1
|
Khang A, Nguyen Q, Feng X, Howsmon DP, Sacks MS. Three-dimensional analysis of hydrogel-imbedded aortic valve interstitial cell shape and its relation to contractile behavior. Acta Biomater 2023; 163:194-209. [PMID: 35085795 PMCID: PMC9309197 DOI: 10.1016/j.actbio.2022.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
Abstract
Cell-shape is a conglomerate of mechanical, chemical, and biological mechanisms that reflects the cell biophysical state. In a specific application, we consider aortic valve interstitial cells (AVICs), which maintain the structure and function of aortic heart valve leaflets. Actomyosin stress fibers help determine AVIC shape and facilitate processes such as adhesion, contraction, and mechanosensing. However, detailed 3D assessment of stress fiber architecture and function is currently impractical. Herein, we assessed AVIC shape and contractile behaviors using hydrogel-based 3D traction force microscopy to intuit the orientation and behavior of AVIC stress fibers. We utilized spherical harmonics (SPHARM) to quantify AVIC geometries through three days of incubation, which demonstrated a shift from a spherical shape to forming substantial protrusions. Furthermore, we assessed changes in post-three day AVIC shape and contractile function within two testing regimes: (1) normal contractile level to relaxation (cytochalasin D), and (2) normal contractile level to hyper-contraction (endothelin-1). In both scenarios, AVICs underwent isovolumic shape changes and produced complex displacement fields within the hydrogel. AVICs were more elongated when relaxed and more spherical in hyper-contraction. Locally, AVIC protrusions contracted along their long axis and expanded in their circumferential direction, indicating predominately axially aligned stress fibers. Furthermore, the magnitude of protrusion displacements was correlated with protrusion length and approached a consistent displacement plateau at a similar critical length across all AVICs. This implied that stress fiber behavior is conserved, despite great variations in AVIC shapes. We anticipate our findings will bolster future investigations into AVIC stress fiber architecture and function. STATEMENT OF SIGNIFICANCE: Within the aortic valve there exists a population of aortic valve interstitial cells, which orchestrate the turnover, secretion, and remodeling of its extracellular matrix, maintaining tissue integrity and ultimately sustaining the proper mechanical function. Alterations in these processes are thought to underlie diseases of the aortic valve, which affect hundreds of thousands domestically and world-wide. Yet, to date, there are no non-surgical treatments for aortic heart valve disease, in part due to our limited understanding of the underlying disease processes. In the present study, we built upon our previous study to include a full 3D analysis of aortic valve interstitial cell shapes at differing contractile levels. The resulting detailed shape and deformation analysis provided insight into the underlying stress-fiber structures and mechanical behaviors.
Collapse
Affiliation(s)
- Alex Khang
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712-1229, USA
| | - Quan Nguyen
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712-1229, USA
| | - Xinzeng Feng
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712-1229, USA
| | - Daniel P Howsmon
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712-1229, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712-1229, USA.
| |
Collapse
|
2
|
Yang BA, da Rocha AM, Newton I, Shcherbina A, Wong SW, Fraczek PM, Larouche JA, Hiraki HL, Baker BM, Shin JW, Takayama S, Thouless MD, Aguilar CA. Manipulation of the nucleoscaffold potentiates cellular reprogramming kinetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532246. [PMID: 36993714 PMCID: PMC10055010 DOI: 10.1101/2023.03.12.532246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Somatic cell fate is an outcome set by the activities of specific transcription factors and the chromatin landscape and is maintained by gene silencing of alternate cell fates through physical interactions with the nuclear scaffold. Here, we evaluate the role of the nuclear scaffold as a guardian of cell fate in human fibroblasts by comparing the effects of transient loss (knockdown) and mutation (progeria) of functional Lamin A/C, a core component of the nuclear scaffold. We observed that Lamin A/C deficiency or mutation disrupts nuclear morphology, heterochromatin levels, and increases access to DNA in lamina-associated domains. Changes in Lamin A/C were also found to impact the mechanical properties of the nucleus when measured by a microfluidic cellular squeezing device. We also show that transient loss of Lamin A/C accelerates the kinetics of cellular reprogramming to pluripotency through opening of previously silenced heterochromatin domains while genetic mutation of Lamin A/C into progerin induces a senescent phenotype that inhibits the induction of reprogramming genes. Our results highlight the physical role of the nuclear scaffold in safeguarding cellular fate.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Isabel Newton
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Shcherbina
- Dept. of Biomedical Informatics, Stanford University, Palo Alto, CA 94305, USA
| | - Sing-Wan Wong
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula M. Fraczek
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacqueline A. Larouche
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harrison L. Hiraki
