1
|
Jiang H, Zhang M, Qu Y, Xing B, Wang B, Liu Y, Zhang P. Therapeutic Potential of Nano-Sustained-Release Factors for Bone Scaffolds. J Funct Biomater 2025; 16:136. [PMID: 40278244 PMCID: PMC12027867 DOI: 10.3390/jfb16040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Research on nano-sustained-release factors for bone tissue scaffolds has significantly promoted the precision and efficiency of bone-defect repair by integrating biomaterials science, nanotechnology, and regenerative medicine. Current research focuses on developing multifunctional scaffold materials and intelligent controlled-release systems to optimize the spatiotemporal release characteristics of growth factors, drugs, and genes. Nano slow-release bone scaffolds integrate nano slow-release factors, which are loaded with growth factors, drugs, genes, etc., with bone scaffolds, which can significantly improve the efficiency of bone repair. In addition, these drug-loading systems have also been extended to the fields of anti-infection and anti-tumor. However, the problem of heterotopic ossification caused by high doses has led to a shift in research towards a low-dose multi-factor synergistic strategy. Multiple Phase II clinical trials are currently ongoing, evaluating the efficacy and safety of nano-hydroxyapatite scaffolds. Despite significant progress, this field still faces a series of challenges: the immunity risks of the long-term retention of nanomaterials, the precise matching of multi-factor release kinetics, and the limitations of the large-scale production of personalized scaffolds. Future development directions in this area include the development of responsive sustained-release systems, biomimetic sequential release design, the more precise regeneration of injury sites through a combination of gene-editing technology and self-assembled nanomaterials, and precise drug loading and sustained release through microfluidic and bioprinting technologies to reduce the manufacturing cost of bone scaffolds. The progress of these bone scaffolds has gradually changed bone repair from morphology-matched filling regeneration to functional recovery, making the clinical transformation of bone scaffolds safer and more universal.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Yang Qu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Bohan Xing
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Bojiang Wang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| | - Yanqun Liu
- Department of Orthopedic Surgery, Yanbian University Hospital, 1327 Juzi St., Yanji 133002, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (H.J.); (M.Z.); (Y.Q.); (B.X.); (B.W.)
- Department of Trauma & Orthopedics, Peking University People’s Hospital Qingdao Hospital, Qingdao 266111, China
- National Centre for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- Beijing Laboratory of Trauma and Nerve Regeneration, Peking University, Beijing 100044, China
| |
Collapse
|
2
|
Cefazolin/BMP-2-Loaded Mesoporous Silica Nanoparticles for the Repair of Open Fractures with Bone Defects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8385456. [PMID: 36193077 PMCID: PMC9526639 DOI: 10.1155/2022/8385456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
The study aimed to explore the feasibility of a nanodrug delivery system to treat open fractures with bone defects. We developed a cefazolin (Cef)/bone morphogenetic protein 2 (BMP-2)@mesoporous silica nanoparticle (MSN) delivery system; meanwhile, Cef/MBP-2@ poly(lactic-co-glycolic acid) (PLGA) was also developed as control. For the purpose of determining the osteogenic and anti-inflammatory actions of the nanodelivery system, we cultured bone marrow mesenchymal stem cells (BMSCs) and constructed a bone defect mouse model to evaluate its clinical efficacy. After physicochemical property testing, we determined that MSN had good stability and did not easily accumulate or precipitate and it could effectively prolong the Cef’s half-life by nearly eight times. In BMSCs, we found that compared with the PLGA delivery system, MSNs better penetrated into the bone tissue, thus effectively increasing BMSCs’ proliferation and migration ability to facilitate bone defect repair. Furthermore, the MSN delivery system could improve BMSCs’ mineralization indexes (alkaline phosphatase [ALP], osteocalcin [OCN], and collagen I [Col I]) to effectively improve its osteogenic ability. Moreover, the MSN delivery system could inhibit inflammation in bone defect mice, which was mainly reflected in its ability to reduce the release of IL-1β and IL-4 and increase IL-10 levels; it could also effectively reduce apoptosis of CD4+ and CD8+ T cells, thus improving their immune function. Furthermore, the percentage of new bones, bone mineral density, trabecular volume, and trabecular numbers in the fracture region were improved in mice treated with MSN, which allowed better repair of bone defects. Hence, Cef/BMP-2@MSN may be feasible for open fractures with bone defects.
