1
|
Nasralla M, Islam S, Vucevic D, Murphy K. Novel Use of Fractal Analysis for Quantifying Polymethylmethacrylate Distribution Patterns in Osteoporotic and Malignant Vertebral Compression Fractures Following Vertebroplasty. Can Assoc Radiol J 2024; 75:887-894. [PMID: 38859655 DOI: 10.1177/08465371241256908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Purpose: Fractal analysis is a mathematical tool which allows the evaluation of complex microstructural features within materials that cannot be expressed in traditional geometric terms. The purpose of this study is to quantify the differences in polymethylmethacrylate intravertebral cement spatial distribution patterns following vertebroplasty using fractal analysis through the examination of osteoporotic and malignant compression fractures. Methods: Frontal and lateral post-vertebroplasty radiographs were evaluated from 29 patients with osteoporotic and malignant compression fractures who underwent vertebroplasty. The individually treated vertebra were divided into osteoporotic (n = 35) and malignant groups (n = 41). Images underwent segmentation, thresholding, and binarization prior to fractal analysis. Fractal dimension and lacunarity values were derived from the region of interest in treated vertebrae using the "box-counting" and "gliding-box" techniques respectively using ImageJ. The mean values of both parameters were compared between the 2 groups. Results: The mean fractal dimension was significantly higher in the malignant vertebral compression fracture group (1.53 ± 0.08) compared to the osteoporotic group (1.34 ± 0.17; P < .001). Similarly, mean lacunarity values were significantly higher in the malignant fracture group (0.50 ± 0.09) compared to the osteoporotic group (0.37 ± 0.10; P < .001). Conclusions: Fractal dimension and lacunarity values of cement spatial distribution patterns obtained from the post-vertebroplasty radiographs can differentiate between benign osteoporotic and malignant vertebral compression fractures. This novel technique may be useful for evaluating cement spatial distribution patterns in spine augmentation procedures, although further research is warranted in this area.
Collapse
Affiliation(s)
- Mehran Nasralla
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Shahriar Islam
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Diana Vucevic
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Kieran Murphy
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Reinecke T, Angielczyk KD. Raccoons Reveal Hidden Diversity in Trabecular Bone Development. Integr Org Biol 2024; 6:obae038. [PMID: 39440137 PMCID: PMC11495488 DOI: 10.1093/iob/obae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Trabecular bone, and its ability to rapidly modify its structure in response to strain exerted on skeletal elements, has garnered increased attention from researchers with the advancement of CT technology that allows for the analysis of its complex lattice-like framework. Much of this research has focused on adults of select taxa, but analysis into trabecular development across ontogeny remains limited. In this paper, we explore the shift in several trabecular characteristics in the articular head of the humerus and femur in Procyon lotor across the entirely of the species' lifespan. Our results show that while body mass plays a role in determining trabecular structure, other elements such as bone growth, increased activity, and puberty result in trends not observed in the interspecific analysis of adults. Furthermore, differences in the trabeculae of the humerus and femur suggest combining distinct boney elements in meta-analysis may obfuscate the variety in the structures. Finally, rates at which fore and hindlimb trabeculae orient themselves early in life differ enough to warrant further exploration to identify the currently unknown causes for their variation.
Collapse
Affiliation(s)
- T Reinecke
- The Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - K D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| |
Collapse
|
3
|
Siderius M, Wink F, Kieskamp S, Maas F, Bos R, Kroese FGM, Spoorenberg A, Arends S. Improvement of bone mineral density and new vertebral fractures during 8 years of TNF-α inhibition in patients with axial spondyloarthritis. Semin Arthritis Rheum 2024; 68:152523. [PMID: 39018730 DOI: 10.1016/j.semarthrit.2024.152523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE In our prospective cohort with standardized bi-annual measurements of bone mineral density (BMD) and spinal radiographs, we evaluated the long-term course of BMD and the development of radiographic vertebral fractures (VFs) during 8 years of TNFi treatment in patients with radiographic axial spondyloarthritis (r-axSpA). METHODS Consecutive axSpA patients from the GLAS cohort receiving TNFi for ≥8 years were included. Patients who received anti-osteoporotic treatment were excluded. Lumbar spine (LS) BMD was assessed at baseline, 1 year and bi-annually using DEXA. Radiographic VFs were evaluated using the Genant classification. RESULTS 126 axSpA patients were included; 75 % male, mean age 42 ± 11 years, ASDAS 3.8 ± 0.8, median LS BMD Z-score -0.5 (IQR -1.4-0.7) and 20 % had radiographic VFs at baseline. Disease activity improved rapidly and sustained. LS BMD Z-score improved significantly up to 4 years compared to the previous time point and sustained thereafter. Median percentage of improvement compared to baseline was 8.9 % (2.8-15.8) and 7.2 % (2.2-14.7) after 4 and 8 years, respectively. Of 90 patients with baseline and 8-year radiographs, 14 (16 %) developed new VFs and 5 (6 %) showed an increase in severity of existing VFs. Of all 44 VFs present at 8 years, 30 % were grade 2 (n = 12) or grade 3 (n = 1). CONCLUSION In r-axSpA patients treated with TNFi for 8 years, LS BMD Z-score increased significantly, especially during the first 4 year of treatment. Radiographic VFs continued to develop or progressed, irrespective of improvement in BMD. Therefore, clinical attention for trabecular bone loss is important in daily clinical practice.
Collapse
Affiliation(s)
- Mark Siderius
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Freke Wink
- Rheumatology, Medical Center Leeuwarden, the Netherlands
| | - Stan Kieskamp
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Fiona Maas
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Reinhard Bos
- Rheumatology, Medical Center Leeuwarden, the Netherlands
| | - Frans G M Kroese
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Anneke Spoorenberg
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Suzanne Arends
- Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
4
|
Roux JP, Duboeuf F, Sornay-Rendu E, Rinaudo L, Ulivieri FM, Wegrzyn J, Chapurlat R. The relationship between bone strain index, bone mass, microarchitecture and mechanical behavior in human vertebrae: an ex vivo study. Osteoporos Int 2024; 35:1069-1075. [PMID: 38520505 DOI: 10.1007/s00198-024-07066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/25/2024]
Abstract
The aim of this study was to determine whether the Bone Strain Index (BSI), a recent DXA-based bone index, is related to bone mechanical behavior, microarchitecture and finally, to determine whether BSI improves the prediction of bone strength and the predictive role of BMD in clinical practice. PURPOSE Bone Strain Index (BSI) is a new DXA-based bone index that represents the finite element analysis of the bone deformation under load. The current study aimed to assess whether the BSI is associated with 3D microarchitecture and the mechanical behavior of human lumbar vertebrae. METHODS Lumbar vertebrae (L3) were harvested fresh from 31 human donors. The anteroposterior BMC (g) and aBMD (g/cm2) of the vertebral body were measured using DXA, and then the BSI was automatically derived. The trabecular bone volume (Tb.BV/TV), trabecular thickness (Tb.Th), degree of anisotropy (DA), and structure model index (SMI) were measured using µCT with a 35-µm isotropic voxel size. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies under displacement control to assess failure load and stiffness. RESULTS The BSI was significantly correlated with failure load and stiffness (r = -0.60 and -0.59; p < 0.0001), aBMD and BMC (r = -0.93 and -0.86; p < 0.0001); Tb.BV/TV and SMI (r = -0.58 and 0.51; p = 0.001 and 0.004 respectively). After adjustment for aBMD, the association between BSI and stiffness, BSI and SMI remained significant (r = -0.51; p = 0.004 and r = -0.39; p = 0.03 respectively, partial correlations) and the relation between BSI and failure load was close to significance (r = -0.35; p = 0.06). CONCLUSION The BSI was significantly correlated with the microarchitecture and mechanical behavior of L3 vertebrae, and these associations remained statistically significant regardless of aBMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Julien Wegrzyn
- Univ Lyon, INSERM, UMR 1033, 69008, Lyon, France
- Department of Orthopedic Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
5
|
Galassi FM, Lorkiewicz W, Filipiak J, Nikodem A, Żądzińska E. Age- and sex-related changes in vertebral trabecular bone architecture in Neolithic and Mediaeval populations from Poland. Sci Rep 2024; 14:9977. [PMID: 38693297 PMCID: PMC11063184 DOI: 10.1038/s41598-024-59946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
This paper investigates trabecular bone ontogenetic changes in two different Polish populations, one prehistoric and the other historical. The studied populations are from the Brześć Kujawski region in Kujawy (north-central Poland), one from the Neolithic Period (4500-4000 BC) and one from the Middle Ages (twelfth-sixteenth centuries AD), in total 62 vertebral specimens (32 males, 30 females). Eight morphometric parameters acquired from microCT scan images were analysed. Two-way ANOVA after Box-Cox transformation and multifactorial regression model were calculated. A significant decrease in percentage bone volume fraction (BV/TV; [%]) with age at death was observed in the studied sample; Tb.N (trabecular number) was also significantly decreased with age; trabecular separation (Tb.Sp) increased with advancing age; connectivity density (Conn.D) was negatively correlated with biological age and higher in the Neolithic population. These data are found to be compatible with data from the current biomedical literature, while no loss of horizontal trabeculae was recorded as would be expected based on modern osteoporosis.
Collapse
Affiliation(s)
- Francesco Maria Galassi
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Wiesław Lorkiewicz
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Filipiak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Elżbieta Żądzińska
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Biological Anthropology and Comparative Anatomy Research Unit, School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
6
|
Chen Z, Zhao Q, Chen L, Gao S, Meng L, Liu Y, Wang Y, Li T, Xue J. MAGP2 promotes osteogenic differentiation during fracture healing through its crosstalk with the β-catenin pathway. J Cell Physiol 2024; 239:e31183. [PMID: 38348695 DOI: 10.1002/jcp.31183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 04/12/2024]
Abstract
Osteogenic differentiation is important for fracture healing. Microfibrial-associated glycoprotein 2 (MAGP2) is found to function as a proangiogenic regulator in bone formation; however, its role in osteogenic differentiation during bone repair is not clear. Here, a mouse model of critical-sized femur fracture was constructed, and the adenovirus expressing MAGP2 was delivered into the fracture site. Mice with MAGP2 overexpression exhibited increased bone mineral density and bone volume fraction (BV/TV) at Day 14 postfracture. Within 7 days postfracture, overexpression of MAGP2 increased collagen I and II expression at the fracture callus, with increasing chondrogenesis. MAGP2 inhibited collagen II level but elevated collagen I by 14 days following fracture, accompanied by increased endochondral bone formation. In mouse osteoblast precursor MC3T3-E1 cells, MAGP2 treatment elevated the expression of osteoblastic factors (osterix, BGLAP and collagen I) and enhanced ALP activity and mineralization through activating β-catenin signaling after osteogenic induction. Besides, MAGP2 could interact with lipoprotein receptor-related protein 5 (LRP5) and upregulated its expression. Promotion of osteogenic differentiation and β-catenin activation mediated by MAGP2 was partially reversed by LRP5 knockdown. Interestingly, β-catenin/transcription factor 4 (TCF4) increased MAGP2 expression probably by binding to MAGP2 promoter. These findings suggest that MAGP2 may interact with β-catenin/TCF4 to enhance β-catenin/TCF4's function and activate LRP5-activated β-catenin signaling pathway, thus promoting osteogenic differentiation for fracture repair. mRNA sequencing identified the potential targets of MAGP2, providing novel insights into MAGP2 function and the directions for future research.