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae-Won Shin
- Dept. of Pharmacology and Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuichi Takayama
- Wallace Coulter Dept. of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - M. D. Thouless
- Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Dept. of Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos A. Aguilar
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Reynolds N, McEvoy E, Ghosh S, Panadero Pérez JA, Neu CP, McGarry P. Image-derived modeling of nucleus strain amplification associated with chromatin heterogeneity. Biophys J 2021; 120:1323-1332. [PMID: 33675762 PMCID: PMC8105730 DOI: 10.1016/j.bpj.2021.01.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Beyond the critical role of cell nuclei in gene expression and DNA replication, they also have a significant influence on cell mechanosensation and migration. Nuclear stiffness can impact force transmission and, furthermore, act as a physical barrier to translocation across tight spaces. As such, it is of wide interest to accurately characterize nucleus mechanical behavior. In this study, we present a computational investigation of the in situ deformation of a heterogeneous chondrocyte nucleus. A methodology is developed to accurately reconstruct a three-dimensional finite-element model of a cell nucleus from confocal microscopy. By incorporating the reconstructed nucleus into a chondrocyte model embedded in pericellular and extracellular matrix, we explore the relationship between spatially heterogeneous nuclear DNA content, shear stiffness, and resultant shear strain. We simulate an externally applied extracellular matrix shear deformation and compute intranuclear strain distributions, which are directly compared with corresponding experimentally measured distributions. Simulations suggest that the mechanical behavior of the nucleus is highly heterogeneous, with a nonlinear relationship between experimentally measured grayscale values and corresponding local shear moduli (μn). Three distinct phases are identified within the nucleus: a low-stiffness mRNA-rich interchromatin phase (0.17 kPa ≤ μn ≤ 0.63 kPa), an intermediate-stiffness euchromatin phase (1.48 kPa ≤ μn ≤ 2.7 kPa), and a high-stiffness heterochromatin phase (3.58 kPa ≤ μn ≤ 4.0 kPa). Our simulations also indicate that disruption of the nuclear envelope associated with lamin A/C depletion significantly increases nuclear strain in regions of low DNA concentration. We further investigate a phenotypic shift of chondrocytes to fibroblast-like cells, a signature for osteoarthritic cartilage, by increasing the contractility of the actin cytoskeleton to a level associated with fibroblasts. Peak nucleus strains increase by 35% compared to control, with the nucleus becoming more ellipsoidal. Our findings may have broad implications for current understanding of how local DNA concentrations and associated strain amplification can impact cell mechanotransduction and drive cell behavior in development, migration, and tumorigenesis.
Collapse
Affiliation(s)
- Noel Reynolds
- Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Eoin McEvoy
- Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Soham Ghosh
- Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| | | | - Corey P Neu
- Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Patrick McGarry
- Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
4
|
Hao Y, Cheng S, Tanaka Y, Hosokawa Y, Yalikun Y, Li M. Mechanical properties of single cells: Measurement methods and applications. Biotechnol Adv 2020; 45:107648. [DOI: 10.1016/j.biotechadv.2020.107648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
|
5
|
Gallagher EA, Lamorinière S, McGarry P. Finite element investigation into the use of carbon fibre reinforced PEEK laminated composites for distal radius fracture fixation implants. Med Eng Phys 2019; 67:22-32. [PMID: 30879944 DOI: 10.1016/j.medengphy.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
Carbon fibre reinforced PEEK (CF/PEEK) laminates provide mechanical advantages over homogenous metal osteo-synthesis implants, e.g. radiolucency, fatigue strength and strength to weight ratio. Implants can be designed with custom anisotropic material properties, thus enabling the engineer to tailor the overall stiffness of the implant to the specific loading conditions it will experience in vivo. In the current study a multi-scale computational investigation of idealised distal radius fracture fixation plate (DRP) is conducted. Physiological loading conditions are applied to macro-scale finite element models of DRPs. The mechanical response is compared for several CF/PEEK laminate layups to examine the effect of ply layup design. The importance of ply orientation in laminated DRPs is highlighted. A high number of 0° plies near the outer surfaces results in a greater bending strength while the addition of 45° plies increases the torsional strength of the laminates. Intra-laminar transverse tensile failure is predicted as the primary mode of failure. A micro-mechanical analysis of the CF/PEEK microstructure uncovers the precise mechanism under-lying intra-laminar transverse tensile crack to be debonding of the PEEK matrix from carbon fibres. Plastic strains in the matrix material are not sufficiently high to result in ductile failure of the matrix. The findings of this study demonstrate the significant challenge in the design and optimisation of fibre reinforced laminated composites for orthopaedic applications, highlighting the importance of multi-scale modelling for identification of failure mechanisms.