Collapse
|
3
|
Xu C, Wang M, Zandieh-Doulabi B, Sun W, Wei L, Liu Y. To B (Bone Morphogenic Protein-2) or Not to B (Bone Morphogenic Protein-2): Mesenchymal Stem Cells May Explain the Protein's Role in Osteosarcomagenesis. Front Cell Dev Biol 2021; 9:740783. [PMID: 34869325 PMCID: PMC8635864 DOI: 10.3389/fcell.2021.740783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS), a primary malignant bone tumor, stems from bone marrow-derived mesenchymal stem cells (BMSCs) and/or committed osteoblast precursors. Distant metastases, in particular pulmonary and skeletal metastases, are common in patients with OS. Moreover, extensive resection of the primary tumor and bone metastases usually leads to bone defects in these patients. Bone morphogenic protein-2 (BMP-2) has been widely applied in bone regeneration with the rationale that BMP-2 promotes osteoblastic differentiation of BMSCs. Thus, BMP-2 might be useful after OS resection to repair bone defects. However, the potential tumorigenicity of BMP-2 remains a concern that has impeded the administration of BMP-2 in patients with OS and in populations susceptible to OS with severe bone deficiency (e.g., in patients with genetic mutation diseases and aberrant activities of bone metabolism). In fact, some studies have drawn the opposite conclusion about the effect of BMP-2 on OS progression. Given the roles of BMSCs in the origination of OS and osteogenesis, we hypothesized that the responses of BMSCs to BMP-2 in the tumor milieu may be responsible for OS development. This review focuses on the relationship among BMSCs, BMP-2, and OS cells; a better understanding of this relationship may elucidate the accurate mechanisms of actions of BMP-2 in osteosarcomagenesis and thereby pave the way for clinically safer and broader administration of BMP-2 in the future. For example, a low dosage of and a slow-release delivery strategy for BMP-2 are potential topics for exploration to treat OS.
Collapse
Affiliation(s)
- Chunfeng Xu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mingjie Wang
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wei Sun
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Lingfei Wei
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Yuelian Liu
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Patel M, Jha A, Patel R. Potential application of PLGA microsphere for tissue engineering. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02562-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
López-Valverde N, Macedo-de-Sousa B, López-Valverde A, Ramírez JM. Effectiveness of Antibacterial Surfaces in Osseointegration of Titanium Dental Implants: A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10040360. [PMID: 33800702 PMCID: PMC8066819 DOI: 10.3390/antibiotics10040360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Titanium (Ti) dental implant failure as a result of infection has been established at 40%, being regarded as one of the most habitual and untreatable problems. Current research is focused on the design of new surfaces that can generate long-lasting, infection-free osseointegration. The purpose of our study was to assess studies on Ti implants coated with different antibacterial surfaces, assessing their osseointegration. The PubMed, Web of Science and Scopus databases were electronically searched for in vivo studies up to December 2020, selecting six studies that met the inclusion criteria. The quality of the selected studies was assessed using the ARRIVE (Animal Research: Reporting of In Vivo Experiments) criteria and Systematic Review Center for Laboratory animal Experimentation's (SYRCLE's) risk of bias tool. Although all the included studies, proved greater osseointegration capacity of the different antibacterial surfaces studied, the methodological quality and experimental models used in some of them make it difficult to draw predictable conclusions. Because of the foregoing, we recommend caution when interpreting the results obtained.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
| | - Bruno Macedo-de-Sousa
- Institute for Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Polo I-Edifício Central Rua Larga, 3004-504 Coimbra, Portugal;
| | - Antonio López-Valverde
- Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
- Correspondence:
| | - Juan Manuel Ramírez
- Department of Morphological Sciences, University of Cordoba, Avenida Menéndez Pidal S/N, 14071 Cordoba, Spain;
| |
Collapse
|
6
|
Ivorra-Martinez J, Quiles-Carrillo L, Boronat T, Torres-Giner S, A. Covas J. Assessment of the Mechanical and Thermal Properties of Injection-Molded Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate)/Hydroxyapatite Nanoparticles Parts for Use in Bone Tissue Engineering. Polymers (Basel) 2020; 12:E1389. [PMID: 32575881 PMCID: PMC7362193 DOI: 10.3390/polym12061389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
In the present study, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] was reinforced with hydroxyapatite nanoparticles (nHA) to produce novel nanocomposites for potential uses in bone reconstruction. Contents of nHA in the 2.5-20 wt % range were incorporated into P(3HB-co-3HHx) by melt compounding and the resulting pellets were shaped into parts by injection molding. The addition of nHA improved the mechanical strength and the thermomechanical resistance of the microbial copolyester parts. In particular, the addition of 20 wt % of nHA increased the tensile (Et) and flexural (Ef) moduli by approximately 64% and 61%, respectively. At the highest contents, however, the nanoparticles tended to agglomerate, and the ductility, toughness, and thermal stability of the parts also declined. The P(3HB-co-3HHx) parts filled with nHA contents of up to 10 wt % matched more closely the mechanical properties of the native bone in terms of strength and ductility when compared with metal alloys and other biopolymers used in bone tissue engineering. This fact, in combination with their biocompatibility, enables the development of nanocomposite parts to be applied as low-stress implantable devices that can promote bone reconstruction and be reabsorbed into the human body.
Collapse
Affiliation(s)
- Juan Ivorra-Martinez
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.I.-M.); (L.Q.-C.); (T.B.)
| | - Luis Quiles-Carrillo
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.I.-M.); (L.Q.-C.); (T.B.)
| | - Teodomiro Boronat
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.I.-M.); (L.Q.-C.); (T.B.)
