to the normal pelvis at three different static positions. Reconstruction with a modular hemipelvic prosthesis yielded good biomechanical characteristics.
Collapse
|
25
|
Böhme J, Shim V, Höch A, Mütze M, Müller C, Josten C. Clinical implementation of finite element models in pelvic ring surgery for prediction of implant behavior: a case report. Clin Biomech (Bristol, Avon) 2012; 27:872-8. [PMID: 22770881 DOI: 10.1016/j.clinbiomech.2012.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osteosyntheses to stabilize pelvic-ring fractures were developed for younger patients, and are not universally indicated for elderly people. We present the results of parallel-arranged numerical simulations of fixation treatment that an elderly patient with a bagatelle-injured pelvic ring fracture received using a patient-specific finite element model. METHODS The clinical course of an osteosynthetic stabilized pelvic ring fracture, based on an actual case, was numerically simulated using a patient-specific finite element model. FINDINGS A previously validated finite element model of a human pelvis was customized with computed tomography data from a patient with a stabilized pelvic-ring fracture. Numerical simulation was used to analyze primary stability. The clinical process, represented by radiologic examinations, was compared with the results from the finite element simulation. Implant loosening as well as newly-occurring fractures were shown to coincide with regions with the highest stress levels. INTERPRETATION The results from the patient-specific finite element model closely resembled the actual clinical course especially in terms of the location of high strain concentration and subsequent implant loosening. This indicates that patient-specific finite element models have a potential to play an important role in planning osteosynthesis according to biomechanical stability.
Collapse
Affiliation(s)
- J Böhme
- Department of Trauma, Plastic and Reconstructive Surgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Commisso MS, Martínez-Reina J, Mayo J, Domínguez J. Numerical simulation of a relaxation test designed to fit a quasi-linear viscoelastic model for temporomandibular joint discs. Proc Inst Mech Eng H 2012; 227:190-9. [DOI: 10.1177/0954411912460007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The main objectives of this work are: (a) to introduce an algorithm for adjusting the quasi-linear viscoelastic model to fit a material using a stress relaxation test and (b) to validate a protocol for performing such tests in temporomandibular joint discs. This algorithm is intended for fitting the Prony series coefficients and the hyperelastic constants of the quasi-linear viscoelastic model by considering that the relaxation test is performed with an initial ramp loading at a certain rate. This algorithm was validated before being applied to achieve the second objective. Generally, the complete three-dimensional formulation of the quasi-linear viscoelastic model is very complex. Therefore, it is necessary to design an experimental test to ensure a simple stress state, such as uniaxial compression to facilitate obtaining the viscoelastic properties. This work provides some recommendations about the experimental setup, which are important to follow, as an inadequate setup could produce a stress state far from uniaxial, thus, distorting the material constants determined from the experiment. The test considered is a stress relaxation test using unconfined compression performed in cylindrical specimens extracted from temporomandibular joint discs. To validate the experimental protocol, the test was numerically simulated using finite-element modelling. The disc was arbitrarily assigned a set of quasi-linear viscoelastic constants (c1) in the finite-element model. Another set of constants (c2) was obtained by fitting the results of the simulated test with the proposed algorithm. The deviation of constants c2 from constants c1 measures how far the stresses are from the uniaxial state. The effects of the following features of the experimental setup on this deviation have been analysed: (a) the friction coefficient between the compression plates and the specimen (which should be as low as possible); (b) the portion of the specimen glued to the compression plates (smaller areas glued are better); and (c) the variation in the thickness of the specimen. The specimen’s faces should be parallel to ensure a uniaxial stress state. However, this is not possible in real specimens, and a criterion must be defined to accept the specimen in terms of the specimen’s thickness variation and the deviation of the fitted constants arising from such a variation.
Collapse
Affiliation(s)
- Maria S Commisso
- Department of Mechanical Engineering, University of Seville, Spain
| | | | - Juana Mayo
- Department of Mechanical Engineering, University of Seville, Spain
| | - Jaime Domínguez
- Department of Mechanical Engineering, University of Seville, Spain
| |
Collapse
|
27
|
Johnson JE, McIff TE, Lee P, Toby EB, Fischer KJ. Validation of radiocarpal joint contact models based on images from a clinical MRI scanner. Comput Methods Biomech Biomed Engin 2012; 17:378-87. [PMID: 22631873 DOI: 10.1080/10255842.2012.684446] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.