Collapse
Affiliation(s)
| | - Steven Lamorinière
- Invibio Ltd., Hillhouse International, Thornton-Cleveleys FY5 4QD, United Kingdom
| | - Patrick McGarry
- Biomedical Engineering, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
6
|
Ani CJ, Obayemi JD, Uzonwanne VO, Danyuo Y, Odusanya OS, Hu J, Malatesta K, Soboyejo WO. A shear assay study of single normal/breast cancer cell deformation and detachment from poly-di-methyl-siloxane (PDMS) surfaces. J Mech Behav Biomed Mater 2018; 91:76-90. [PMID: 30544025 DOI: 10.1016/j.jmbbm.2018.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/25/2018] [Accepted: 11/12/2018] [Indexed: 02/01/2023]
Abstract
This paper presents the results of a combined experimental and analytical/computational study of viscoelastic cell deformation and detachment from poly-di-methyl-siloxane (PDMS) surfaces. Fluid mechanics and fracture mechanics concepts are used to model the detachment of biological cells observed under shear assay conditions. The analytical and computational models are used to compute crack driving forces, which are then related to crack extension during the detachment of normal breast cells and breast cancer cells from PDMS surfaces that are relevant to biomedical implants. The interactions between cells and the extracellular matrix, or the extracellular matrix and the PDMS substrate, are then characterized using force microscopy measurements of the pull-off forces that are used to determine the adhesion energies. Finally, fluorescence microscopy staining of the cytosketelal structures (actin, micro-tubulin and cyto-keratin), transmembrane proteins (vimentin) and the ECM structures (Arginin Glycine Aspartate - RGD) is used to show that the detachment of cells during the shear assay experiments occurs via interfacial cracking between (between the ECM and the cell membranes) with a high incidence of crack bridging by transmembrane vinculin structures that undergo pull-out until they detach from the actin cytoskeletal structure. The implications of the results are discussed for the design of interfaces that are relevant to implantable biomedical devices and normal/cancer tissue.
Collapse
Affiliation(s)
- C J Ani
- Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory, Nigeria; Department of Physics, Salem University, Km 16, PMB 1060, Lokoja, Kogi State, Nigeria
| | - J D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA
| | - V O Uzonwanne
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA
| | - Y Danyuo
- Department of Mechanical Engineering, Ashesi University, Berekuso, Ghana; Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory, Nigeria
| | - O S Odusanya
- Advanced Biotechnology Laboratory, Sheda Science and Technology Complex, Abuja, Nigeria
| | - J Hu
- Princeton Institute for the Science and Technology of Materials (PRISM), and The Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - K Malatesta
- Princeton Institute for the Science and Technology of Materials (PRISM), and The Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - W O Soboyejo
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA; Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory, Nigeria; Advanced Biotechnology Laboratory, Sheda Science and Technology Complex, Abuja, Nigeria.
| |
Collapse
|
7
|
Sakamoto Y, Buchanan RM, Sanchez-Adams J, Guilak F, Sacks MS. On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach. J Biomech Eng 2017; 139:2595420. [PMID: 28024085 DOI: 10.1115/1.4035557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 01/20/2023]
Abstract
The function of the heart valve interstitial cells (VICs) is intimately connected to heart valve tissue remodeling and repair, as well as the onset and progression of valvular pathological processes. There is yet only very limited knowledge and extant models for the complex three-dimensional VIC internal stress-bearing structures, the associated cell-level biomechanical behaviors, and how they change under varying activation levels. Importantly, VICs are known to exist and function within the highly dynamic valve tissue environment, including very high physiological loading rates. Yet we have no knowledge on how these factors affect VIC function. To this end, we extended our previous VIC computational continuum mechanics model (Sakamoto, et al., 2016, "On Intrinsic Stress Fiber Contractile Forces in Semilunar Heart Valve Interstitial Cells Using a Continuum Mixture Model," J. Mech. Behav. Biomed. Mater., 54(244-258)). to incorporate realistic stress-fiber geometries, force-length relations (Hill model for active contraction), explicit α-smooth muscle actin (α-SMA) and F-actin expression levels, and strain rate. Novel micro-indentation measurements were then performed using cytochalasin D (CytoD), variable KCl molar concentrations, both alone and with transforming growth factor β1 (TGF-β1) (which emulates certain valvular pathological processes) to explore how α-SMA and F-actin expression levels influenced stress fiber responses under quasi-static and physiological loading rates. Simulation results indicated that both F-actin and α-SMA contributed substantially to stress fiber force generation, with the highest activation state (90 mM KCL + TGF-β1) inducing the largest α-SMA levels and associated force generation. Validation was performed by comparisons to traction force microscopy studies, which showed very good agreement. Interestingly, only in the highest activation state was strain rate sensitivity observed, which was captured successfully in the simulations. These unique findings demonstrated that only VICs with high levels of αSMA expression exhibited significant viscoelastic effects. Implications of this study include greater insight into the functional role of α-SMA and F-actin in VIC stress fiber function, and the potential for strain rate-dependent effects in pathological states where high levels of α-SMA occur, which appear to be unique to the valvular cellular in vivo microenvironment.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Rachel M Buchanan