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - José A. Covas
- Institute for Polymers and Composites, University of Minho, 4804-533 Guimarães, Portugal
| |
Collapse
|
7
|
Chen R, Yu J, Gong HL, Jiang Y, Xue M, Xu N, Wei DX, Shi C. An easy long-acting BMP7 release system based on biopolymer nanoparticles for inducing osteogenic differentiation of adipose mesenchymal stem cells. J Tissue Eng Regen Med 2020; 14:964-972. [PMID: 32441466 DOI: 10.1002/term.3070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
In contrast to the early acting bone morphogenetic protein 2, bone morphogenetic protein 7 (BMP7) plays a decisive role mainly in the late stages of bone formation. To overcome deactivation and degradation of expensive BMP7, we designed a novel long-acting BMP7 release system based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) nanoparticles to enable the induction of osteogenic differentiation in human adipose mesenchymal stem cells (ADSCs). In order to improve the encapsulation efficiency of BMP7 and avoid damage by organic solvents, BMP7 was modified and protected using the biosurfactant soybean lecithin. In an in vitro test, BMP7-soybean lecithin-P34HB nanoparticles (BMP7-SPNPs) showed a short initial burst of BMP7 release during the first 24h, followed by a steady increase to a cumulative 80% release in 20days. Compared with the rapid release of control P34HB nanoparticles without soybean phospholipids loaded with BMP7 without soybean lecithin, BMP7-SPNPs significantly reduced the initial burst of BMP7 release and stabilized the content of BMP7 to allow long-term osteogenic differentiation during the late phase of bone development. Human ADSCs treated with BMP7-SPNPs showed higher alkaline phosphatase activity and higher expression levels of genetic markers of osteogenic differentiation compared with the control group. Thus, the results indicate that BMP7-SPNPs can be used as a rapid and long-acting BMP7 delivery system for osteogenic differentiation.
Collapse
Affiliation(s)
- Rui Chen
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuquan Jiang
- Department of Orthopaedics, Joint Logistic Support Force NO.925 Hospital of PLA, Guiyang, China
| | - Mintao Xue
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ning Xu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Changgui Shi
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Behere I, Pardawala Z, Vaidya A, Kale V, Ingavle G. Osteogenic differentiation of an osteoblast precursor cell line using composite PCL-gelatin-nHAp electrospun nanofiber mesh. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1767619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Isha Behere
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Zain Pardawala
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
9
|
Formulation, Colloidal Characterization, and In Vitro Biological Effect of BMP-2 Loaded PLGA Nanoparticles for Bone Regeneration. Pharmaceutics 2019; 11:pharmaceutics11080388. [PMID: 31382552 PMCID: PMC6723283 DOI: 10.3390/pharmaceutics11080388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) based on the polymer poly (lactide-co-glycolide) acid (PLGA) have been widely studied in developing delivery systems for drugs and therapeutic biomolecules, due to the biocompatible and biodegradable properties of the PLGA. In this work, a synthesis method for bone morphogenetic protein (BMP-2)-loaded PLGA NPs was developed and optimized, in order to carry out and control the release of BMP-2, based on the double-emulsion (water/oil/water, W/O/W) solvent evaporation technique. The polymeric surfactant Pluronic F68 was used in the synthesis procedure, as it is known to have an effect on the reduction of the size of the NPs, the enhancement of their stability, and the protection of the encapsulated biomolecule. Spherical solid polymeric NPs were synthesized, showing a reproducible multimodal size distribution, with diameters between 100 and 500 nm. This size range appears to allow the protein to act on the cell surface and at the cytoplasm level. The effect of carrying BMP-2 co-adsorbed with bovine serum albumin on the NP surface was analyzed. The colloidal properties of these systems (morphology by SEM, hydrodynamic size, electrophoretic mobility, temporal stability, protein encapsulation, and short-term release profile) were studied. The effect of both BMP2-loaded NPs on the proliferation, migration, and osteogenic differentiation of mesenchymal stromal cells from human alveolar bone (ABSC) was also analyzed in vitro.
Collapse
|
10
|
Subbiah R, Guldberg RE. Materials Science and Design Principles of Growth Factor Delivery Systems in Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2019; 8:e1801000. [PMID: 30398700 DOI: 10.1002/adhm.201801000] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/13/2018] [Indexed: 01/22/2023]
Abstract
Growth factors (GFs) are signaling molecules that direct cell development by providing biochemical cues for stem cell proliferation, migration, and differentiation. GFs play a key role in tissue regeneration, but one major limitation of GF-based therapies is dosage-related adverse effects. Additionally, the clinical applications and efficacy of GFs are significantly affected by the efficiency of delivery systems and other pharmacokinetic factors. Hence, it is crucial to design delivery systems that provide optimal activity, stability, and tunable delivery for GFs. Understanding the physicochemical properties of the GFs and the biomaterials utilized for the development of biomimetic GF delivery systems is critical for GF-based regeneration. Many different delivery systems have been developed to achieve tunable delivery kinetics for single or multiple GFs. The identification of ideal biomaterials with tunable properties for spatiotemporal delivery of GFs is still challenging. This review characterizes the types, properties, and functions of GFs, the materials science of widely used biomaterials, and various GF loading strategies to comprehensively summarize the current delivery systems for tunable spatiotemporal delivery of GFs aimed for tissue regeneration applications. This review concludes by discussing fundamental design principles for GF delivery vehicles based on the interactive physicochemical properties of the proteins and biomaterials.