Collapse
Affiliation(s)
- Joshua E Johnson
- a Department of Mechanical Engineering , University of Kansas , 1530 W. 15th Street, 3138 Learned Hall, Lawrence , KS 66045 , USA
| | | | | | | | | |
Collapse
|
28
|
Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint. Biomech Model Mechanobiol 2012; 10:713-26. [PMID: 21061141 DOI: 10.1007/s10237-010-0268-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.
Collapse
|
29
|
Hao Z, Wan C, Gao X, Ji T. The Effect of Boundary Condition on the Biomechanics of a Human Pelvic Joint Under an Axial Compressive Load: A Three-Dimensional Finite Element Model. J Biomech Eng 2011; 133:101006. [DOI: 10.1115/1.4005223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The finite element (FE) model of the pelvic joint is helpful for clinical diagnosis and treatment of pelvic injuries. However, the effect of an FE model boundary condition on the biomechanical behavior of a pelvic joint has not been well studied. The objective of this study was to study the effect of boundary condition on the pelvic biomechanics predictions. A 3D FE model of a pelvis using subject-specific estimates of intact bone structures, main ligaments and bone material anisotropy by computed tomography (CT) gray value was developed and validated by bone surface strains obtained from rosette strain gauges in an in vitro pelvic experiment. Then three FE pelvic models were constructed to analyze the effect of boundary condition, corresponding to an intact pelvic joint, a pelvic joint without sacroiliac ligaments and a pelvic joint without proximal femurs, respectively. Vertical load was applied to the same pelvis with a fixed prosthetic femoral stem and the same load was simulated in the FE model. A strong correlation coefficient (R2=0.9657) was calculated, which indicated a strong correlation between the FE analysis and experimental results. The effect of boundary condition changes on the biomechanical response depended on the anatomical location and structure of the pelvic joint. It was found that acetabulum fixed in all directions with the femur removed can increase the stress distribution on the acetabular inner plate (approximately double the original values) and decrease that on the superior of pubis (from 7 MPa to 0.6 MPa). Taking sacrum and ilium as a whole, instead of sacroiliac and iliolumber ligaments, can influence the stress distribution on ilium and pubis bone vastly. These findings suggest pelvic biomechanics is very dependent on the boundary condition in the FE model.
Collapse
Affiliation(s)
- Zhixiu Hao
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Building 9003, Tsinghua University, Beijing 100084, China
| | | | - Xiangfei Gao
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Tao Ji
- Musculoskeletal Tumor Center, People’s Hospital, Peking University, Beijing 100044, China
| |
Collapse
|
30
|
|
31
|
Finite element model development of a child pelvis with optimization-based material identification. J Biomech 2009; 42:2191-5. [DOI: 10.1016/j.jbiomech.2009.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 12/31/2022]
|
32
|
Leung ASO, Gordon LM, Skrinskas T, Szwedowski T, Whyne CM. Effects of bone density alterations on strain patterns in the pelvis: Application of a finite element model. Proc Inst Mech Eng H 2009; 223:965-79. [DOI: 10.1243/09544119jeim618] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Insufficiency fractures occur when physiological loads are applied to bone deficient in mechanical resistance. A better understanding of pelvic mechanics and the effect of bone density alterations could lead to improved diagnosis and treatment of insufficiency fractures. This study aimed to develop and validate a subject-specific three-dimensional (3D) finite element (FE) model of a pelvis, to analyse pelvic strains as a function of interior and cortical surface bone density, and to compare high strain regions with common insufficiency fracture sites. The FE model yielded strong agreement between experimental and model strains. By means of the response surface method, changes to cortical surface bone density using the FE model were found to have a 60 per cent greater influence compared with changes in interior bone density. A small interaction was also found to exist between surface and interior bone densities (< 3 per cent), and a non-linear effect of surface bone density on strain was observed. Areas with greater increases in average principal strains with reductions in density in the FE model corresponded to areas prone to insufficiency fracture. Owing to the influence of cortical surface bone density on strain, it may be considered a strong global (non-linear) indicator for insufficiency fracture risk.