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Johannah Sanchez-Adams
- Departments of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710;Departments of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710
| | - Farshid Guilak
- Departments of Orthopaedic Surgery, Washington University, St. Louis, MO 63110;Departments of Biomedical Engineering, Washington University, St. Louis, MO 63110;Departments of Developmental Biology, Washington University, St. Louis, MO 63110
| | - Michael S Sacks
- W. A. "Tex" Moncrief, Jr. Simulation-Based Engineering Science Chair I Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 e-mail:
| |
Collapse
|
8
|
Overbeck A, Günther S, Kampen I, Kwade A. Compression Testing and Modeling of Spherical Cells - Comparison of Yeast and Algae. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201600145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Achim Overbeck
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Steffi Günther
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
| | - Ingo Kampen
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Strasse 35a 38106 Braunschweig Germany
| | - Arno Kwade
- Technische Universität Braunschweig; Institute for Particle Technology; Volkmaroder Str. 5 38104 Braunschweig Germany
- Technische Universität Braunschweig; PVZ - Center of Pharmaceutical Engineering; Franz-Liszt-Strasse 35a 38106 Braunschweig Germany
| |
Collapse
|
9
|
Virjula S, Zhao F, Leivo J, Vanhatupa S, Kreutzer J, Vaughan TJ, Honkala AM, Viehrig M, Mullen CA, Kallio P, McNamara LM, Miettinen S. The effect of equiaxial stretching on the osteogenic differentiation and mechanical properties of human adipose stem cells. J Mech Behav Biomed Mater 2017; 72:38-48. [PMID: 28448920 DOI: 10.1016/j.jmbbm.2017.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 01/22/2023]
Abstract
Although mechanical cues are known to affect stem cell fate and mechanobiology, the significance of such stimuli on the osteogenic differentiation of human adipose stem cells (hASCs) remains unclear. In this study, we investigated the effect of long-term mechanical stimulation on the attachment, osteogenic differentiation and mechanical properties of hASCs. Tailor-made, pneumatic cell stretching devices were used to expose hASCs to cyclic equiaxial stretching in osteogenic medium. Cell attachment and focal adhesions were visualised using immunocytochemical vinculin staining on days 3 and 6, and the proliferation and alkaline phosphatase activity, as a sign of early osteogenic differentiation, were analysed on days 0, 6 and 10. Furthermore, the mechanical properties of hASCs, in terms of apparent Young's modulus and normalised contractility, were obtained using a combination of atomic force microscopy based indentation and computational approaches. Our results indicated that cyclic equiaxial stretching delayed proliferation and promoted osteogenic differentiation of hASCs. Stretching also reduced cell size and intensified focal adhesions and actin cytoskeleton. Moreover, cell stiffening was observed during osteogenic differentiation and especially under mechanical stimulation. These results suggest that cyclic equiaxial stretching modifies cell morphology, focal adhesion formation and mechanical properties of hASCs. This could be exploited to enhance osteogenic differentiation.
Collapse
Affiliation(s)
- Sanni Virjula
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Feihu Zhao
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Joni Leivo
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Sari Vanhatupa
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Joose Kreutzer
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Ted J Vaughan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Anna-Maija Honkala
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| | - Marlitt Viehrig
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Conleth A Mullen
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Pasi Kallio
- Department of Automation Science and Engineering, BioMediTech, Tampere University of Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Laoise M McNamara
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Lääkärinkatu 1, 33520 Tampere, Finland; Science Centre, Tampere University Hospital, Biokatu 6, 33520 Tampere, Finland.
| |
Collapse
|
10
|
Elson EL, Genin GM. Tissue constructs: platforms for basic research and drug discovery. Interface Focus 2016; 6:20150095. [PMID: 26855763 DOI: 10.1098/rsfs.2015.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The functions, form and mechanical properties of cells are inextricably linked to their extracellular environment. Cells from solid tissues change fundamentally when, isolated from this environment, they are cultured on rigid two-dimensional substrata. These changes limit the significance of mechanical measurements on cells in two-dimensional culture and motivate the development of constructs with cells embedded in three-dimensional matrices that mimic the natural tissue. While measurements of cell mechanics are difficult in natural tissues, they have proven effective in engineered tissue constructs, especially constructs that emphasize specific cell types and their functions, e.g. engineered heart tissues. Tissue constructs developed as models of disease also have been useful as platforms for drug discovery. Underlying the use of tissue constructs as platforms for basic research and drug discovery is integration of multiscale biomaterials measurement and computational modelling to dissect the distinguishable mechanical responses separately of cells and extracellular matrix from measurements on tissue constructs and to quantify the effects of drug treatment on these responses. These methods and their application are the main subjects of this review.