Collapse
Affiliation(s)
- Ramesh Subbiah
- Parker H. Petit Institute for Bioengineering and Bioscience; George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Robert E. Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience; George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact; 6231 University of Oregon; Eugene OR 97403 USA
| |
Collapse
|
11
|
Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, Ramezani M. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J Control Release 2018; 274:35-55. [PMID: 29410062 DOI: 10.1016/j.jconrel.2018.01.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
Treatment of critical-size bone defects is a major medical challenge since neither the bone tissue can regenerate nor current regenerative approaches are effective. Emerging progresses in the field of nanotechnology have resulted in the development of new materials, scaffolds and drug delivery strategies to improve or restore the damaged tissues. The current article reviews promising nanomaterials and emerging micro/nano fabrication techniques for targeted delivery of biomolecules for bone tissue regeneration. In addition, recent advances in fabrication of bone graft substitutes with similar properties to normal tissue along with a brief summary of current commercialized bone grafts have been discussed.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE 68588, USA; Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Nguyen V, Meyers CA, Yan N, Agarwal S, Levi B, James AW. BMP-2-induced bone formation and neural inflammation. J Orthop 2017; 14:252-256. [PMID: 28367006 DOI: 10.1016/j.jor.2017.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/12/2017] [Indexed: 12/20/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2), a potent osteoinductive cytokine from the transforming growth factor beta (TGF-β) family, is currently the most commonly used protein-based bone graft substitute. Although clinical use of BMP-2 has significantly increased in recent years, its prominence has also highlighted various adverse events, including induction of inflammation. This review will elucidate the relationship between BMP-2 and inflammation, with an emphasis on peripheral nerve inflammation and its sequelae. As well, we review the potential additive roles of nerve released factors with BMP2 in the context of bone formation.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Pathology, Johns Hopkins University, 21205, United States
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, 21205, United States
| | - Noah Yan
- Department of Pathology, Johns Hopkins University, 21205, United States
| | - Shailesh Agarwal
- Department of Surgery, University of Michigan, 48109, United States
| | - Benjamin Levi
- Department of Surgery, University of Michigan, 48109, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, 21205, United States
| |
Collapse
|
13
|
Yang H, Hao Y, Liu Q, Mi Z, Wang Z, Zhu L, Feng Q, Hu N. Preparation and in vitro study of hydrochloric norvancomycin encapsulated poly (d,l-lactide-co-glycolide, PLGA) microspheres for potential use in osteomyelitis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1326-1330. [PMID: 27776425 DOI: 10.1080/21691401.2016.1233110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Haibo Yang
- Department of Orthopedic Trauma, Affiliated General Hospital, Ning Xia Medical University, Yinchuan, China
| | - Yujie Hao
- Hebei Province People's Hospital, Qian'an, China
| | - Qiming Liu
- Department of Orthopedic Trauma, Affiliated General Hospital, Ning Xia Medical University, Yinchuan, China
| | - Zhanhu Mi
- Department of Orthopedic Trauma, Affiliated General Hospital, Ning Xia Medical University, Yinchuan, China
| | - Zhibin Wang
- Ning Xia Medical University, Yinchuan, China
| | - Lei Zhu
- Ning Xia Medical University, Yinchuan, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Ningmin Hu
- Department of Orthopedic Trauma, Affiliated General Hospital, Ning Xia Medical University, Yinchuan, China
| |
Collapse
|
14
|
A Long-Acting BMP-2 Release System Based on Poly(3-hydroxybutyrate) Nanoparticles Modified by Amphiphilic Phospholipid for Osteogenic Differentiation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5878645. [PMID: 27379249 PMCID: PMC4917749 DOI: 10.1155/2016/5878645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022]
Abstract
We explored a novel poly(3-hydroxybutyrate) (PHB) nanoparticle loaded with hydrophilic recombinant human BMP-2 with amphiphilic phospholipid (BPC-PHB NP) for a rapid-acting and long-acting delivery system of BMP-2 for osteogenic differentiation. The BPC-PHB NPs were prepared by a solvent evaporation method and showed a spherical particle with a mean particle size of 253.4 nm, mean zeta potential of −22.42 mV, and high entrapment efficiency of 77.18%, respectively. For BPC-PHB NPs, a short initial burst release of BMP-2 from NPs in 24 h was found and it has steadily risen to reach about 80% in 20 days for in vitro test. BPC-PHB NPs significantly reduced the burst release of BMP-2, as compared to that of PHB NPs loading BMP-2 without PL (B-PHB NPs). BPC-PHB NPs maintained the content of BMP-2 for a long-term osteogenic differentiation. The OCT-1 cells with BPC-PHB NPs have high ALP activity in comparison with others. The gene markers for osteogenic differentiation were significantly upregulated for sample with BPC-PHB NPs, implying that BPC-PHB NPs can be used as a rapid-acting and long-acting BMP-2 delivery system for osteogenic differentiation.