Collapse
Affiliation(s)
- Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lianghong Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Songlan Gao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lingshuai Meng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingjie Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Huang Y, Miyazaki T, Liu X, Jiang K, Tang Z, Omachi S. Learn from orientation prior for radiograph super-resolution: Orientation operator transformer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108000. [PMID: 38237449 DOI: 10.1016/j.cmpb.2023.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND OBJECTIVE High-resolution radiographic images play a pivotal role in the early diagnosis and treatment of skeletal muscle-related diseases. It is promising to enhance image quality by introducing single-image super-resolution (SISR) model into the radiology image field. However, the conventional image pipeline, which can learn a mixed mapping between SR and denoising from the color space and inter-pixel patterns, poses a particular challenge for radiographic images with limited pattern features. To address this issue, this paper introduces a novel approach: Orientation Operator Transformer - O2former. METHODS We incorporate an orientation operator in the encoder to enhance sensitivity to denoising mapping and to integrate orientation prior. Furthermore, we propose a multi-scale feature fusion strategy to amalgamate features captured by different receptive fields with the directional prior, thereby providing a more effective latent representation for the decoder. Based on these innovative components, we propose a transformer-based SISR model, i.e., O2former, specifically designed for radiographic images. RESULTS The experimental results demonstrate that our method achieves the best or second-best performance in the objective metrics compared with the competitors at ×4 upsampling factor. For qualitative, more objective details are observed to be recovered. CONCLUSIONS In this study, we propose a novel framework called O2former for radiological image super-resolution tasks, which improves the reconstruction model's performance by introducing an orientation operator and multi-scale feature fusion strategy. Our approach is promising to further promote the radiographic image enhancement field.
Collapse
Affiliation(s)
- Yongsong Huang
- Department of Communications Engneering, Graduate School of Engineering, Tohoku University, Sendai, 9808579, Japan; Gordon Center for Medical Imaging, Harvard Medical School, Boston, 02114, USA.
| | - Tomo Miyazaki
- Department of Communications Engneering, Graduate School of Engineering, Tohoku University, Sendai, 9808579, Japan
| | - Xiaofeng Liu
- Gordon Center for Medical Imaging, Harvard Medical School, Boston, 02114, USA
| | - Kaiyuan Jiang
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Zhengmi Tang
- Department of Communications Engneering, Graduate School of Engineering, Tohoku University, Sendai, 9808579, Japan
| | - Shinichiro Omachi
- Department of Communications Engneering, Graduate School of Engineering, Tohoku University, Sendai, 9808579, Japan
| |
Collapse
|
8
|
Schröder G, Mittlmeier T, Gahr P, Ulusoy S, Hiepe L, Schulze M, Götz A, Andresen R, Schober HC. Regional Variations in the Intra- and Intervertebral Trabecular Microarchitecture of the Osteoporotic Axial Skeleton with Reference to the Direction of Puncture. Diagnostics (Basel) 2024; 14:498. [PMID: 38472970 DOI: 10.3390/diagnostics14050498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Trabeculae in vertebral bodies are unequally distributed within the cervical spine (CS), the thoracic spine (TS), and lumbar spine (LS). Such structures are also unequally distributed within the individual vertebrae. Exact knowledge of the microstructure of these entities could impact our understanding and treatment of fractures caused by osteoporosis and possibly improve surgical approaches. Appropriate investigations could help clarify the pathomechanisms of different forms of osteoporotic vertebral fractures, as well as different changes in morphological findings like the trabecular bone score (TBS). In the present study, we applied punctures to the craniocaudal and ventrocaudal directions and obtained cylinders of cancellous bone from the central portions and marginal regions of cervical vertebrae 5 and 6, thoracic vertebrae 8 and 12, and lumbar vertebrae 1 and 3. We systematically analyzed these samples to determine the bone volume fraction, trabecular thickness, separation, connectivity density, degree of anisotropy, and structure model index. METHODS Using an 8-gauge Jamshidi needle, we obtained samples from three quadrants (Q I: right margin; Q II: central; Q III: left margin) in the frontal and transverse plane and prepared these samples with a moist cloth in a 1.5 mL Eppendorf reaction vessel. The investigations were performed on a micro-CT device (SKYSCAN 1172, RJL Micro & Analytic Company, Karlsdorf-Neuthard, Germany). All collected data were analyzed using the statistical software package SPSS (version 24.0, IBM Corp., Armonk, NY, USA). Student's t test, the Wilcoxon-Mann-Whitney test, the Chi-squared test, and univariate analysis were used for between-group comparisons. The selection of the test depended on the number of investigated groups and the result of the Shapiro-Wilk test of normal distribution. In the case of statistically significant results, a post hoc LSD test was performed. RESULTS In total, we obtained 360 bone samples from 20 body donors. The craniocaudal puncture yielded data of similar magnitudes for all investigated parameters in all three quadrants, with the highest values observed in the CS. Comparisons of the ventrodorsal and craniocaudal microstructure revealed a significantly lower trabecular density and a significantly higher degree of anisotropy in the craniocaudal direction. CONCLUSIONS The results presented different distributions and behaviors of trabecular density, with lower density in the mid-vertebral region over the entire breadth of the vertebrae. Reduced trabecular density caused a higher degree of anisotropy and was, therefore, associated with a lower capacity to sustain biomechanical loads. Fractures in fish vertebrae were easily explained by this phenomenon. The different changes in these structures could be responsible, in part, for the changes in the TBS determined using dual-energy X-ray absorptiometry. These results confirm the clinical relevance of the TBS.
Collapse
Affiliation(s)
- Guido Schröder
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Thomas Mittlmeier
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Patrick Gahr
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Sahra Ulusoy
- Faculty of Medicine, University of Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Laura Hiepe
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Marko Schulze
- Institute of Anatomy and Cell Biology, University of Bielefeld, Morgenbreede 1, 33615 Bielefeld, Germany
| | - Andreas Götz
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock-Warnemuende, Germany
| | - Reimer Andresen
- Institute for Diagnostic and Interventional Radiology/Neuroradiology, Westkuestenklinikum Heide, Academic Teaching Hospital of the Universities of Kiel, Luebeck und Hamburg, Esmarchstraße 50, 25746 Heide, Germany
| | - Hans-Christof Schober
- OrthoCoast, Practice for Orthopedics and Osteology, Hufelandstraße 1, 17438 Wolgast, Germany
| |
Collapse
|
9
|
Chan TJ, Rajapakse CS. A Super-Resolution Diffusion Model for Recovering Bone Microstructure from CT Images. Radiol Artif Intell 2023; 5:e220251. [PMID: 38074790 PMCID: PMC10698592 DOI: 10.1148/ryai.220251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 02/12/2024]
Abstract
Purpose To use a diffusion-based deep learning model to recover bone microstructure from low-resolution images of the proximal femur, a common site of traumatic osteoporotic fractures. Materials and Methods Training and testing data in this retrospective study consisted of high-resolution cadaveric micro-CT scans (n = 26), which served as ground truth. The images were downsampled prior to use for model training. The model was used to increase spatial resolution in these low-resolution images threefold, from 0.72 mm to 0.24 mm, sufficient to visualize bone microstructure. Model performance was validated using microstructural metrics and finite element simulation-derived stiffness of trabecular regions. Performance was also evaluated across a handful of image quality assessment metrics. Correlations between model performance and ground truth were assessed using intraclass correlation coefficients (ICCs) and Pearson correlation coefficients. Results Compared with popular deep learning baselines, the proposed model exhibited greater accuracy (mean ICC of proposed model, 0.92 vs ICC of next best method, 0.83) and lower bias (mean difference in means, 3.80% vs 10.00%, respectively) across the physiologic metrics. Two gradient-based image quality metrics strongly correlated with accuracy across structural and mechanical criteria (r > 0.89). Conclusion The proposed method may enable accurate measurements of bone structure and strength with a radiation dose on par with current clinical imaging protocols, improving the viability of clinical CT for assessing bone health.Keywords: CT, Image Postprocessing, Skeletal-Appendicular, Long Bones, Radiation Effects, Quantification, Prognosis, Semisupervised Learning Online supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
- Trevor J Chan
- From the Departments of Bioengineering (T.J.C.), Radiology (T.J.C., C.S.R.), and Orthopedic Surgery (C.S.R.), University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104-6243
| | - Chamith S Rajapakse
- From the Departments of Bioengineering (T.J.C.), Radiology (T.J.C., C.S.R.), and Orthopedic Surgery (C.S.R.), University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104-6243
| |
Collapse
|
10
|
Schröder G, Baginski AM, Schulze M, Hiepe L, Bugaichuk S, Martin H, Andresen JR, Moritz M, Andresen R, Schober HC. Regional variations in the intra- and intervertebral trabecular microarchitecture of the osteoporotic axial skeleton. Anat Sci Int 2023:10.1007/s12565-023-00726-6. [PMID: 37093524 DOI: 10.1007/s12565-023-00726-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
Trabecular structures in vertebral bodies are unequally distributed in the cervical, thoracic and lumbar spine, and also within individual vertebrae. Knowledge of the microstructure of these entities could influence our comprehension and treatment of osteoporotic fractures, and even surgical procedures. Appropriate investigations may clarify the pathomechanisms of various osteoporotic fractures (fish, wedge-shaped, and flat vertebrae). We obtained three cancellous bone cylinders from the centers and margins of cervical vertebra 3 to lumbar vertebra 5, and investigated these in regard of bone volume fraction, trabecular thickness, separation, trabecular number, trabecular bone pattern factor, connectivity density, and degree of anisotropy. Using a Jamshidi needle®, we obtained samples from three quadrants (QI: right-sided edge, QII: central, QIII: left-sided edge) of 242 prepared vertebrae, and investigated these on a micro-CT device. In all, 726 bone samples were taken from eleven body donors. Bone volume fraction, trabecular thickness, and the degree of anisotropy were significantly lower in QII than in QI and QIII. Trabecular pattern factor, however, was significantly higher in QII than in QI and QIII. The results helped to explain fish vertebrae. Wedge fractures and flat vertebrae are most likely caused by the complex destruction of trabecular and cortical structures. The higher bone volume fraction in the cervical spine compared to the thoracic and lumbar spine accounts for the small number of fractures in the cervical spine. The marked trabecular pattern factor in the center of thoracic and lumbar vertebrae could be a reason for the surgeon to use different screw designs for individual vertebrae.