Collapse
Affiliation(s)
- Elliot L Elson
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St Louis, MO 63110 , USA
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science , Washington University , St Louis, MO 63130 , USA
| |
Collapse
|
11
|
Fallqvist B, Fielden ML, Pettersson T, Nordgren N, Kroon M, Gad AKB. Experimental and computational assessment of F-actin influence in regulating cellular stiffness and relaxation behaviour of fibroblasts. J Mech Behav Biomed Mater 2015; 59:168-184. [PMID: 26766328 DOI: 10.1016/j.jmbbm.2015.11.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022]
Abstract
In biomechanics, a complete understanding of the structures and mechanisms that regulate cellular stiffness at a molecular level remain elusive. In this paper, we have elucidated the role of filamentous actin (F-actin) in regulating elastic and viscous properties of the cytoplasm and the nucleus. Specifically, we performed colloidal-probe atomic force microscopy (AFM) on BjhTERT fibroblast cells incubated with Latrunculin B (LatB), which results in depolymerisation of F-actin, or DMSO control. We found that the treatment with LatB not only reduced cellular stiffness, but also greatly increased the relaxation rate for the cytoplasm in the peripheral region and in the vicinity of the nucleus. We thus conclude that F-actin is a major determinant in not only providing elastic stiffness to the cell, but also in regulating its viscous behaviour. To further investigate the interdependence of different cytoskeletal networks and cell shape, we provided a computational model in a finite element framework. The computational model is based on a split strain energy function of separate cellular constituents, here assumed to be cytoskeletal components, for which a composite strain energy function was defined. We found a significant influence of cell geometry on the predicted mechanical response. Importantly, the relaxation behaviour of the cell can be characterised by a material model with two time constants that have previously been found to predict mechanical behaviour of actin and intermediate filament networks. By merely tuning two effective stiffness parameters, the model predicts experimental results in cells with a partly depolymerised actin cytoskeleton as well as in untreated control. This indicates that actin and intermediate filament networks are instrumental in providing elastic stiffness in response to applied forces, as well as governing the relaxation behaviour over shorter and longer time-scales, respectively.
Collapse
Affiliation(s)
- Björn Fallqvist
- Department of Solid Mechanics, KTH Royal Institute of Technology, Teknikringen 8, 100 44 Stockholm, Sweden.
| | - Matthew L Fielden
- NANOLAB, KTH Royal Institute of Technology, Roslagstullsbacken 21, 100 44 Stockholm, Sweden.
| | - Torbjörn Pettersson
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.
| | - Niklas Nordgren
- SP Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, 114 86 Stockholm, Sweden.
| | - Martin Kroon
- Department of Solid Mechanics, KTH Royal Institute of Technology, Teknikringen 8, 100 44 Stockholm, Sweden.
| | - Annica K B Gad
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, 171 77 Stockholm, Sweden.
| |
Collapse
|
12
|
Nava MM, Raimondi MT, Pietrabissa R. Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells. Biomech Model Mechanobiol 2014; 13:929-43. [DOI: 10.1007/s10237-014-0558-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
|
13
|
Influence of spreading and contractility on cell detachment. Ann Biomed Eng 2013; 42:1037-48. [PMID: 24356853 DOI: 10.1007/s10439-013-0965-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 12/12/2013] [Indexed: 10/24/2022]
Abstract
Cell adhesion is a key phenomenon that affects fundamental cellular processes such as morphology, migration, and differentiation. In the current study, an active modelling framework incorporating actin cytoskeleton remodelling and contractility, combined with a cohesive zone model to simulate debonding at the cell-substrate interface, is implemented to investigate the increased resistance to detachment of highly spread chondrocytes from a substrate, as observed experimentally by Huang et al. (J. Orthop. Res. 21: 88-95, 2003). 3D finite element meshes of the round and spread cell geometries with the same material properties are created. It is demonstrated that spread cells with a flattened morphology and a larger adhesion area have a more highly developed actin cytoskeleton than rounded cells. Rounded cells provide less support for tension generated by the actin cytoskeleton; hence, a high level of dissociation is predicted. It is revealed that the more highly developed active contractile actin cytoskeleton of the spread cell increases the resistance to shear deformation, and subsequently increases the shear detachment force. These findings provide new insight into the link between cell geometry, cell contractility, and cell-substrate detachment.