Collapse
|
15
|
Han LH, Conrad B, Chung MT, Deveza L, Jiang X, Wang A, Butte MJ, Longaker MT, Wan D, Yang F. Winner of the Young Investigator Award of the Society for Biomaterials at the 10th World Biomaterials Congress, May 17-22, 2016, Montreal QC, Canada: Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model. J Biomed Mater Res A 2016; 104:1321-31. [PMID: 26991141 DOI: 10.1002/jbm.a.35715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
Abstract
Stem cell-based therapies hold great promise for enhancing tissue regeneration. However, the majority of cells die shortly after transplantation, which greatly diminishes the efficacy of stem cell-based therapies. Poor cell engraftment and survival remain a major bottleneck to fully exploiting the power of stem cells for regenerative medicine. Biomaterials such as hydrogels can serve as artificial matrices to protect cells during delivery and guide desirable cell fates. However, conventional hydrogels often lack macroporosity, which restricts cell proliferation and delays matrix deposition. Here we report the use of injectable, macroporous microribbon (μRB) hydrogels as stem cell carriers for bone repair, which supports direct cell encapsulation into a macroporous scaffold with rapid spreading. When transplanted in a critical-sized, mouse cranial defect model, μRB-based hydrogels significantly enhanced the survival of transplanted adipose-derived stromal cells (ADSCs) (81%) and enabled up to three-fold cell proliferation after 7 days. In contrast, conventional hydrogels only led to 27% cell survival, which continued to decrease over time. MicroCT imaging showed μRBs enhanced and accelerated mineralized bone repair compared to hydrogels (61% vs. 34% by week 6), and stem cells were required for bone repair to occur. These results suggest that paracrine signaling of transplanted stem cells are responsible for the observed bone repair, and enhancing cell survival and proliferation using μRBs further promoted the paracrine-signaling effects of ADSCs for stimulating endogenous bone repair. We envision μRB-based scaffolds can be broadly useful as a novel scaffold for enhancing stem cell survival and regeneration of other tissue types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1321-1331, 2016.
Collapse
Affiliation(s)
- Li-Hsin Han
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305
| | - Bogdan Conrad
- Program of Stem Cell Biology and Regenerative Medicine, Stanford University, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305
| | - Michael T Chung
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Dr, Hagey Building Room GK106, Stanford, California 94305
| | - Lorenzo Deveza
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305
| | - Xinyi Jiang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305
| | - Andrew Wang
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Dr, Grant Building Room H307A, Stanford, California 94305
| | - Manish J Butte
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Dr, Grant Building Room H307A, Stanford, California 94305
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 257 Campus Dr, Hagey Building Room GK106, Stanford, California 94305
| | - Derrick Wan
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, 257 Campus Dr, Hagey Building Room GK106, Stanford, California 94305
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305.,Department of Bioengineering, Stanford University, 300 Pasteur Dr, Edward Building Room 114, Stanford, California 94305
| |
Collapse
|
16
|
Xu X, Qiu S, Zhang Y, Yin J, Min S. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:330-339. [PMID: 26961803 DOI: 10.3109/21691401.2016.1153480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.
Collapse
Affiliation(s)
- Xiaolong Xu
- a Department of Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| | - Sujun Qiu
- a Department of Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| | - Yuxian Zhang
- a Department of Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| | - Jie Yin
- a Department of Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| | - Shaoxiong Min
- a Department of Orthopedics , Zhujiang Hospital, Southern Medical University , Guangzhou , Guangdong Province , China
| |
Collapse
|
17
|
Uskoković V. When 1+1>2: Nanostructured composites for hard tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:434-51. [PMID: 26354283 PMCID: PMC4567690 DOI: 10.1016/j.msec.2015.07.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus' dream - not restoring the tissues, but rather augmenting them.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
18
|
Baker KC, Maerz T, Saad H, Shaheen P, Kannan RM. In vivo bone formation by and inflammatory response to resorbable polymer-nanoclay constructs. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015. [PMID: 26220733 DOI: 10.1016/j.nano.2015.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Biodegradable Materials for Bone Repair and Tissue Engineering Applications. MATERIALS 2015; 8:5744-5794. [PMID: 28793533 PMCID: PMC5512653 DOI: 10.3390/ma8095273] [Citation(s) in RCA: 394] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/09/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022]
Abstract
This review discusses and summarizes the recent developments and advances in the use of biodegradable materials for bone repair purposes. The choice between using degradable and non-degradable devices for orthopedic and maxillofacial applications must be carefully weighed. Traditional biodegradable devices for osteosynthesis have been successful in low or mild load bearing applications. However, continuing research and recent developments in the field of material science has resulted in development of biomaterials with improved strength and mechanical properties. For this purpose, biodegradable materials, including polymers, ceramics and magnesium alloys have attracted much attention for osteologic repair and applications. The next generation of biodegradable materials would benefit from recent knowledge gained regarding cell material interactions, with better control of interfacing between the material and the surrounding bone tissue. The next generations of biodegradable materials for bone repair and regeneration applications require better control of interfacing between the material and the surrounding bone tissue. Also, the mechanical properties and degradation/resorption profiles of these materials require further improvement to broaden their use and achieve better clinical results.