Collapse
Affiliation(s)
- Guido Schröder
- Warnow Clinic, Clinic for Orthopedics and Trauma Surgery, Am Forsthof 3, 18246, Buetzow, Germany.
| | | | - Marko Schulze
- Institute for Anatomy and Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Laura Hiepe
- Institute for Anatomy, University Medical Center Rostock, Rostock, Germany
| | | | - Heiner Martin
- Institute for Biomedical Engineering, University Medical Center Rostock, Rostock-Warnemuende, Germany
| | - Julian Ramin Andresen
- Clinic for Orthopedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Mario Moritz
- Clinic of Internal Medicine IV, Suedstadt Clinic Rostock, Academic Teaching Hospital of the University of Rostock, Rostock, Germany
| | - Reimer Andresen
- Institute for Diagnostic and Interventional Radiology/Neuroradiology, Westkuestenklinikum Heide, Academic Teaching Hospital of the Universities of Kiel, Luebeck und Hamburg, Heide, Germany
| | - Hans-Christof Schober
- Clinic of Internal Medicine IV, Suedstadt Clinic Rostock, Academic Teaching Hospital of the University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Sautchuk R, Yu C, McArthur M, Massie C, Brookes PS, Porter GA, Awad H, Eliseev RA. Role of the Mitochondrial Permeability Transition in Bone Metabolism and Aging. J Bone Miner Res 2023; 38:522-540. [PMID: 36779737 PMCID: PMC10101909 DOI: 10.1002/jbmr.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
The mitochondrial permeability transition pore (MPTP) and its positive regulator, cyclophilin D (CypD), play important pathophysiological roles in aging. In bone tissue, higher CypD expression and pore activity are found in aging; however, a causal relationship between CypD/MPTP and bone degeneration needs to be established. We previously reported that CypD expression and MPTP activity are downregulated during osteoblast (OB) differentiation and that manipulations in CypD expression affect OB differentiation and function. Using a newly developed OB-specific CypD/MPTP gain-of-function (GOF) mouse model, we here present evidence that overexpression of a constitutively active K166Q mutant of CypD (caCypD) impairs OB energy metabolism and function, and bone morphological and biomechanical parameters. Specifically, in a spatial-dependent and sex-dependent manner, OB-specific CypD GOF led to a decrease in oxidative phosphorylation (OxPhos) levels, higher oxidative stress, and general metabolic adaptations coincident with the decreased bone organic matrix content in long bones. Interestingly, accelerated bone degeneration was present in vertebral bones regardless of sex. Overall, our work confirms CypD/MPTP overactivation as an important pathophysiological mechanism leading to bone degeneration and fragility in aging. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Chen Yu
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Matthew McArthur
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Christine Massie
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Paul S Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, USA
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester, Rochester, NY, USA
| | - Hani Awad
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Roman A Eliseev
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, USA
- Department of Pathology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
12
|
Galassi FM, Varotto E. Osteoporosis and vertebral trabecular bone health: an historico-anthropological perspective. ANTHROPOLOGICAL REVIEW 2023. [DOI: 10.18778/1898-6773.86.1.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
This brief review article aims to recapitulate the history of osteoporosis from the most ancient observations to the current clinical definition, by offering a perspective on trabecular bone health and degeneration, which has become of paramount important both in clinical, radiological and biological anthropological studies.
Collapse
|
13
|
Ivan S, Daniela O, Jaroslava BD. Sex differences matter: Males and females are equal but not the same. Physiol Behav 2023; 259:114038. [PMID: 36423797 DOI: 10.1016/j.physbeh.2022.114038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Sex differences between males and females can be detected early in life. They are present also later even to a much greater extent affecting our life in adulthood and a wide spectrum of physical, psychological, cognitive, and behavioral characteristics. Moreover, sex differences matter also in individual's health and disease. In this article, we reviewed at first the sex differences in brain organization and function with respect to the underlying biological mechanisms. Since the individual functional differences in the brain, in turn, shape the behavior, sex-specific psychological/behavioral differences that can be observed in infants but also adults are consequently addressed. Finally, we briefly mention sex-dependent variations in susceptibility to selected disorders as well as their pathophysiology, diagnosis, and response to therapy. The understanding of biologically determined variability between males and females can have important implications, especially in gender-specific health care. We have the impression that it is very important to emphasize that sex matters. Males and females are differently programmed by nature, and it must be respected. Even though we as males and females are not the same, we would like to emphasize that we are still equal and together form a worthy colorful continuum.
Collapse
Affiliation(s)
- Szadvári Ivan
- Institute of Physiology, Medical School, Comenius University, Bratislava, Slovakia
| | - Ostatníková Daniela
- Institute of Physiology, Medical School, Comenius University, Bratislava, Slovakia
| | | |
Collapse
|
14
|
Schröder G, Hiepe L, Moritz M, Vivell LM, Schulze M, Martin H, Götz A, Andresen JR, Kullen CM, Andresen R, Schober HC. Why Insufficiency Fractures are Rarely Found in the Cervical Spine, Even with Osteoporosis. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2022; 160:657-669. [PMID: 34937100 DOI: 10.1055/a-1647-3914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The human bone structure changes with an increase in age. Both material and structural properties affect bone strength. Despite the ageing of society, however, hardly any data are available on these parameters for elderly individuals. Therefore, in the present study, cancellous bone cylinders were taken from the center of each vertebral body (C3 to L5) and examined with regard to bone volume fraction, trabecular thickness, separation, number of trabeculae, cross-linking, connectivity density and degree of anisotropy. MATERIAL AND METHODS Samples were obtained from 440 body donors using a Jamshidi needle and analysed using microcomputed tomography. Existing deformities, fractures and bone mineral density of each vertebra were recorded by quantitative computed tomography. RESULTS With regard to the microcomputed tomography parameters, statistically significant differences were found between the different sections of the vertebrae: the trabeculae of the cervical vertebrae were significantly thicker and more closely spaced than in the thoracic and lumbar vertebrae. The bone volume fraction was significantly higher in this spinal segment, as was the connection density and the number of trabeculae and cross-links. In addition, the degree of anisotropy was significantly lower in the cervical vertebrae than in the other spinal segments. With regard to quantitative computed tomography, there was a significantly higher bone mineral density in the cervical vertebrae. CONCLUSION Even with osteoporosis, cervical vertebrae fracture significantly later than thoracic and lumbar vertebrae due to their unique microarchitecture and higher density. Thus, the cervical vertebrae has specific properties.
Collapse
Affiliation(s)
- Guido Schröder
- Klinik für Orthopädie und Unfallchirurgie, Warnow Klinik, Bützow, Deutschland
| | - Laura Hiepe
- Institut für Anatomie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - Mario Moritz
- Klinik für Innere Medizin, Warnow Klinik, Bützow, Germany
| | | | - Marko Schulze
- Institut für Anatomie und Zellbiologie, Universität Bielefeld, Bielefeld, Deutschland
| | - Heiner Martin
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Rostock, Deutschland
| | - Andreas Götz
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Rostock, Deutschland
| | | | - Claus-Maximilian Kullen
- Institut für Diagnostische und Interventionelle Radiologie/Neuroradiologie, Westküstenklinikum Heide, Akademisches Lehrkrankenhaus der Universitäten Kiel, Lübeck und Hamburg, Heide, Deutschland
| | - Reimer Andresen
- Institut für Diagnostische und Interventionelle Radiologie/Neuroradiologie, Westküstenklinikum Heide, Akademisches Lehrkrankenhaus der Universitäten Kiel, Lübeck und Hamburg, Heide, Deutschland
| | - Hans-Christof Schober
- Klinik für Innere Medizin IV, Klinikum Südstadt Rostock, Akademisches Lehrkrankenhaus der Universität Rostock, Rostock, Deutschland
| |
Collapse
|
15
|
Dudiki T, Nascimento DW, Childs LS, Kareti S, Androjna C, Zhevlakova I, Byzova TV. Progressive skeletal defects caused by Kindlin3 deficiency, a model of autosomal recessive osteopetrosis in humans. Bone 2022; 160:116397. [PMID: 35342016 PMCID: PMC9133165 DOI: 10.1016/j.bone.2022.116397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
The cellular and molecular mechanisms of bone development and homeostasis are clinically important, but not fully understood. Mutations in integrins and Kindlin3 in humans known as Leukocyte adhesion deficiencies (LAD) cause a wide spectrum of complications, including osteopetrosis. Yet, the rarity, frequent misdiagnosis, and lethality of LAD preclude mechanistic analysis of skeletal abnormalities in these patients. Here, using inducible and constitutive tissue-specific Kindlin3 knockout (K3KO) mice, we show that the constitutive lack of embryonic-Kindlin3 in myeloid lineage cells causes growth retardation, edentulism, and skull deformity indicative of hydrocephaly. Micro-CT analysis revealed craniosynostosis, choanal stenosis, and micrognathia along with other skeletal abnormalities characteristic of osteopetrosis. A marked progression of osteosclerosis occurs in mature to middle-aged adults, resulting in the narrowing of cranial nerve foramina and bone marrow cavities of long bones. However, postnatal-Kindlin3 is less critical for bone remodeling and architecture. Thus, myeloid Kindlin3 is essential for skeletal development and its deficiency leads to autosomal recessive osteopetrosis (ARO). The study will aid in the diagnosis, management, and treatment choices for patients with LAD-III and ARO.
Collapse
Affiliation(s)
- Tejasvi Dudiki
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel W Nascimento
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lauren S Childs
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Swetha Kareti
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charlie Androjna
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Irina Zhevlakova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
16
|
Trentadue M, Sozzi C, Idolazzi L, Lazzarini G, Murano RS, Gatti D, Rossini M, Piovan E. Magnetic resonance imaging at 3.0-T in postmenopausal osteoporosis: a prospective study and review of the literature. Radiol Bras 2022; 55:216-224. [PMID: 35983340 PMCID: PMC9380604 DOI: 10.1590/0100-3984.2021.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
Objective To promote advanced research using magnetic resonance imaging (MRI) in the diagnosis of and screening for osteoporosis by looking for correlations among the T-scores measured by dual-energy X-ray absorptiometry (DEXA), the apparent diffusion coefficient (ADC) values on diffusion-weighted imaging (DWI), and the T1-weighted signal intensity values. Materials and Methods This was a prospective study of postmenopausal women with no contraindications to MRI and no history of cancer who underwent DEXA within 30 days before or after the MRI examination. A 3.0-T scanner was used in order to acquire sagittal sequences targeting the lumbar spine. Results Thirteen women underwent DEXA and MRI. In two cases, the MRI was discontinued early. Therefore, the final sample comprised 11 patients. The ADC values and T1-weighted signal intensity were found to be higher in patients with osteoporosis. However, among the patients > 60 years of age with osteoporosis, ADC values were lower and T1-weighted signal intensity was even higher. Conclusion It is unlikely that MRI will soon replace DEXA for the diagnostic workup of osteoporosis. Although DWI and ADC mapping are useful for understanding the pathophysiology of osteoporosis, we believe that T1-weighted sequences are more sensitive than is DWI as a means of performing a qualitative analysis of vertebral alterations.
Collapse
Affiliation(s)
- Mirko Trentadue
- Radiology Unit, Azienda ULSS 9 Scaligera, Hospital M. Magalini, Villafranca di Verona, Italy
| | - Carlo Sozzi
- SC Neuroradiology, ASST Carlo Poma, Mantova, Italy
| | - Luca Idolazzi
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Gianluigi Lazzarini
- Independent Researcher, self-employed Occupational Medicine specialist, Peschiera del Garda, Italy
| | - Riccardo Sante Murano
- Radiology Unit, Azienda ULSS 9 Scaligera, Hospital M. Magalini, Villafranca di Verona, Italy
| | - Davide Gatti
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Maurizio Rossini
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
17
|
Patel K, Mangu SR, Sukhdeo SV, Sharan K. Ethanolic extract from the root and leaf of Sida cordifolia promotes osteoblast activity and prevents ovariectomy-induced bone loss in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154024. [PMID: 35263671 DOI: 10.1016/j.phymed.2022.154024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sida cordifolia is traditionally found in the Indian system of medicine, well known for its medicinal and nutritional properties among local natives. PURPOSE The present study aims to investigate the osteo-protective effect of root and leaf ethanolic extract of S. cordifolia (RE and LE) and its underlying mechanism. METHODS Antioxidant activity of RE and LE was assessed. Total phenolic and flavonoid content were determined. HPLC profiling of RE and LE was performed to examine the polyphenol content. The effect of RE and LE on osteoblast cells proliferation, differentiation, mineralization, and expression of the protein associated with osteogenesis were evaluated using primary calvarial osteoblast culture. Skeletal effects of RE and LE of S. cordifolia were investigated in C57BL/6J ovariectomized mice. Micro CT was employed to evaluate the alteration in trabecular and cortical bone microarchitecture. Histology studies were performed on the isolated vertebra. qPCR analysis and western blotting was done to check the key bone markers. RESULTS RE and LE showed a potent antioxidant activity, owing to a notable polyphenol content. Both RE and LE did not alter the cell viability but significantly increased the osteoblast cell proliferation, differentiation, and mineralization. Moreover, they enhanced the mRNA expression of osteogenic genes. Both RE and LE stimulated the activation of ERK, AKT, and CREB. Both RE and LE had no direct effect on osteoclastogenesis, but both increased Opg/Rankl ratio expression in osteoblast cells. Both RE and LE at 750 mg/kg/day significantly improved the trabecular and cortical microarchitecture of femur and tibia by increasing bone mineral density, bone volume fraction, trabecular number, and trabecular thickness, and decreasing trabecular separation and structural model index in ovariectomized mice. Furthermore, vertebral histology of lumbar vertebrae revealed that RE and LE significantly enhance the vertebral bone mass and exert osteo-protective effects by stimulating osteoblast function and inhibiting osteoclast function. CONCLUSION In conclusion, both RE and LE stimulate osteoblast differentiation through activating ERK, AKT, and CREB signalling pathways and indirectly inhibits osteoclast differentiation. RE and LE also improve the trabecular and cortical microarchitecture of ovariectomized mice, making it a promising agent to prevent postmenopausal bone loss.