Collapse
|
14
|
Elson EL, Genin GM. The role of mechanics in actin stress fiber kinetics. Exp Cell Res 2013; 319:2490-500. [PMID: 23906923 DOI: 10.1016/j.yexcr.2013.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 01/11/2023]
Abstract
The dynamic responses of actin stress fibers within a cell's cytoskeleton are central to the development and maintenance of healthy tissues and organs. Disturbances to these underlie a broad range of pathologies. Because of the importance of these responses, extensive experiments have been conducted in vitro to characterize actin cytoskeleton dynamics of cells cultured upon two-dimensional substrata, and the first experiments have been conducted for cells within three-dimensional tissue models. Three mathematical models exist for predicting the dynamic behaviors observed. Surprisingly, despite differing viewpoints on how actin stress fibers are stabilized or destabilized, all of these models are predictive of a broad range of available experimental data. Coarsely, the models of Kaunas and co-workers adopt a strategy whereby mechanical stretch can hasten the depolymerization actin stress fibers that turn over constantly, while the models of Desphande and co-workers adopt a strategy whereby mechanical stress is required to activate the formation of stress fibers and subsequently stabilize them. In three-dimensional culture, elements of both approaches appear necessary to predict observed phenomena, as embodied by the model of Lee et al. After providing a critical review of existing models, we propose lines of experimentation that might be able to test the different principles underlying their kinetic laws.
Collapse
Affiliation(s)
- E L Elson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, United States.
| | | |
Collapse
|
15
|
Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach. Biomech Model Mechanobiol 2013; 13:85-97. [DOI: 10.1007/s10237-013-0487-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
|
16
|
Dowling EP, Ronan W, McGarry JP. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. Acta Biomater 2013; 9:5943-55. [PMID: 23271042 DOI: 10.1016/j.actbio.2012.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/22/2022]
Abstract
Previous experimental studies have determined local strain fields for both healthy and degenerate cartilage tissue during mechanical loading. However, the biomechanical response of chondrocytes in situ, in particular the response of the actin cytoskeleton to physiological loading conditions, is poorly understood. In the current study a three-dimensional (3-D) representative volume element (RVE) for cartilage tissue is created, comprising a chondrocyte surrounded by a pericellular matrix and embedded in an extracellular matrix. A 3-D active modelling framework incorporating actin cytoskeleton remodelling and contractility is implemented to predict the biomechanical behaviour of chondrocytes. Physiological and abnormal strain fields, based on the experimental study of Wong and Sah (J. Orthop. Res. 2010; 28: 1554-1561), are applied to the RVE. Simulations demonstrate that the presence of a focal defect significantly affects cellular deformation, increases the stress experienced by the nucleus, and alters the distribution of the actin cytoskeleton. It is demonstrated that during dynamic loading cyclic tension reduction in the cytoplasm causes continuous dissociation of the actin cytoskeleton. In contrast, during static loading significant changes in cytoplasm tension are not predicted and hence the rate of dissociation of the actin cytoskeleton is reduced. It is demonstrated that chondrocyte behaviour is affected by the stiffness of the pericellular matrix, and also by the anisotropy of the extracellular matrix. The findings of the current study are of particular importance in understanding the biomechanics underlying experimental observations such as actin cytoskeleton dissociation during the dynamic loading of chondrocytes.
Collapse
Affiliation(s)
- Enda P Dowling
- Mechanical and Biomedical Engineering, National University of Ireland-Galway, Galway, Ireland
| | | | | |
Collapse
|
17
|
Vaughan TJ, Haugh MG, McNamara LM. A fluid-structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems. J R Soc Interface 2013; 10:20120900. [PMID: 23365189 DOI: 10.1098/rsif.2012.0900] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid-structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell-substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo.
Collapse
Affiliation(s)
- T J Vaughan
- National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
18
|
Weafer PP, Ronan W, Jarvis SP, McGarry JP. Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression. Bull Math Biol 2013; 75:1284-303. [PMID: 23354930 DOI: 10.1007/s11538-013-9812-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
The mechanical behavior of the actin cytoskeleton has previously been investigated using both experimental and computational techniques. However, these investigations have not elucidated the role the cytoskeleton plays in the compression resistance of cells. The present study combines experimental compression techniques with active modeling of the cell's actin cytoskeleton. A modified atomic force microscope is used to perform whole cell compression of osteoblasts. Compression tests are also performed on cells following the inhibition of the cell actin cytoskeleton using cytochalasin-D. An active bio-chemo-mechanical model is employed to predict the active remodeling of the actin cytoskeleton. The model incorporates the myosin driven contractility of stress fibers via a muscle-like constitutive law. The passive mechanical properties, in parallel with active stress fiber contractility parameters, are determined for osteoblasts. Simulations reveal that the computational framework is capable of predicting changes in cell morphology and increased resistance to cell compression due to the contractility of the actin cytoskeleton. It is demonstrated that osteoblasts are highly contractile and that significant changes to the cell and nucleus geometries occur when stress fiber contractility is removed.