Collapse
Affiliation(s)
- A S O Leung
- Orthopaedic Biomechanics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - L M Gordon
- Orthopaedic Biomechanics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - T Skrinskas
- Orthopaedic Biomechanics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - T Szwedowski
- Orthopaedic Biomechanics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - C M Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Alicioglu B, Kartal O, Gurbuz H, Sut N. Symphysis pubis distance in adults: a retrospective computed tomography study. Surg Radiol Anat 2008; 30:153-7. [PMID: 18183348 DOI: 10.1007/s00276-007-0295-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 12/10/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND In this retrospective study, symphysis pubis (SP) distance was measured by transverse computed tomography scans. The relation between the SP distance and age, gender, number of birth and body-mass index was studied. METHODS Symphysis pubis joint distances were evaluated for the patients who had undergone abdominal or pelvic computed tomography examination for other medical reasons between the dates of March and May 2007. Anterior, middle, and posterior SP joint distances were measured at transverse planes. Normal joint width in women and men was determined. The relation between obtained values, and age, gender, number of birth, as well as body-mass index was studied. RESULTS Symphysis pubis narrows at anterior concurrently with ageing (r = -0.150; P < 0.001) [corrected] Narrowing, though less, is also observed at posterior (r = -1.50 P = 0.000); however, middle part does not change (r = 0.030; P = 0.489). Number of birth and body-mass index values do not affect SP width. The widths measured at anterior and middle of the SP were significantly higher in women (P = 0.010 and P = 0.002). CONCLUSIONS Osteoarthritic changes develop in SP with ageing. However, osteoarthritis in SP, was found to be clinically and radiologically different from that in other symphyseal joints, as SP hardly ever moves, and vertically processing interpubic disc combines pelvis girdle with counterforces, and is supported by very strong ligaments and muscles. Anterior and middle part of the SP joint is wider in women, because fibrocartilaginous disc is too thick to provide the mobility.
Collapse
Affiliation(s)
- Banu Alicioglu
- School of Medicine, Department of Radiology, Trakya University, 22030, Edirne, Turkey.
| | | | | | | |
Collapse
|
34
|
Anderson AE, Ellis BJ, Weiss JA. Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Engin 2007; 10:171-84. [PMID: 17558646 PMCID: PMC3361760 DOI: 10.1080/10255840601160484] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Computational techniques and software for the analysis of problems in mechanics have naturally moved from their origins in the traditional engineering disciplines to the study of cell, tissue and organ biomechanics. Increasingly complex models have been developed to describe and predict the mechanical behavior of such biological systems. While the availability of advanced computational tools has led to exciting research advances in the field, the utility of these models is often the subject of criticism due to inadequate model verification and validation (V&V). The objective of this review is to present the concepts of verification, validation and sensitivity studies with regard to the construction, analysis and interpretation of models in computational biomechanics. Specific examples from the field are discussed. It is hoped that this review will serve as a guide to the use of V&V principles in the field of computational biomechanics, thereby improving the peer acceptance of studies that use computational modeling techniques.
Collapse
Affiliation(s)
| | | | - Jeffrey A. Weiss
- Corresponding Author: Jeffrey A. Weiss, Department of Bioengineering, University of Utah, 50 South Central Campus Drive, Room 2480, Salt Lake City, Utah 84112-9202, Phone: 1 801 587-7833, Fax: 1 801 585-5361,
| |
Collapse
|
35
|
Boukerrou M, Rubod C, Coutty N, Brieu M, Dubois P, Cosson M. Modélisation de la cavité pelvienne. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11608-007-0111-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Li Z, Kim JE, Davidson JS, Etheridge BS, Alonso JE, Eberhardt AW. Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study. J Biomech 2007; 40:2758-66. [PMID: 17399721 DOI: 10.1016/j.jbiomech.2007.01.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 01/31/2007] [Indexed: 12/17/2022]
Abstract
Automotive side impacts are a leading cause of injuries to the pubic symphysis, yet the mechanisms of those injuries have not been clearly established. Previous mechanical testing of isolated symphyses revealed increased joint laxity following drop tower lateral impacts to isolated pelvic bone structures, which suggested that the joints were damaged by excessive stresses and/or deformations during the impact tests. In the present study, a finite element (FE) model of a female pelvis including a previously validated symphysis sub-model was developed from computed tomography data. The full pelvis model was validated against measured force-time impact responses from drop tower experiments and then used to study the biomechanical response of the symphysis during the experimental impacts. The FE models predicted that the joint underwent a combination of lateral compression, posterior bending, anterior/posterior and superior/inferior shear that exceeded normal physiological levels prior to the onset of bony fractures. Large strains occurred concurrently within the pubic ligaments. Removal of the contralateral constraints to better approximate the boundary conditions of a seated motor vehicle occupant reduced cortical stresses and deformations of the pubic symphysis; however, ligament strains, compressive and shear stresses in the interpubic disc, as well as posterior bending of the joint structure remained as potential sources of joint damage during automotive side impacts.
Collapse
Affiliation(s)
- Zuoping Li
- Department of Biomedical Engineering, University of Alabama at Birmingham, Hoehn 361, 1075 13th St. S., Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|