Collapse
Affiliation(s)
- Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Schröder G, Reichel M, Spiegel S, Schulze M, Götz A, Bugaichuk S, Andresen JR, Kullen CM, Andresen R, Schober HC. Breaking strength and bone microarchitecture in osteoporosis: a biomechanical approximation based on load tests in 104 human vertebrae from the cervical, thoracic, and lumbar spines of 13 body donors. J Orthop Surg Res 2022; 17:228. [PMID: 35410435 PMCID: PMC8996654 DOI: 10.1186/s13018-022-03105-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background The purpose of the study was to investigate associations between biomechanical resilience (failure load, failure strength) and the microarchitecture of cancellous bone in the vertebrae of human cadavers with low bone density with or without vertebral fractures (VFx). Methods Spines were removed from 13 body donors (approval no. A 2017-0072) and analyzed in regard to bone mineral density (BMD), Hounsfield units (HU), and fracture count (Fx) with the aid of high-resolution CT images. This was followed by the puncture of cancellous bone in the vertebral bodies of C2 to L5 using a Jamshidi™ needle. The following parameters were determined on the micro-CT images: bone volume fraction (BVF), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), degree of anisotropy (DA), trabecular number (Tb.N), trabecular pattern factor (Tb.Pf), and connectivity density (Conn.D). The axial load behavior of 104 vertebral specimens (C5, C6, T7, T8, T9, T12, L1, L3) was investigated with a servohydraulic testing machine. Results Individuals with more than 2 fractures had a significantly lower trabecular pattern factor (Tb.Pf), which also proved to be an important factor for a reduced failure load in the regression analysis with differences between the parts of the spine. The failure load (FL) and endplate sizes of normal vertebrae increased with progression in the craniocaudal direction, while the HU was reduced. Failure strength (FS) was significantly greater in the cervical spine than in the thoracic or lumbar spine (p < 0.001), independent of sex. BVF, Tb.Th, Tb.N, and Conn.D were significantly higher in the cervical spine than in the other spinal segments. In contrast, Tb.Sp and Tb.Pf were lowest in the cervical spine. BVF was correlated with FL (r = 0.600, p = 0.030) and FS (r = 0.763, p = 0.002). Microarchitectural changes were also detectable in the cervical spine at lower densities. Conclusions Due to the unique microarchitecture of the cervical vertebrae, fractures occur much later in this region than they do in the thoracic or lumbar spine. Trial registration Approval no. A 2017-0072.
Collapse
|
19
|
Determination of anisotropic elastic parameters from morphological parameters of cancellous bone for osteoporotic lumbar spine. Med Biol Eng Comput 2021; 60:263-278. [PMID: 34843037 PMCID: PMC8724118 DOI: 10.1007/s11517-021-02465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022]
Abstract
In biomechanics, large finite element models with macroscopic representation of several bones or joints are necessary to analyze implant failure mechanisms. In order to handle large simulation models of human bone, it is crucial to homogenize the trabecular structure regarding the mechanical behavior without losing information about the realistic material properties. Accordingly, morphology and fabric measurements of 60 vertebral cancellous bone samples from three osteoporotic lumbar spines were performed on the basis of X-ray microtomography (μCT) images to determine anisotropic elastic parameters as a function of bone density in the area of pedicle screw anchorage. The fabric tensor was mapped in cubic bone volumes by a 3D mean-intercept-length method. Fabric measurements resulted in a high degree of anisotropy (DA = 0.554). For the Young’s and shear moduli as a function of bone volume fraction (BV/TV, bone volume/total volume), an individually fit function was determined and high correlations were found (97.3 ≤ R2 ≤ 99.1,p < 0.005). The results suggest that the mathematical formulation for the relationship between anisotropic elastic constants and BV/TV is applicable to current μCT data of cancellous bone in the osteoporotic lumbar spine. In combination with the obtained results and findings, the developed routine allows determination of elastic constants of osteoporotic lumbar spine. Based on this, the elastic constants determined using homogenization theory can enable efficient investigation of human bone using finite element analysis (FEA). Cancellous Bone with Fabric Tensor Ellipsoid representing anisotropy and principal axis (colored coordinate system) of given trabecular structure ![]()
Collapse
|
20
|
Lee CC, Liao YC, Lee MC, Lin KJ, Hsu HY, Chiou SY, Young SL, Lin JS, Huang CC, Watanabe K. Lactobacillus plantarum TWK10 Attenuates Aging-Associated Muscle Weakness, Bone Loss, and Cognitive Impairment by Modulating the Gut Microbiome in Mice. Front Nutr 2021; 8:708096. [PMID: 34722603 PMCID: PMC8548577 DOI: 10.3389/fnut.2021.708096] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
In humans, aging is characterized by the progressive decline in biological, physiological, and psychological functions, and is a major risk factor in the development of chronic diseases. Therefore, the development of strategies aimed at attenuating aging-related disorders and promoting healthy aging is critical. In a previous study, we have demonstrated that Lactobacillus plantarum TWK10 (TWK10), a probiotic strain isolated from Taiwanese pickled cabbage, improved muscle strength, exercise endurance, and overall body composition in healthy humans. In this study, the effect of TWK10 on the progression of age-related impairments was investigated in mice. We found that TWK10 not only enhanced muscle strength in young mice, but also prevented the aging-related loss of muscle strength in aged mice, which was accompanied by elevated muscle glycogen levels. Furthermore, TWK10 attenuated the aging-associated decline in learning and memory abilities, as well as bone mass. Further analyses of gut microbiota using next-generation sequencing (NGS) of the 16S rRNA gene showed that the pattern of gut microbial composition was clearly altered following 8 weeks of TWK10 administration. TWK10-treated mice also experienced an increase in short-chain fatty acid (SCFA)-producing bacteria and higher overall levels of gut SCFA. Furthermore, TWK10 administration to some extent reversed the aging-associated accumulation of pathogenic bacterial taxa. In conclusion, TWK10 could be viewed as a potential therapeutic agent that attenuates aging-related disorders and provides health benefits by modulating the imbalance of gut microbiota.
Collapse
Affiliation(s)
- Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, Taiwan.,Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Han-Yin Hsu
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, Taiwan
| | - Shiou-Yun Chiou
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, Taiwan
| | - San-Land Young
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Koichi Watanabe
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, Taiwan.,Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan.,Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Wang B, Feng C, Pan J, Zhou S, Sun Z, Shao Y, Qu Y, Bao S, Li Y, Yang T. The Effect of 3D Printing Metal Materials on Osteoporosis Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9972867. [PMID: 34239938 PMCID: PMC8233068 DOI: 10.1155/2021/9972867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
3D printing has been in use for a long time and has continued to contribute to breakthroughs in the fields of clinical, physical, and rehabilitation medicine. In order to evaluate the role of 3D printing technology in treating spinal disorders, this paper presents a systematic review of the relevant literature. 3D printing is described in terms of its adjunctive function in various stages of spinal surgery and assistance in osteoporosis treatment. A review of metal 3D printed materials and applications of the technology is also provided.
Collapse
Affiliation(s)
- Bing Wang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Chuwen Feng
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Jianyu Pan
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Shuoyan Zhou
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Zhongren Sun
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Yuming Shao
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Yuanyuan Qu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Shengyong Bao
- Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Department of Rehabilitation Medicine, Shenzhen 518120, China
| | - Yang Li
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Tiansong Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin 8615-0040, China
- Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Department of Rehabilitation Medicine, Shenzhen 518120, China
| |
Collapse
|
22
|
McMorran JG, Gregory DE. The Influence of Axial Compression on the Cellular and Mechanical Function of Spinal Tissues; Emphasis on the Nucleus Pulposus and Annulus Fibrosus: A Review. J Biomech Eng 2021; 143:050802. [PMID: 33454730 DOI: 10.1115/1.4049749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 11/08/2022]
Abstract
In light of the correlation between chronic back pain and intervertebral disc (IVD) degeneration, this literature review seeks to illustrate the importance of the hydraulic response across the nucleus pulposus (NP)-annulus fibrosus (AF) interface, by synthesizing current information regarding injurious biomechanics of the spine, stemming from axial compression. Damage to vertebrae, endplates (EPs), the NP, and the AF, can all arise from axial compression, depending on the segment's posture, the manner in which it is loaded, and the physiological state of tissue. Therefore, this movement pattern was selected to illustrate the importance of the bracing effect of a pressurized NP on the AF, and how injuries interrupting support to the AF may contribute to IVD degeneration.
Collapse
Affiliation(s)
- John G McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5; Department of Health Sciences, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5
| |
Collapse
|
23
|
Schröder G, Jabke B, Schulze M, Wree A, Martin H, Sahmel O, Doerell A, Kullen CM, Andresen R, Schober HC. A comparison, using X-ray micro-computed tomography, of the architecture of cancellous bone from the cervical, thoracic and lumbar spine using 240 vertebral bodies from 10 body donors. Anat Cell Biol 2021; 54:25-34. [PMID: 33583827 PMCID: PMC8017461 DOI: 10.5115/acb.20.269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/29/2022] Open
Abstract
The vertebral trabecular bone has a complex three-dimensional microstructure with an inhomogeneous morphology. Correct identification and assessment of the weakest segments of the cancellous bone may lead to better prediction of fracture risk. The aim of this study was to compare cancellous bone from 240 vertebrae of the cervical, thoracic and lumbar spine of ten body donors with osteoporosis in regard to bone volume fraction (BVF), trabecular thickness, separation, trabecular number and degree of anisotropy, to ascertain why cervical vertebrae rarely fracture, even with severe osteoporosis. Samples were obtained from all vertebrae with a Jamshidi needle (8 Gauge). The investigations were performed with a micro-computed tomography (micro-CT) device (SKYSCAN 1172, RJL Micro & Analytic GmbH, Karlsdorf-Neuthard, Germany). Existing vertebral fractures and the bone mineral density of the lumbar spine were assessed with quantitative CT. Regarding the micro-CT parameters, statistically significant differences were observed between the various sections of the spine. We found a higher BVF, trabecular number and trabecular thickness, as well as a lower trabecular separation of the cervical vertebrae compared to other vertebrae. In addition, the degree of anisotropy in the cervical spine is lower than in the other spinal column sections. These results are age and sex dependent. Thus, the cervical spine has special structural features, whose causes must be determined in further investigations.