Collapse
|
20
|
Yang L, Wang Q, Peng L, Yue H, Zhang Z. Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold. Mol Med Rep 2015; 12:2343-7. [PMID: 25902181 DOI: 10.3892/mmr.2015.3653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 07/21/2014] [Indexed: 11/06/2022] Open
Abstract
Ensuring histocompatibility in the tissue engineering of bones is a complex issue. The aim of this study was to observe the feasibility of chitosan-β-tricalcium phosphate composite in repairing limb bone defects, and to evaluate the therapeutic effects on osteogenesis. Beagle mesenchymal stem cells (MSCs) were divided into an experimental group that was cultured with an injectable form of chitosan-β-tricalcium phosphate composite and a control group. The effect of the composite on bone tissue growth was evaluated by MTT assay. In addition, 12-month-old beagles were subjected to 15-mm femur defects and subsequently implanted with scaffolds to observe the effects on osteogenesis and vascularization. The dogs were subdivided into two groups of five animals: Group A, which was implanted with scaffold-MSC compounds, and Group B, which was implanted with scaffolds alone. The dogs were observed on the 2nd, 4th, 8th and 12th weeks post-implantation. Scanning electron microscopy analysis revealed that the composite was compatible with MSCs, with similar outcomes in the control and experimental groups. MTT analysis additionally showed that the MSCs in the experimental group grew in a similar manner to those in the control group. The composite did not significantly affect the MSC growth or proliferation. In combination with MSCs, the scaffold materials were effective in the promotion of osteogenesis and vascularization. In conclusion, the chitosan-β-tricalcium phosphate composite was compatible with the MSCs and did not affect cellular growth or proliferation, therefore proving to be an effective injectable composite for tissue engineered bone. Simultaneous implantation of stem cells with a carrier composite proved to function effectively in the repair of bone defects.
Collapse
Affiliation(s)
- Le Yang
- Saint Petersburg State I.P. Pavlov Medical University, St. Petersburg 197101, Russia
| | - Qinghua Wang
- Department of Orthopedics, Hukou County Hospital of Traditional Chinese Medicine, Hukou, Jiangxi 332500, P.R. China
| | - Lihua Peng
- Department of Orthopedics, The People's Hospital of Bishan County, Bishan, Chongqing 402760, P.R. China
| | - Hong Yue
- Department of Orthopedics, Zibo Zhangdian Hospital of Traditional Chinese Medicine, Zibo, Shandong 255035, P.R. China
| | - Zhendong Zhang
- Department of Orthopedics, The 301 Military Hospital, Beijing 100853, P.R. China
| |
Collapse
|
21
|
Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers. MATERIALS 2015; 8:1778-1816. [PMID: 28788032 PMCID: PMC5507058 DOI: 10.3390/ma8041778] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
Abstract
Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs). BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration.
Collapse
|
22
|
Qu X, Cao Y, Chen C, Die X, Kang Q. A poly(lactide-co-glycolide) film loaded with abundant bone morphogenetic protein-2: A substrate-promoting osteoblast attachment, proliferation, and differentiation in bone tissue engineering. J Biomed Mater Res A 2015; 103:2786-96. [PMID: 25847124 DOI: 10.1002/jbm.a.35379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Xiangyang Qu
- Ministry of Education Key Laboratory of Child Development and Disorders; The Children's Hospital of Chongqing Medical University; Chongqing 400014 China
- Key Laboratory of Pediatrics in Chongqing; Chongqing 400014 China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Chongqing 400014 China
| | - Yujiang Cao
- Ministry of Education Key Laboratory of Child Development and Disorders; The Children's Hospital of Chongqing Medical University; Chongqing 400014 China
- Key Laboratory of Pediatrics in Chongqing; Chongqing 400014 China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Chongqing 400014 China
| | - Cong Chen
- Ministry of Education Key Laboratory of Child Development and Disorders; The Children's Hospital of Chongqing Medical University; Chongqing 400014 China
- Key Laboratory of Pediatrics in Chongqing; Chongqing 400014 China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Chongqing 400014 China
- Chongqing Stem Cell Therapy Engineering Technical Center; Chongqing 400014 China
| | - Xiaohong Die
- Ministry of Education Key Laboratory of Child Development and Disorders; The Children's Hospital of Chongqing Medical University; Chongqing 400014 China
- Key Laboratory of Pediatrics in Chongqing; Chongqing 400014 China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Chongqing 400014 China
- Chongqing Stem Cell Therapy Engineering Technical Center; Chongqing 400014 China
| | - Quan Kang
- Ministry of Education Key Laboratory of Child Development and Disorders; The Children's Hospital of Chongqing Medical University; Chongqing 400014 China
- Key Laboratory of Pediatrics in Chongqing; Chongqing 400014 China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders; Chongqing 400014 China
- Chongqing Stem Cell Therapy Engineering Technical Center; Chongqing 400014 China
| |
Collapse
|
23
|
Yao AH, Li XD, Xiong L, Zeng JH, Xu J, Wang DP. Hollow hydroxyapatite microspheres/chitosan composite as a sustained delivery vehicle for rhBMP-2 in the treatment of bone defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5336. [PMID: 25578692 DOI: 10.1007/s10856-014-5336-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/31/2014] [Indexed: 06/04/2023]
Abstract
Composite scaffold comprised of hollow hydroxyapatite (HA) and chitosan (designated hHA/CS) was prepared as a delivery vehicle for recombinating human bone morphogenetic protein-2 (rhBMP-2). The in vitro and in vivo biological activities of rhBMP2 released from the composite scaffold were then investigated. The rhBMP-2 was firstly loaded into the hollow HA microspheres, and then the rhBMP2-loaded HA microspheres were further incorporated into the chitosan matrix. The chitosan not only served to bind the HA microspheres together and kept them at the implant site, but also effectively modified the release behavior of rhBMP-2. The in vitro release and bioactivity analysis confirmed that the rhBMP2 could be loaded and released from the composite scaffolds in bioactive form. In addition, the composite scaffolds significantly reduced the initial burst release of rhBMP2, and thus providing prolonged period of time (as long as 60 days) compared with CS scaffolds. In vivo bone regenerative potential of the rhBMP2-loaded composite scaffolds was evaluated in a rabbit radius defect model. The results revealed that the rate of new bone formation in the rhBMP2-loaded hHA/CS group was higher than that in both negative control and rhBMP2-loaded CS group. These observations suggest that the hHA/CS composite scaffold would be effective and feasible as a delivery vehicle for growth factors in bone regeneration and repair.