Collapse
Affiliation(s)
- P P Weafer
- Department of Mechanical and Biomedical Engineering, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
19
|
Lee SL, Nekouzadeh A, Butler B, Pryse KM, McConnaughey WB, Nathan AC, Legant WR, Schaefer PM, Pless RB, Elson EL, Genin GM. Physically-induced cytoskeleton remodeling of cells in three-dimensional culture. PLoS One 2012; 7:e45512. [PMID: 23300512 PMCID: PMC3531413 DOI: 10.1371/journal.pone.0045512] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/20/2012] [Indexed: 01/15/2023] Open
Abstract
Characterizing how cells in three-dimensional (3D) environments or natural tissues respond to biophysical stimuli is a longstanding challenge in biology and tissue engineering. We demonstrate a strategy to monitor morphological and mechanical responses of contractile fibroblasts in a 3D environment. Cells responded to stretch through specific, cell-wide mechanisms involving staged retraction and reinforcement. Retraction responses occurred for all orientations of stress fibers and cellular protrusions relative to the stretch direction, while reinforcement responses, including extension of cellular processes and stress fiber formation, occurred predominantly in the stretch direction. A previously unreported role of F-actin clumps was observed, with clumps possibly acting as F-actin reservoirs for retraction and reinforcement responses during stretch. Responses were consistent with a model of cellular sensitivity to local physical cues. These findings suggest mechanisms for global actin cytoskeleton remodeling in non-muscle cells and provide insight into cellular responses important in pathologies such as fibrosis and hypertension.
Collapse
Affiliation(s)
- Sheng-Lin Lee
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Ali Nekouzadeh
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Boyd Butler
- Department of Biological Sciences Texas Tech University, Lubbock, Texas, United States of America
| | - Kenneth M. Pryse
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - William B. McConnaughey
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Adam C. Nathan
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Wesley R. Legant
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Pascal M. Schaefer
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Robert B. Pless
- Department of Computer Science and Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Elliot L. Elson
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guy M. Genin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
20
|
Ronan W, Deshpande VS, McMeeking RM, McGarry JP. Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells. J Mech Behav Biomed Mater 2012; 14:143-57. [DOI: 10.1016/j.jmbbm.2012.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 12/01/2022]
|
21
|
Jérusalem A, Dao M. Continuum modeling of a neuronal cell under blast loading. Acta Biomater 2012; 8:3360-71. [PMID: 22562014 DOI: 10.1016/j.actbio.2012.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/02/2012] [Accepted: 04/25/2012] [Indexed: 01/07/2023]
Abstract
Traumatic brain injuries have recently been put under the spotlight as one of the most important causes of accidental brain dysfunctions. Significant experimental and modeling efforts are thus underway to study the associated biological, mechanical and physical mechanisms. In the field of cell mechanics, progress is also being made at the experimental and modeling levels to better characterize many of the cell functions, including differentiation, growth, migration and death. The work presented here aims to bridge both efforts by proposing a continuum model of a neuronal cell submitted to blast loading. In this approach, the cytoplasm, nucleus and membrane (plus cortex) are differentiated in a representative cell geometry, and different suitable material constitutive models are chosen for each one. The material parameters are calibrated against published experimental work on cell nanoindentation at multiple rates. The final cell model is ultimately subjected to blast loading within a complete computational framework of fluid-structure interaction. The results are compared to the nanoindentation simulation, and the specific effects of the blast wave on the pressure and shear levels at the interfaces are identified. As a conclusion, the presented model successfully captures some of the intrinsic intracellular phenomena occurring during the cellular deformation under blast loading that potentially lead to cell damage. It suggests, more particularly, that the localization of damage at the nucleus membrane is similar to what has already been observed at the overall cell membrane. This degree of damage is additionally predicted to be worsened by a longer blast positive phase duration. In conclusion, the proposed model ultimately provides a new three-dimensional computational tool to evaluate intracellular damage during blast loading.
Collapse
|
22
|
Dowling EP, Ronan W, Ofek G, Deshpande VS, McMeeking RM, Athanasiou KA, McGarry JP. The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation. J R Soc Interface 2012; 9:3469-79. [PMID: 22809850 DOI: 10.1098/rsif.2012.0428] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The biomechanisms that govern the response of chondrocytes to mechanical stimuli are poorly understood. In this study, a series of in vitro tests are performed, in which single chondrocytes are subjected to shear deformation by a horizontally moving probe. Dramatically different probe force-indentation curves are obtained for untreated cells and for cells in which the actin cytoskeleton has been disrupted. Untreated cells exhibit a rapid increase in force upon probe contact followed by yielding behaviour. Cells in which the contractile actin cytoskeleton was removed exhibit a linear force-indentation response. In order to investigate the mechanisms underlying this behaviour, a three-dimensional active modelling framework incorporating stress fibre (SF) remodelling and contractility is used to simulate the in vitro tests. Simulations reveal that the characteristic force-indentation curve observed for untreated chondrocytes occurs as a result of two factors: (i) yielding of SFs due to stretching of the cytoplasm near the probe and (ii) dissociation of SFs due to reduced cytoplasm tension at the front of the cell. In contrast, a passive hyperelastic model predicts a linear force-indentation curve similar to that observed for cells in which the actin cytoskeleton has been disrupted. This combined modelling-experimental study offers a novel insight into the role of the active contractility and remodelling of the actin cytoskeleton in the response of chondrocytes to mechanical loading.