Collapse
Affiliation(s)
- Guido Schröder
- Clinic for Surgery, Department of Orthopedics and Trauma Surgery, Buetzow, Germany
| | - Benjamin Jabke
- Department of Internal Medicine, University Medical School Rostock, Rostock, Germany
| | - Marko Schulze
- Institute of Anatomy, University Medical School Rostock, Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, University Medical School Rostock, Rostock, Germany
| | - Heiner Martin
- Institute for Biomedical Engineering, University of Rostock, Rostock-Warnemuende, Germany
| | - Olga Sahmel
- Institute for Biomedical Engineering, University of Rostock, Rostock-Warnemuende, Germany
| | | | - Claus Maximilian Kullen
- Institute of Diagnostic and Interventional Radiology/Neuroradiology, Westkuestenklinikum Heide, Academic Teaching Hospital of the Universities of Kiel, Luebeck and Hamburg, Heide, Germany
| | - Reimer Andresen
- Institute of Diagnostic and Interventional Radiology/Neuroradiology, Westkuestenklinikum Heide, Academic Teaching Hospital of the Universities of Kiel, Luebeck and Hamburg, Heide, Germany
| | - Hans-Christof Schober
- Department of Internal Medicine IV, Municipal Hospital Suedstadt Rostock, Academic Teaching Hospital of the University of Rostock, Rostock, Germany
| |
Collapse
|
24
|
Athanasios T, Konstantinos A, Despoina D. Three-dimensional-printed replica models of bone for experimentally decoupling trabecular bone properties contribution to ultrasound propagation parameters. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:296. [PMID: 33514143 DOI: 10.1121/10.0003048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A detailed investigation of the relationship between ultrasonic (US) properties and trabecular bone microstructure is difficult because of the great variability in the bone loss process. The aim of this work was twofold. First, to verify by compressive tests that the three-dimensional (3D)-printer is able to produce precisely and repeatedly "bone replica models" of different size and density. Following, replicas of the original specimens with two different polymers and thinned trabeculae models were used to investigate US properties (speed of sound, SOS, and backscatter coefficient), aiming to deconvolute the influence of material properties on ultrasound characteristics. The results revealed that matrix material properties influence only the magnitude of the backscatter coefficient, whereas the characteristic undulated patterns are related to the trabecular structure. Simulation of perforation and thinning of cancellous bone, associated with bone loss, showed that SOS and mechanical properties were reduced perfectly linearly with apparent density when structure deteriorated. The 3D-printed bone replicas have the potential to enable systematic investigations of the influence of structure on both acoustical and mechanical properties and evaluate changes caused by bone loss. The development of replicas from materials with properties close to those of bone will permit quantitative conclusions for trabecular bone.
Collapse
Affiliation(s)
- Tsirigotis Athanasios
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, Rio, Greece
| | - Apostolopoulos Konstantinos
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, Rio, Greece
| | - Deligianni Despoina
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, Rio, Greece
| |
Collapse
|
25
|
DeMars LJD, Stephens NB, Saers JPP, Gordon A, Stock JT, Ryan TM. Using point clouds to investigate the relationship between trabecular bone phenotype and behavior: An example utilizing the human calcaneus. Am J Hum Biol 2020; 33:e23468. [PMID: 32790125 DOI: 10.1002/ajhb.23468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES The objective of this study is to demonstrate a new method for analyzing trabecular bone volume fraction and degree of anisotropy in three dimensions. METHODS We use a combination of automatic mesh registration, point-cloud correspondence registration, and P-value corrected univariate statistical tests to compare bone volume fraction and degree of anisotropy on a point by point basis across the entire calcaneus of two human groups with different subsistence strategies. RESULTS We found that the patterns of high and low bone volume fraction and degree of anisotropy distribution between the Black Earth (hunter-gatherers) and Norris Farms (mixed-strategy agriculturalists) are very similar, but differ in magnitude. The hunter-gatherers exhibit higher levels of bone volume fraction and less anisotropic trabecular bone organization. Additionally, patterns of bone volume fraction and degree of anisotropy in the calcaneus correspond well with biomechanical expectations of relative forces experienced during walking and running. CONCLUSIONS We conclude that comparing site-specific, localized differences in trabecular bone variables such as bone volume fraction and degree of anisotropy in three-dimensions is a powerful analytical tool. This method makes it possible to determine where similarities and differences between groups are located within the whole skeletal element of interest. The visualization of multiple variables also provides a way for researchers to see how the trabecular bone variables interact within the morphology, and allows for a more nuanced understanding of how they relate to one another and the broader mechanical environment.
Collapse
Affiliation(s)
- Lily J D DeMars
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nicholas B Stephens
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jaap P P Saers
- Department of Archaeology, Cambridge University, Cambridge, UK
| | - Adam Gordon
- Department of Anthropology, University at Albany, SUNY, Albany, New York, USA
| | - Jay T Stock
- Department of Archaeology, Cambridge University, Cambridge, UK.,Department of Anthropology, Western University, London, Ontario, Canada
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
26
|
Aoki A, Imade S, Uchio Y. Effect of the positional relationship between the interference screw and the tendon graft in the bone tunnel in ligament reconstruction. J Orthop Surg (Hong Kong) 2020; 27:2309499018822226. [PMID: 30798714 DOI: 10.1177/2309499018822226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To reveal the effects of the positional and length relationships between the interference screws (ISs) and the tendon graft in the bone tunnel on the fixation strength in ligament reconstruction. METHODS We compared three IS positions on the anterior (the Anterior group) or posterior (the Posterior group) or side (the Side group) of the tendon graft in relation to the pullout direction. The tendon graft was pulled at 0°, 30°, 60°, and 90° to the bone tunnel, and the maximum pullout load at each angle was compared among the groups. We also investigated the relationship between the length of the tendon graft and the length of the IS in the bone tunnel. The direction of the pullout force was the same as that of the Anterior group, and the maximum load was compared between groups in which the tendon graft was longer or shorter than the IS. RESULTS The maximum loads of the Anterior group were significantly greater than those of the Posterior and Side groups at the traction angles of 30° and 60°, respectively. An IS shorter than the tendon graft was found to provide significantly superior fixation strength compared to an IS longer than the tendon graft. CONCLUSIONS Better fixation strength was achieved when the IS was placed on the side of the anchorage tunnel on which the tendon graft was loaded and the IS was shorter than the tendon graft.
Collapse
Affiliation(s)
| | | | - Yuji Uchio
- Department of Orthopaedic Surgery, Faculty of Medicine, Shimane University, Shimane, Japan
| |
Collapse
|
27
|
Colombo C, Libonati F, Rinaudo L, Bellazzi M, Ulivieri FM, Vergani L. A new finite element based parameter to predict bone fracture. PLoS One 2019; 14:e0225905. [PMID: 31805121 PMCID: PMC6894848 DOI: 10.1371/journal.pone.0225905] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Dual Energy X-Ray Absorptiometry (DXA) is currently the most widely adopted non-invasive clinical technique to assess bone mineral density and bone mineral content in human research and represents the primary tool for the diagnosis of osteoporosis. DXA measures areal bone mineral density, BMD, which does not account for the three-dimensional structure of the vertebrae and for the distribution of bone mass. The result is that longitudinal DXA can only predict about 70% of vertebral fractures. This study proposes a complementary tool, based on Finite Element (FE) models, to improve the DXA accuracy. Bone is simulated as elastic and inhomogeneous material, with stiffness distribution derived from DXA greyscale images of density. The numerical procedure simulates a compressive load on each vertebra to evaluate the local minimum principal strain values. From these values, both the local average and the maximum strains are computed over the cross sections and along the height of the analysed bone region, to provide a parameter, named Strain Index of Bone (SIB), which could be considered as a bone fragility index. The procedure is initially validated on 33 cylindrical trabecular bone samples obtained from porcine lumbar vertebrae, experimentally tested under static compressive loading. Comparing the experimental mechanical parameters with the SIB, we could find a higher correlation of the ultimate stress, σULT, with the SIB values (R2adj = 0.63) than that observed with the conventional DXA-based clinical parameters, i.e. Bone Mineral Density, BMD (R2adj = 0.34) and Trabecular Bone Score, TBS (R2adj = -0.03). The paper finally presents a few case studies of numerical simulations carried out on human lumbar vertebrae. If our results are confirmed in prospective studies, SIB could be used-together with BMD and TBS-to improve the fracture risk assessment and support the clinical decision to assume specific drugs for metabolic bone diseases.
Collapse
Affiliation(s)
- Chiara Colombo
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Flavia Libonati
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Luca Rinaudo
- TECHNOLOGIC S.r.l. Hologic Italia, Lungo Dora Voghera, Torino, Italy
| | - Martina Bellazzi
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Fabio Massimo Ulivieri
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Nuclear Medicine-Bone Metabolic Unit, Milano, Italy
- * E-mail:
| | - Laura Vergani
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
28
|
Nicolielo LFP, Van Dessel J, Jacobs R, Quirino Silveira Soares M, Collaert B. Relationship between trabecular bone architecture and early dental implant failure in the posterior region of the mandible. Clin Oral Implants Res 2019; 31:153-161. [DOI: 10.1111/clr.13551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/17/2019] [Accepted: 10/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Ferreira Pinheiro Nicolielo
- OMFS‐IMPATH research group Dept. Imaging & Pathology Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery University Hospitals Leuven Leuven Belgium
| | - Jeroen Van Dessel
- OMFS‐IMPATH research group Dept. Imaging & Pathology Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery University Hospitals Leuven Leuven Belgium
| | - Reinhilde Jacobs
- OMFS‐IMPATH research group Dept. Imaging & Pathology Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery University Hospitals Leuven Leuven Belgium
- Dept. of Dental Medicine Karolinska Institutet Huddinge Sweden
| | | | - Bruno Collaert
- Center for Periodontology and Implantology Leuven Heverlee Belgium
| |
Collapse
|
29
|
Nguyen C, Peetz D, Elbanna AE, Carlson JM. Characterization of fracture in topology-optimized bioinspired networks. Phys Rev E 2019; 100:042402. [PMID: 31770939 DOI: 10.1103/physreve.100.042402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Designing strong and robust bioinspired structures requires an understanding of how function arises from the architecture and geometry of materials found in nature. We draw from trabecular bone, a lightweight bone tissue that exhibits a complex, anisotropic microarchitecture, to generate networked structures using multiobjective topology optimization. Starting from an identical volume, we generate multiple different models by varying the objective weights for compliance, surface area, and stability. We examine the relative effects of these objectives on how resultant models respond to simulated mechanical loading and element failure. We adapt a network-based method developed initially in the context of modeling trabecular bone to describe the topology-optimized structures with a graph-theoretical framework, and we use community detection to characterize locations of fracture. This complementary combination of computational methods can provide valuable insights into the strength of bioinspired structures and mechanisms of fracture.