Collapse
Affiliation(s)
- Ai-Hua Yao
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
24
|
Uskoković V. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst 2015; 32:1-59. [PMID: 25746204 PMCID: PMC4406243 DOI: 10.1615/critrevtherdrugcarriersyst.2014010920] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically "perfect" antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Richard and Loan Hill Department of Bioengineering, College of Medicine, University of Illinois at Chicago, 851 South Morgan St, #205 Chicago, Illinois, 60607-7052
| |
Collapse
|
25
|
Qiao C, Zhang K, Jin H, Miao L, Shi C, Liu X, Yuan A, Liu J, Li D, Zheng C, Zhang G, Li X, Yang B, Sun H. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int J Nanomedicine 2013; 8:2985-95. [PMID: 23990717 PMCID: PMC3748902 DOI: 10.2147/ijn.s45184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Repair of large bone defects is a major challenge, requiring sustained stimulation to continually promote bone formation locally. Bone morphogenetic protein 2 (BMP-2) plays an important role in bone development. In an attempt to overcome this difficulty of bone repair, we created a delivery system to slowly release human BMP-2 cDNA plasmid locally, efficiently transfecting local target cells and secreting functional human BMP-2 protein. For transfection, we used polyethylenimine (PEI) to create pBMP-2/PEI nanoparticles, and to ensure slow release we used poly(lactic-co-glycolic acid) (PLGA) to create microsphere encapsulated pBMP-2/PEI nanoparticles, PLGA@pBMP-2/PEI. We demonstrated that pBMP-2/PEI nanoparticles could slowly release from the PLGA@pBMP-2/PEI microspheres for a long period of time. The 3–15 μm diameter of the PLGA@pBMP-2/PEI further supported this slow release ability of the PLGA@pBMP-2/PEI. In vitro transfection assays demonstrated that pBMP-2/PEI released from PLGA@pBMP-2/PEI could efficiently transfect MC3T3-E1 cells, causing MC3T3-E1 cells to secrete human BMP-2 protein, increase calcium deposition and gene expressions of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), SP7 and I type collagen (COLL I), and finally induce MC3T3-E1 cell differentiation. Importantly, in vivo data from micro-computed tomography (micro-CT) and histological staining demonstrated that the human BMP-2 released from PLGA@pBMP-2/PEI had a long-term effect locally and efficiently promoted bone formation in the bone defect area compared to control animals. All our data suggest that our PLGA-nanoparticle delivery system efficiently and functionally delivers the human BMP-2 cDNA and has potential clinical application in the future after further modification.
Collapse
Affiliation(s)
- Chunyan Qiao
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Uskoković V, Hoover C, Vukomanović M, Uskoković DP, Desai TA. Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D,L-lactide-co-glycolide) powders for the treatment of osteomyelitis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3362-73. [PMID: 23706222 PMCID: PMC3672472 DOI: 10.1016/j.msec.2013.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/31/2013] [Accepted: 04/08/2013] [Indexed: 01/31/2023]
Abstract
Development of a material for simultaneous sustained and localized delivery of antibiotics and induction of spontaneous regeneration of hard tissues affected by osteomyelitis stands for an important clinical need. In this work, a comparative analysis of the bacterial and osteoblastic cell response to two different nanoparticulate carriers of clindamycin, an antibiotic commonly prescribed in the treatment of bone infection, one composed of calcium phosphate and the other comprising poly-(D,L-lactide-co-glycolide)-coated calcium phosphate, was carried out. Three different non-cytotoxic phases of calcium phosphate, exhibiting dissolution and drug release profiles in the range of one week to two months to one year, respectively, were included in the analysis: monetite, amorphous calcium phosphate and hydroxyapatite. Spherical morphologies and narrow size distribution of both types of nanopowders were confirmed in transmission and scanning electron microscopic analyses. The antibiotic-containing powders exhibited sustained drug release contingent upon the degradation rate of the carrier. Assessment of the antibacterial performance of the antibiotic-encapsulated powders against Staphylococcus aureus, the most common pathogen isolated from infected bone, yielded satisfactory results both in broths and on blood agar plates for all the analyzed powders. In contrast, no cytotoxic behavior was detected upon the incubation of the antibiotic powders with the osteoblastic MC3T3-E1 cell line for up to three weeks. The cells were shown to engage in a close contact with the antibiotic-containing particles, irrespective of their internal or surface phase composition, polymeric or mineral. At the same time, both types of particles upregulated the expression of osteogenic markers osteocalcin, osteopontin, Runx2 and protocollagen type I, suggesting their ability to promote osteogenesis and enhance remineralization of the infected site in addition to eliminating the bacterial source of infection.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
27
|
Dreifke MB, Ebraheim NA, Jayasuriya AC. Investigation of potential injectable polymeric biomaterials for bone regeneration. J Biomed Mater Res A 2013; 101:2436-47. [PMID: 23401336 DOI: 10.1002/jbm.a.34521] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/09/2012] [Accepted: 10/29/2012] [Indexed: 01/12/2023]
Abstract
This article reviews the potential injectable polymeric biomaterial scaffolds currently being investigated for application in bone tissue regeneration. Two types of injectable biomaterial scaffolds are focused in this review, including injectable microspheres and injectable gels. The injectable microspheres section covers several polymeric materials, including poly(L-lactide-co-glycolide)-PLGA, poly(propylene fumarate), and chitosan. The injectable gel section covers alginate gels, hyaluronan hydrogels, poly(ethylene-glycol)-PEG hydrogels, and PEG-PLGA copolymer hydrogels. This review focuses on the effect of cellular behavior in vitro and in vivo in terms of material properties of polymers, such as biodegradation, biocompatibility, porosity, microsphere size, and cross-linking nature. Injectable polymeric biomaterials offer a major advantage for orthopedic applications by allowing the ability to use noninvasive or minimally invasive treatment methods. Therefore, combining injectable polymeric biomaterial scaffolds with cells have a significant potential to treat orthopedic bone defects, including spine fusion, and craniofacial and periodontal defects.