Collapse
Affiliation(s)
- Enda P Dowling
- Mechanical and Biomedical Engineering, National University of Ireland, University Road, Galway, Republic of Ireland
| | | | | | | | | | | | | |
Collapse
|
23
|
Verbruggen SW, Vaughan TJ, McNamara LM. Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface 2012; 9:2735-44. [PMID: 22675160 DOI: 10.1098/rsif.2012.0286] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The osteocyte is believed to act as the main sensor of mechanical stimulus in bone, controlling signalling for bone growth and resorption in response to changes in the mechanical demands placed on our bones throughout life. However, the precise mechanical stimuli that bone cells experience in vivo are not yet fully understood. The objective of this study is to use computational methods to predict the loading conditions experienced by osteocytes during normal physiological activities. Confocal imaging of the lacunar-canalicular network was used to develop three-dimensional finite element models of osteocytes, including their cell body, and the surrounding pericellular matrix (PCM) and extracellular matrix (ECM). We investigated the role of the PCM and ECM projections for amplifying mechanical stimulation to the cells. At loading levels, representing vigorous physiological activity (3000 µε), our results provide direct evidence that (i) confocal image-derived models predict 350-400% greater strain amplification experienced by osteocytes compared with an idealized cell, (ii) the PCM increases the cell volume stimulated more than 3500 µε by 4-10% and (iii) ECM projections amplify strain to the cell by approximately 50-420%. These are the first confocal image-derived computational models to predict osteocyte strain in vivo and provide an insight into the mechanobiology of the osteocyte.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Biomechanics Research Centre (BMEC), Mechanical and Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Republic of Ireland
| | | | | |
Collapse
|
24
|
A finite element study of micropipette aspiration of single cells: effect of compressibility. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:192618. [PMID: 22400045 PMCID: PMC3287019 DOI: 10.1155/2012/192618] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/31/2011] [Indexed: 11/17/2022]
Abstract
Micropipette aspiration (MA) technique has been widely used to measure the viscoelastic properties of different cell types. Cells experience nonlinear large deformations during the aspiration procedure. Neo-Hookean viscohyperelastic (NHVH) incompressible and compressible models were used to simulate the creep behavior of cells in MA, particularly accounting for the effect of compressibility, bulk relaxation, and hardening phenomena under large strain. In order to find optimal material parameters, the models were fitted to the experimental data available for mesenchymal stem cells. Finally, through Neo-Hookean porohyperelastic (NHPH) material model for the cell, the influence of fluid flow on the aspiration length of the cell was studied. Based on the results, we suggest that the compressibility and bulk relaxation/fluid flow play a significant role in the deformation behavior of single cells and should be taken into account in the analysis of the mechanics of cells.
Collapse
|
25
|
Slomka N, Oomens CW, Gefen A. Evaluating the effective shear modulus of the cytoplasm in cultured myoblasts subjected to compression using an inverse finite element method. J Mech Behav Biomed Mater 2011; 4:1559-66. [DOI: 10.1016/j.jmbbm.2011.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
|
26
|
Mazzag B, Barakat AI. The effect of noisy flow on endothelial cell mechanotransduction: a computational study. Ann Biomed Eng 2010; 39:911-21. [PMID: 20963495 PMCID: PMC3033522 DOI: 10.1007/s10439-010-0181-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/06/2010] [Indexed: 11/24/2022]
Abstract
Flow in the arterial system is mostly laminar, but turbulence occurs in vivo under both normal and pathological conditions. Turbulent and laminar flow elicit significantly different responses in endothelial cells (ECs), but the mechanisms allowing ECs to distinguish between these different flow regimes remain unknown. The authors present a computational model that describes the effect of turbulence on mechanical force transmission within ECs. Because turbulent flow is inherently "noisy" with random fluctuations in pressure and velocity, our model focuses on the effect of signal noise (a stochastically changing force) on the deformation of intracellular transduction sites including the nucleus, cell-cell adhesion proteins (CCAPs), and focal adhesion sites (FAS). The authors represent these components of the mechanical signaling pathway as linear viscoelastic structures (Kelvin bodies) connected to the cell surface via cytoskeletal elements. The authors demonstrate that FAS are more sensitive to signal noise than the nucleus or CCAP. The relative sensitivity of these various structures to noise is affected by the nature of the cytoskeletal connections within the cell. Finally, changes in the compliance of the nucleus dramatically affect nuclear sensitivity to noise, suggesting that pathologies that alter nuclear mechanical properties will be associated with abnormal EC responsiveness to turbulent flow.
Collapse
Affiliation(s)
- Bori Mazzag
- Department of Mathematics, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA.
| | | |
Collapse
|
27
|
|