Collapse
Affiliation(s)
- Chantal Nguyen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Darin Peetz
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ahmed E Elbanna
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
30
|
Mondal A, Nguyen C, Ma X, Elbanna AE, Carlson JM. Network models for characterization of trabecular bone. Phys Rev E 2019; 99:042406. [PMID: 31108725 DOI: 10.1103/physreve.99.042406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Trabecular bone is a lightweight, compliant material organized as a web of struts and rods (trabeculae) that erode with age and the onset of bone diseases like osteoporosis, leading to increased fracture risk. The traditional diagnostic marker of osteoporosis, bone mineral density (BMD), has been shown in ex vivo experiments to correlate poorly with fracture resistance when considered on its own, while structural features in conjunction with BMD can explain more of the variation in trabecular bone strength. We develop a network-based model of trabecular bone by creating graphs from micro-computed tomography images of human bone, with weighted links representing trabeculae and nodes representing branch points. These graphs enable calculation of quantitative network metrics to characterize trabecular structure. We also create finite element models of the networks in which each link is represented by a beam, facilitating analysis of the mechanical response of the bone samples to simulated loading. We examine the structural and mechanical properties of trabecular bone at the scale of individual trabeculae (of order 0.1 mm) and at the scale of selected volumes of interest (approximately a few mm), referred to as VOIs. At the VOI scale, we find significant correlations between the stiffness of VOIs and 10 different structural metrics. Individually, the volume fraction of each VOI is most strongly correlated to the stiffness of the VOI. We use multiple linear regression to identify the smallest subset of variables needed to capture the variation in stiffness. In a linear fit, we find that node degree, weighted node degree, Z-orientation, weighted Z-orientation, trabecular spacing, link length, and the number of links are the structural metrics that are most significant (p<0.05) in capturing the variation of stiffness in trabecular networks.
Collapse
Affiliation(s)
- Avik Mondal
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Chantal Nguyen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Xiao Ma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ahmed E Elbanna
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
31
|
Hall S, Myers MA, Sadek AR, Baxter M, Griffith C, Dare C, Shenouda E, Nader-Sepahi A. Spinal fractures incurred by a fall from standing height. Clin Neurol Neurosurg 2019; 177:106-113. [PMID: 30640139 DOI: 10.1016/j.clineuro.2019.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 01/06/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Falls from standing are common, particularly amongst the aging population, due to declining mobility, proprioception and vision. They are often complicated by fragility fractures, including vertebral fractures, that are associated with significant morbidity and may represent a pre-terminal condition with high one-year mortality rates. PATIENTS AND METHODS A retrospective review of the Trauma Audit and Research Network database for a major trauma centre was conducted for all patients admitted between January 2011 and December 2016. Patients with a spinal fracture and a confirmed fall from standing height were eligible for inclusion. Case notes were reviewed for demographics, Injury Severity Score, Charlson co-morbidity score, treatment, complications and outcomes. RESULTS Of 1408 patients with a spine fracture admitted during the study period, 229 (16.3%) were confirmed to be secondary to a fall from standing height. The average age of this cohort was 76.6 ± 14.5 years and 134 (58.5%) cases were female. The average ISS score was 9.7 ± 5.4. The 229 patients sustained 283 fractures with a distribution of: cervical (n = 140), thoracic (n = 65) and lumbar (n = 78) spine. Fifty-six (24.5%) patients underwent surgical intervention. Forty-three patients (18.7%) died within 6 months of admission and all-cause mortality was significantly higher in patients with increasing age and Charlson co-morbidity score. CONCLUSION Spinal fractures due to a fall from standing height represent one sixth of the fracture workload of the emergency spinal service at a major trauma centre. Whilst the majority of patients can be managed conservatively there are still considerable implications for hospital bed usage and patient mortality.
Collapse
Affiliation(s)
- Samuel Hall
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom; Division of Clinical Neurosciences, School of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Matthew A Myers
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom; Division of Clinical Neurosciences, School of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Ahmed-Ramadan Sadek
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom; Division of Clinical Neurosciences, School of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Mark Baxter
- Department of Medicine and Elderly Care, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Colin Griffith
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom; Division of Clinical Neurosciences, School of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Christopher Dare
- Department of Trauma and Orthopaediacs, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Emad Shenouda
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom; Division of Clinical Neurosciences, School of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Ali Nader-Sepahi
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom; Division of Clinical Neurosciences, School of Medicine, University of Southampton, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|
32
|
Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study. J Mech Behav Biomed Mater 2018; 87:190-196. [DOI: 10.1016/j.jmbbm.2018.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022]
|
33
|
Nguyen C, Schlesinger KJ, James TW, James KM, Sah RL, Masuda K, Carlson JM. Novel magnetic resonance technique for characterizing mesoscale structure of trabecular bone. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180563. [PMID: 30225048 PMCID: PMC6124118 DOI: 10.1098/rsos.180563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Osteoporosis, characterized by increased fracture risk and bone fragility, impacts millions of adults worldwide, but effective, non-invasive and easily accessible diagnostic tests of the disease remain elusive. We present a magnetic resonance (MR) technique that overcomes the motion limitations of traditional MR imaging to acquire high-resolution frequency-domain data to characterize the texture of biological tissues. This technique does not involve obtaining full two-dimensional or three-dimensional images, but can probe scales down to the order of 40 μm and in particular uncover structural information in trabecular bone. Using micro-computed tomography data of vertebral trabecular bone, we computationally validate this MR technique by simulating MR measurements of a 'ratio metric' determined from a few k-space values corresponding to trabecular thickness and spacing. We train a support vector machine classifier on ratio metric values determined from healthy and simulated osteoporotic bone data, which we use to accurately classify osteoporotic bone.
Collapse
Affiliation(s)
- Chantal Nguyen
- Department of Physics, University of California, Santa Barbara, UC Santa Barbara, Santa Barbara, CA 93106-9530, USA
| | - Kimberly J. Schlesinger
- Department of Physics, University of California, Santa Barbara, UC Santa Barbara, Santa Barbara, CA 93106-9530, USA
| | - Timothy W. James
- BioProtonics, LLC, 3090 Old Calzada Rd, Santa Ynez, CA 93460, USA
| | - Kristin M. James
- BioProtonics, LLC, 3090 Old Calzada Rd, Santa Ynez, CA 93460, USA
| | - Robert L. Sah
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
- Department of Orthopaedic Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jean M. Carlson
- Department of Physics, University of California, Santa Barbara, UC Santa Barbara, Santa Barbara, CA 93106-9530, USA
| |
Collapse
|
34
|
Oppenheimer-Velez ML, Giambini H, Rezaei A, Camp JJ, Khosla S, Lu L. The trabecular effect: A population-based longitudinal study on age and sex differences in bone mineral density and vertebral load bearing capacity. Clin Biomech (Bristol, Avon) 2018; 55:73-78. [PMID: 29698852 PMCID: PMC5987206 DOI: 10.1016/j.clinbiomech.2018.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 03/05/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Approximately 16-24% of postmenopausal women are affected by vertebral fractures, negatively affecting their quality of life. Trabecular and cortical bones in vertebrae decline differently with age, thus having a distinct impact on vertebral failure loads. The purpose of this study was to investigate the effect of trabecular and cortical volumetric bone mineral density loss over time on estimated failure loads; and to evaluate the effect of sex and age. METHOD Fracture properties from a cohort of 82 patients were evaluated for L1-L3 vertebrae at baseline and 6th year using an image-based method that implements axial rigidity analysis. Cortical and trabecular volumetric bone mineral density were obtained, as well as their individual contribution to total failure load. Regression analyses were performed to determine the effect of age and sex on volumetric bone mineral density and failure loads. FINDINGS Decline in trabecular and cortical volumetric bone mineral density, and failure load was sex-dependent (p ≤ 0.0095). Cortical and trabecular volumetric bone mineral density reduced 2.08 (g/cm3)/year and 2.02 (g/cm3)/year, respectively. A 1012 N difference in failure load, ~70% attributed to trabecular bone, was found between men and women of similar age. Over 6 years, this difference increased by 287 N. Areal bone mineral density measured by dual X-ray absorptiometry explained ~60% of the vertebral failure load. INTERPRETATION Trabecular bone has a significantly greater effect than cortical bone on the structural integrity and load bearing capacity of vertebrae. This might lead to a higher incidence of fragility fractures in osteoporotic women. Our non-invasive, quantitative computed tomography image-based approach may improve prevention, monitoring, and management of fractures.
Collapse
Affiliation(s)
- Marianna L. Oppenheimer-Velez
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States,University of Puerto Rico Medical Sciences Campus, School of Medicine, San Juan, Puerto Rico
| | - Hugo Giambini
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Jon J. Camp
- Biomedical Imaging Resource, Mayo Clinic, Rochester, MN, United States
| | - Sundeep Khosla
- Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
35
|
Barak MM, Black MA. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength. J Mech Behav Biomed Mater 2018; 78:455-464. [PMID: 29241149 PMCID: PMC5758409 DOI: 10.1016/j.jmbbm.2017.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/24/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P < 0.01). Structural strength decreased from an average of 9.14 ± 2.85MPa to 6.97 ± 2.44MPa, while structural stiffness decreased from an average of 282.5 ± 63.4N/mm to 233.8 ± 51.2N/mm. This study demonstrates that 3D printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption.
Collapse
Affiliation(s)
- Meir Max Barak
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA.
| | | |
Collapse
|
36
|
Morton JJ, Bennison M, Lievers WB, Waldman SD, Pilkey AK. Failure behaviour of rat vertebrae determined through simultaneous compression testing and micro-CT imaging. J Mech Behav Biomed Mater 2017; 79:73-82. [PMID: 29287225 DOI: 10.1016/j.jmbbm.2017.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/15/2017] [Accepted: 11/12/2017] [Indexed: 11/19/2022]
Abstract
Skeletal fractures, including those resulting from osteoporosis, result in significant healthcare and societal costs on an annual basis. Therefore, it is important to understand the mechanisms by which these fractures occur. Incremental compression testing combined with micro-CT imaging has been used to visualize the progression of failure in trabecular bone samples; however, these studies have ignored the potential contributions of the cortical shell. In the current study, incremental compression testing with simultaneous micro-CT imaging was performed on rat vertebrae from multiple disease states (healthy control, osteoporotic, osteoporotic + treatment). These tests allowed the progression of failure through an entire vertebral body to be visualized for the first time. Three distinct failure modes were observed throughout all specimens, independent of disease state. Two of these failure modes (types I and II), which were observed in 93% of all specimens, were associated with the vascular apertures in the vertebrae's dorsal and ventral surfaces. This behaviour is likely caused by the stress concentrations in the cortical shell resulting from the apertures themselves, coupled with the reduced trabecular bone volume adjacent to them. These results suggest that the combined contributions of both the cortical shell and trabecular bone must be considered when studying the compressive failure behaviour of rat vertebrae.
Collapse
Affiliation(s)
- Justin J Morton
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
| | - Matthew Bennison
- Bharti School of Engineering, Laurentian University, Sudbury, Ontario, Canada
| | - W Brent Lievers
- Bharti School of Engineering, Laurentian University, Sudbury, Ontario, Canada
| | - Stephen D Waldman
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada
| | - A Keith Pilkey
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
37
|
Tang YH, Yue ZS, Xin DW, Zeng LR, Xiong ZF, Hu ZQ, Xu CD. β‑Ecdysterone promotes autophagy and inhibits apoptosis in osteoporotic rats. Mol Med Rep 2017; 17:1591-1598. [PMID: 29138818 PMCID: PMC5780099 DOI: 10.3892/mmr.2017.8053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 10/19/2017] [Indexed: 01/28/2023] Open
Abstract
Osteoporosis is an aging process of skeletal tissues with characteristics of reductions in bone mass and microarchitectural deterioration of bone tissue. The present study aimed to investigate the effects of glucocorticoid-induced osteoporosis on osteoblasts and to examine the roles of β-ecdysterone (β-Ecd) involved. In the present study, an in vivo model of osteoporosis was established through the subcutaneous implantation of prednisolone (PRED) into Sprague-Dawley rats, with or without a subcutaneous injection of β-Ecd (5 or 10 mg/kg body weight). Expression of Beclin-1 and microtubule-associated protein 1A/1B-light chain 3I/II and apoptosis in lumbar vertebrae tissues was measured by immunofluorescence and TUNEL assays, respectively. Serum concentration of calcium and phosphorus, and the activity of tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) were measured by biochemical assay. Reverse transcription-quantitative polymerase chain reaction and western blotting was used for detect the expression of related genes and proteins. PRED treatment inhibited bone formation by decreasing bone mineral density, and suppressing the expression of Runt-related transcription factor 2 and bone morphogenetic protein 2, while enhancing the activity of alkaline phosphatase, upregulating the expression of receptor activator of nuclear factor-κB ligand, and increasing the serum content of calcium, phosphorus and tartrate-resistant acid phosphatase in rats. Additionally, PRED was revealed to inhibit autophagy through the downregulation of Beclin-1, autophagy protein 5 and microtubule-associated protein 1A/1B-light chain 3I/II expression, whereas it induced the apoptosis, through the activation of caspase-3 and the suppression of apoptosis regulator BCL2 expression. Notably, the PRED-induced alterations in bone formation, autophagy and apoptosis were revealed to be attenuated by β-Ecd administration. In conclusion, the findings of the present study suggested that β-Ecd may be a promising candidate for the development of therapeutic strategies for the treatment of osteoporosis, through the induction of autophagy and the inhibition of apoptosis in vivo.
Collapse
Affiliation(s)
- Yang-Hua Tang
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Zhen-Shuang Yue
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Da-Wei Xin
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Lin-Ru Zeng
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Zhen-Fei Xiong
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Zhong-Qing Hu
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| | - Can-Da Xu
- Department of Orthopedics, Xiaoshan TCM Hospital, Xiaoshan, Hangzhou 311201, P.R. China
| |
Collapse
|
38
|
Dong J, Xiong D. Applications of Light Emitting Diodes in Health Care. Ann Biomed Eng 2017; 45:2509-2523. [PMID: 28948402 DOI: 10.1007/s10439-017-1930-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/16/2017] [Indexed: 12/28/2022]
Abstract
Light emitting diodes (LEDs) have become the main light sources for general lighting, due to their high lumen efficiency and long life time. Moreover, their high bandwidth and the availability of diverse wavelength contents ranging from ultraviolet to infrared empower them with great controllability in tuning brightness, pulse durations and spectra. These parameters are the essential ingredients of the applications in medical imaging and therapies. Despite the fast advances in both LED technologies and their applications, few reviews have been seen to link the controllable emission properties of LEDs to these applications. The objective of this paper is to bridge this gap by reviewing the main control techniques of LEDs that enable creating enhanced lighting patterns for imaging and generating effective photon doses for photobiomodulation. This paper also provides the basic mechanisms behind the effective LED therapies in treating cutaneous and neurological diseases. The emerging field of optogenetics is also discussed with a focus on the application of LEDs. The multidisciplinary topics reviewed in this paper can help the researchers in LEDs, imaging, light therapy and optogenetics better understand the basic principles in each other's field; and hence to stimulate the application of LEDs in health care.
Collapse
Affiliation(s)
- Jianfei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Daxi Xiong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
39
|
Random Electromyostimulation Promotes Osteogenesis and the Mechanical Properties of Rat Bones. Ann Biomed Eng 2017; 45:2837-2846. [PMID: 28929434 DOI: 10.1007/s10439-017-1927-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
Exercise is often recommended as a promising non-pharmacologic countermeasure to prevent osteoporosis. However, elderly osteoporotic patients generally have physical fitness difficulties preventing them from performing effective and sustainable exercise. Electromyostimulation should be one effective modality for non-pharmacological prevention of osteoporosis without any voluntary physical movements. However, successful stimulation patterns remain controversial. As suggested by our previous in vitro studies, randomized timing of stimulation could be a candidate to maximize the osteogenic effect of electromyostimulation. In this study, the effects of random stimulation to the quadriceps on osteogenesis in the femurs were investigated using rats, in comparison with a periodic stimulation pattern. In histomorphometric assessments, both stimulation patterns demonstrated increases in bone formation rate either in cortical bone at the midshaft or in trabecular bone at the femoral neck on the stimulated side. However, maximum load and strain energy to failure were enhanced only by the random stimulation, on either the stimulated or non-stimulated side. It is concluded that randomized muscle stimulation has effective osteogenic capability at the stimulation site, similar to periodic stimulation; however, its effectiveness on mechanical properties is expandable to other non-stimulated sites.
Collapse
|
40
|
Karvande A, Khedgikar V, Kushwaha P, Ahmad N, Kothari P, Verma A, Kumar P, Nagar GK, Mishra PR, Maurya R, Trivedi R. Heartwood extract from Dalbergia sissoo promotes fracture healing and its application in ovariectomy-induced osteoporotic rats. ACTA ACUST UNITED AC 2017; 69:1381-1397. [PMID: 28664619 DOI: 10.1111/jphp.12764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/07/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study was undertaken to investigate the effects of a heartwood ethanolic extract (HEE) made from the Dalbergia sissoo on facture healing and in the prevention of pathological bone loss resulting from estrogen deficiency in ovariectomized (Ovx) rats. METHODS Heartwood ethanolic extract (250, 500 and 1000 mg/kg per day) was administered orally immediately next day after drill-hole injury and continued for 2 weeks. Ovx rats received HEE at same doses for 12 weeks and compared with 17-β estradiol (E2; 100 μg/kg for 5 days/week subcutaneously) group. Confocal imaging for fracture healing, micro-architecture of long bones, biomechanical strength, formation of mineralized nodule by bone marrow osteoprogenitor cells, bone turnover markers and gene expression were studied. One-way ANOVA was used to test significance. KEY FINDINGS Heartwood ethanolic extract treatment promoted fracture healing, formation of new bone at the drill-hole site and stimulated osteogenic genes at callus region. HEE administration to the Ovx rats exhibited better micro-architectural parameters at various anatomical positions, better bone biomechanical strength and more osteoprogenitor cells in the bone marrow compared with Ovx + vehicle group. HEE exhibited no uterine estrogenicity. CONCLUSIONS Oral administration of HEE was found to promote fracture healing and exhibited osteoprotective effect by possibly stimulation of osteoblast function.
Collapse
Affiliation(s)
- Anirudha Karvande
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Vikram Khedgikar
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Priyanka Kushwaha
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Naseer Ahmad
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Priyanka Kothari
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Ashwni Verma
- Division of Pharmaceutics, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Padam Kumar
- Division of Medicinal & Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Geet Kumar Nagar
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| |
Collapse
|
41
|
Ahmad N, Chillara R, Kushwaha P, Khedgikar V, Karvande A, Choudhary D, Adhikary S, Maurya R, Trivedi R. Evaluation of anti-osteoporotic activity of butanolic fraction from Passiflora foetida in ovariectomy-induced bone loss in mice. Biomed Pharmacother 2017; 88:804-813. [PMID: 28160755 DOI: 10.1016/j.biopha.2017.01.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE In this study, we have evaluated the skeletal effects of butanolic fraction (BF) from Passiflora foetida in an estrogen deficient mice bone loss model. STUDY DESIGN Skeletal effect of BF was studied in ovariectomized (OVx) female Balb/c mice. BF (50 and 100mg/kg/day dose orally) was given for 8 weeks. Micro-architecture of long bones, biomechanical strength, formations of mineralized nodule by bone marrow osteoprogenitor cells, osteoid formation and bone turnover markers were studied. One way ANOVA was used to test the significance of effects of Passiflora foetida. RESULTS OVx mice treated with BF represented with better micro-architectural parameters at various anatomical positions, better bone biomechanical strength and more osteoprogenitor cells in the bone marrow compared with OVx group. BF did not exhibit uterine estrogenicity. CONCLUSION Oral administration of BF at both the doses (50 and 100mg/kg/day) derived from Passiflora Foetida, was found to afford anti-osteoporotic effect under estrogen deficiency by likely stimulation of osteoblast function and inhibition of osteoclast function.
Collapse
Affiliation(s)
- Naseer Ahmad
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Raju Chillara
- Division of Medicinal & Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Priyanka Kushwaha
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vikram Khedgikar
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Anirudha Karvande
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Dharmendra Choudhary
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sulekha Adhikary
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
42
|
Álvarez-Lloret P, Lee CM, Conti MI, Terrizzi AR, González-López S, Martínez MP. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats. Toxicology 2016; 377:64-72. [PMID: 27915097 DOI: 10.1016/j.tox.2016.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/19/2016] [Accepted: 11/27/2016] [Indexed: 11/26/2022]
Abstract
Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca2++Mg2++ Na+)/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant.
Collapse
Affiliation(s)
- Pedro Álvarez-Lloret
- Departamento de Geología, Facultad de Geología, Universidad de Oviedo, Oviedo, Spain.
| | - Ching Ming Lee
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
| | - María Inés Conti
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
| | - Antonela Romina Terrizzi
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
| | | | - María Pilar Martínez
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
| |
Collapse
|
43
|
Roux JP, Belghali S, Wegrzyn J, Rendu ES, Chapurlat R. Vertebral body morphology is associated with incident lumbar vertebral fracture in postmenopausal women. The OFELY study. Osteoporos Int 2016; 27:2507-13. [PMID: 26957288 DOI: 10.1007/s00198-016-3558-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 03/01/2016] [Indexed: 01/19/2023]
Abstract
UNLABELLED We investigate the predictive role of vertebral anterior cortical curvature and height heterogeneity in the occurrence of vertebral fractures in postmenopausal women. Women who will fracture had shorter vertebral height, greater heterogeneity of height than those who will not fracture, and their anterior vertebral body edge was less concave. INTRODUCTION Vertebral morphology has been demonstrated to be associated with further risk of fracture. The aim of this study was to analyze vertebral anterior cortical curvature (Ct.curv) and vertebral height heterogeneity in postmenopausal women before the occurrence of a vertebral fracture. METHODS This case-control study included 29 postmenopausal women who have underwent incident lumbar vertebral fractures (mean age 71 ± 9 years, mean time to fractures 9 ± 4 years), age-matched with 57 controls. From lateral X-rays of lumbar spine radiographs (T12 to L4), the following parameters were measured: (1) the posterior, middle, and anterior vertebral heights; (2) the heterogeneity of heights evaluated by the coefficient of variation of these three variables; (3) antero-posterior width, a 2D estimator of cross-sectional area; and (4) Ct.curv. RESULTS Mean vertebral heights were significantly lower among women who fractured than in controls (p < 0.05). The anterior and middle heights were significantly lower at L4 and L3 levels in fracture group (p = 0.02). The heterogeneity of vertebral height was significantly greater in the fracture group (p = 0.003). In addition, fractured patients had a significantly higher Ct.curv on L3 (p = 0.04). After adjustment for bone mineral density (BMD), only the heterogeneity of vertebral height remained significant (p = 0.005). CONCLUSION The current case-control study confirmed the association between vertebral height and occurrence of future vertebral fracture in postmenopausal women. The vertebrae with the smallest Ct.curv tended to fracture less often, and the heterogeneity of vertebral heights was associated with future fracture independently of BMD. An additional validation in a prospective study would be needed to confirm these initial results.
Collapse
Affiliation(s)
- J P Roux
- INSERM, UMR 1033, Université de Lyon, Lyon, France.
| | - S Belghali
- INSERM, UMR 1033, Université de Lyon, Lyon, France
| | - J Wegrzyn
- INSERM, UMR 1033, Université de Lyon, Lyon, France
- Department of Orthopedic Surgery-Pavillon T, Hôpital Edouard Herriot, Lyon, France
| | - E S Rendu
- INSERM, UMR 1033, Université de Lyon, Lyon, France
| | - R Chapurlat
- INSERM, UMR 1033, Université de Lyon, Lyon, France
| |
Collapse
|
44
|
Giambini H, Dragomir-Daescu D, Huddleston PM, Camp JJ, An KN, Nassr A. The Effect of Quantitative Computed Tomography Acquisition Protocols on Bone Mineral Density Estimation. J Biomech Eng 2016; 137:114502. [PMID: 26355694 DOI: 10.1115/1.4031572] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/09/2015] [Indexed: 11/08/2022]
Abstract
Osteoporosis is characterized by bony material loss and decreased bone strength leading to a significant increase in fracture risk. Patient-specific quantitative computed tomography (QCT) finite element (FE) models may be used to predict fracture under physiological loading. Material properties for the FE models used to predict fracture are obtained by converting grayscale values from the CT into volumetric bone mineral density (vBMD) using calibration phantoms. If there are any variations arising from the CT acquisition protocol, vBMD estimation and material property assignment could be affected, thus, affecting fracture risk prediction. We hypothesized that material property assignments may be dependent on scanning and postprocessing settings including voltage, current, and reconstruction kernel, thus potentially having an effect in fracture risk prediction. A rabbit femur and a standard calibration phantom were imaged by QCT using different protocols. Cortical and cancellous regions were segmented, their average Hounsfield unit (HU) values obtained and converted to vBMD. Estimated vBMD for the cortical and cancellous regions were affected by voltage and kernel but not by current. Our study demonstrated that there exists a significant variation in the estimated vBMD values obtained with different scanning acquisitions. In addition, the large noise differences observed utilizing different scanning parameters could have an important negative effect on small subregions containing fewer voxels.
Collapse
|
45
|
Takahashi T, Watanabe T, Nakada H, Sato H, Tanimoto Y, Sakae T, Kimoto S, Mijares D, Zhang Y, Kawai Y. Improved Bone Micro Architecture Healing Time after Implant Surgery in an Ovariectomized Rat. J HARD TISSUE BIOL 2016; 25:257-262. [PMID: 28133434 PMCID: PMC5267561 DOI: 10.2485/jhtb.25.257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present animal study investigated whether oral intake of synthetic bone mineral (SBM) improves peri-implant bone formation and bone micro architecture (BMA). SBM was used as an intervention experimental diet and AIN-93M was used as a control. The SBM was prepared by mixing dicalcium phosphate dihydrate (CaHPO4·2H2O) and magnesium and zinc chlorides (MgCl2 and ZnCl2, respectively), and hydrolyzed in double-distilled water containing dissolved potassium carbonate and sodium fluoride. All rats were randomly allocated into one of two groups: a control group was fed without SBM (n = 18) or an experimental group was fed with SBM (n = 18), at seven weeks old. At 9 weeks old, all rats underwent implant surgery on their femurs under general anesthesia. The implant was inserted into the insertion socket prepared at rats' femur to a depth of 2.5 mm by using a drill at 500 rpm. Nine rats in each group were randomly selected and euthanized at 2 weeks after implantation. The remaining nine rats in each group continued their diets, and were euthanized in the same manner at 4 weeks after implantation. The femur, including the implant, was removed from the body and implant was pulled out by an Instron universal testing machine. After the implant removal, BMA was evaluated by bone surface ratio (BS/BV), bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular number (TbN), trabecular star volume (Vtr), and micro-CT images. BS/BV, BV/TV, TbTh and Vtr were significantly greater in the rats were fed with SBM than those were fed without SBM at 2 and 4 weeks after implantation (P < 0.05). The present results revealed that SBM improves the peri-implant formation and BMA, prominent with trabecular bone structure. The effect of SBM to improve secondary stability of the implant, and shortening the treatment period should be investigated in the future study.
Collapse
Affiliation(s)
- Takahiro Takahashi
- Department of Removable Prosthodontics, Nihon University Graduate School of Dentistry at Matsudo, Removable Prosthodontics, Matsudo, Japan
| | - Takehiro Watanabe
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Matsudo, Japan
| | - Hiroshi Nakada
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Matsudo, Japan
| | - Hiroki Sato
- Department of Removable Prosthodontics, Nihon University Graduate School of Dentistry at Matsudo, Removable Prosthodontics, Matsudo, Japan
| | - Yasuhiro Tanimoto
- Department of Dental Biomaterials, Nihon University of Dentistry at Matsudo, Matsudo, Japan
| | - Toshiro Sakae
- Department of Histology, Nihon University of Dentistry at Matsudo, Matsudo, Japan
| | - Suguru Kimoto
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Matsudo, Japan
| | - Dindo Mijares
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA
| | - Yu Zhang
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA
| | - Yasuhiko Kawai
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Matsudo, Japan
| |
Collapse
|
46
|
Choisne J, Valiadis JM, Travert C, Kolta S, Roux C, Skalli W. Vertebral strength prediction under anterior compressive force using a finite element model for osteoporosis assessment. Comput Methods Biomech Biomed Engin 2015; 18 Suppl 1:1900-1. [DOI: 10.1080/10255842.2015.1069562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- J. Choisne
- Arts et Metiers ParisTech, LBM/Institut de Biomecanique Humaine Georges Charpak, Paris, France
| | - J. M. Valiadis
- Arts et Metiers ParisTech, LBM/Institut de Biomecanique Humaine Georges Charpak, Paris, France
| | - C. Travert
- Arts et Metiers ParisTech, LBM/Institut de Biomecanique Humaine Georges Charpak, Paris, France
| | - S. Kolta
- Centre d’Evaluation des maladies Osseuses, Hopital Cochin, Paris, France
| | - C. Roux
- Centre d’Evaluation des maladies Osseuses, Hopital Cochin, Paris, France
| | - W. Skalli
- Arts et Metiers ParisTech, LBM/Institut de Biomecanique Humaine Georges Charpak, Paris, France
| |
Collapse
|
47
|
Aaron JE, Shore PA, Itoda M, Morrison RJM, Hartopp A, Hensor EMA, Hordon LD. Mapping trabecular disconnection "hotspots" in aged human spine and hip. Bone 2015; 78:71-80. [PMID: 25874446 DOI: 10.1016/j.bone.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 03/11/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
Trabecular bone disconnection is an independent factor in age-related skeletal failure where real termini (ReTm; rare in youth) may cause weakness disproportionate to tissue loss, yet their structural contribution at vulnerable locations remains uncertain. ReTm (previously recorded at the iliac crest) were mapped in "normal" aged vertebral bodies (T11-L5 autopsy; 20 females, 10 males) and corresponding proximal femora (autopsy; 10 females). Results were compared with biomechanically failed femora from orthopaedic subjects aged >58 yr (osteoporosis OP, 10 females; osteoarthritis OA, 10 females). A novel direct 2D/3D histological method was applied to large, thick (300 μm) slices superficially silver-stained to separate ReTm (unstained) from apparent termini (planar artefacts, brown). Light microscope field co-ordinates enabled ReTm mapping and statistical testing relative to i) sex, ii) tissue sector and iii) slicing plane. In men ReTm populations were small and random while in women they were large and sector-specific. In vertebrae they clustered anterior/superior being rare posterior/inferior; in the femoral head they concentrated distal/superior and also near the fovea, being fewer distal/inferior. A distribution polarity was evident with 100% more ReTm observed transversely (i.e., on tensile-related cross struts) than longitudinally (i.e., on compression-related vertical struts). Their numbers rose in OP (BV/TV<14%, microCT) and in OA (BV/TV>14%), remaining polarised and sector-specific in OP only. Comparative experimentation by marrow elution of an OP animal model demonstrated "floating segments" as a possible outcome. Conclusions were supported statistically that trabecular disconnection "hotspots" at vulnerable locations are sex- and sector-specific, mainly transaxial, and subject to disease modulation.
Collapse
Affiliation(s)
- Jean E Aaron
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Patricia A Shore
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mizuo Itoda
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rory J M Morrison
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Andrew Hartopp
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Lesley D Hordon
- School of Biomedical Science, Faculty of Biological Sciences, University of Leeds, Leeds, UK; Department of Rheumatology, Dewsbury District Hospital, Mid-Yorkshire NHS Trust, Dewsbury, UK.
| |
Collapse
|
48
|
Lekadir K, Noble C, Hazrati-Marangalou J, Hoogendoorn C, van Rietbergen B, Taylor ZA, Frangi AF. Patient-Specific Biomechanical Modeling of Bone Strength Using Statistically-Derived Fabric Tensors. Ann Biomed Eng 2015; 44:234-46. [DOI: 10.1007/s10439-015-1432-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
|
49
|
Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method. Med Biol Eng Comput 2015; 54:583-93. [PMID: 26239163 DOI: 10.1007/s11517-015-1348-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
Osteoporotic vertebral body fractures are an increasing clinical problem among the aging population. Specimen-specific finite element models, derived from quantitative computed tomography (QCT), have the potential to more accurately predict failure loads in the vertebra. Additionally, the use of extended finite element modeling (X-FEM) allows for a detailed analysis of crack initiation and propagation in various materials. Our aim was to study the feasibility of QCT/X-FEM analysis to predict fracture properties of vertebral bodies. Three cadaveric specimens were obtained, and the L3 vertebrae were excised. The vertebrae were CT scanned to develop computational models and mechanically tested in compression to measure failure load, stiffness and to observe crack location. One vertebra was used for calibration of the material properties from experimental results and CT gray-scale values. The two additional specimens were used to assess the model prediction. The resulting QCT/X-FEM model of the specimen used for calibration had 2 and 4% errors in stiffness and failure load, respectively, compared with the experiment. The predicted failure loads of the additional two vertebrae were larger by about 41-44% when compared to the measured values, while the stiffness differed by 129 and 40%. The predicted fracture patterns matched fairly well with the visually observed experimental cracks. Our feasibility study indicated that the QCT/X-FEM method used to predict vertebral compression fractures is a promising tool to consider in future applications for improving vertebral fracture risk prediction in the elderly.
Collapse
|
50
|
Lekadir K, Hoogendoorn C, Hazrati-Marangalou J, Taylor Z, Noble C, van Rietbergen B, Frangi AF. A Predictive Model of Vertebral Trabecular Anisotropy From Ex Vivo Micro-CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1747-1759. [PMID: 25561590 DOI: 10.1109/tmi.2014.2387114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Spine-related disorders are amongst the most frequently encountered problems in clinical medicine. For several applications such as 1) to improve the assessment of the strength of the spine, as well as 2) to optimize the personalization of spinal interventions, image-based biomechanical modeling of the vertebrae is expected to play an important predictive role. However, this requires the construction of computational models that are subject-specific and comprehensive. In particular, they need to incorporate information about the vertebral anisotropic micro-architecture, which plays a central role in the biomechanical function of the vertebrae. In practice, however, accurate personalization of the vertebral trabeculae has proven to be difficult as its imaging in vivo is currently infeasible. Consequently, this paper presents a statistical approach for accurate prediction of the vertebral fabric tensors based on a training sample of ex vivo micro-CT images. To the best of our knowledge, this is the first predictive model proposed and validated for vertebral datasets. The method combines features selection and partial least squares regression in order to derive optimal latent variables for the prediction of the fabric tensors based on the more easily extracted shape and density information. Detailed validation with 20 ex vivo T12 vertebrae demonstrates the accuracy and consistency of the approach for the personalization of trabecular anisotropy.
Collapse
|