Collapse
Affiliation(s)
- Michael B Dreifke
- Department of Orthopaedic Surgery, The University of Toledo, College of Medicine, Toledo, Ohio 43614, USA
| | | | | |
Collapse
|
28
|
Studies of bone morphogenetic protein-based surgical repair. Adv Drug Deliv Rev 2012; 64:1277-91. [PMID: 22512928 DOI: 10.1016/j.addr.2012.03.014] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 12/11/2022]
Abstract
Over the past several decades, recombinant human bone morphogenetic proteins (rhBMPs) have been the most extensively studied and widely used osteoinductive agents for clinical bone repair. Since rhBMP-2 and rhBMP-7 were cleared by the U.S. Food and Drug Administration for certain clinical uses, millions of patients worldwide have been treated with rhBMPs for various musculoskeletal disorders. Current clinical applications include treatment of long bone fracture non-unions, spinal surgeries, and oral maxillofacial surgeries. Considering the growing number of recent publications related to clincal research of rhBMPs, there exists enormous promise for these proteins to be used in bone regenerative medicine. The authors take this opportunity to review the rhBMP literature paying specific attention to the current applications of rhBMPs in bone repair and spine surgery. The prospective future of rhBMPs delivered in combination with tissue engineered scaffolds is also reviewed.
Collapse
|
29
|
Blackwood KA, Bock N, Dargaville TR, Ann Woodruff M. Scaffolds for Growth Factor Delivery as Applied to Bone Tissue Engineering. INT J POLYM SCI 2012; 2012:1-25. [DOI: 10.1155/2012/174942] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
There remains a substantial shortfall in the treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue-engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors, which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However due to the cost and potential complications associated with growth factors, controlling the rate of release is an important design consideration when developing new bone tissue engineering strategies. This paper will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.
Collapse
Affiliation(s)
- Keith A. Blackwood
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Nathalie Bock
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
- Regenerative Medicine Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Tim R. Dargaville
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Maria Ann Woodruff
- Biomaterials and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
30
|
Thomas MV, Puleo DA. Infection, inflammation, and bone regeneration: a paradoxical relationship. J Dent Res 2011; 90:1052-61. [PMID: 21248364 PMCID: PMC3169879 DOI: 10.1177/0022034510393967] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 02/06/2023] Open
Abstract
Various strategies have been developed to promote bone regeneration in the craniofacial region. Most of these interventions utilize implantable materials or devices. Infections resulting from colonization of these implants may result in local tissue destruction in a manner analogous to periodontitis. This destruction is mediated via the expression of various inflammatory mediators and tissue-destructive enzymes. Given the well-documented association among microbial biofilms, inflammatory mediators, and tissue destruction, it seems reasonable to assume that inflammation may interfere with bone healing and regeneration. Paradoxically, recent evidence also suggests that the presence of certain pro-inflammatory mediators is actually required for bone healing. Bone injury (e.g., subsequent to a fracture or surgical intervention) is followed by a choreographed cascade of events, some of which are dependent upon the presence of pro-inflammatory mediators. If inflammation resolves promptly, then proper bone healing may occur. However, if inflammation persists (which might occur in the presence of an infected implant or graft material), then the continued inflammatory response may result in suboptimal bone formation. Thus, the effect of a given mediator is dependent upon the temporal context in which it is expressed. Better understanding of this temporal sequence may be used to optimize regenerative outcomes.
Collapse
Affiliation(s)
- M V Thomas
- Department of Oral Health Practice, University of Kentucky College of Dentistry, 800 Rose Street, Room D-124, Lexington, KY 40536-0297, USA.
| | | |
Collapse
|
31
|
Andreas K, Zehbe R, Kazubek M, Grzeschik K, Sternberg N, Bäumler H, Schubert H, Sittinger M, Ringe J. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: investigation for cartilage tissue engineering. Acta Biomater 2011; 7:1485-95. [PMID: 21168535 DOI: 10.1016/j.actbio.2010.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/17/2010] [Accepted: 12/13/2010] [Indexed: 01/02/2023]
Abstract
Growth, differentiation and migration factors facilitate the engineering of tissues but need to be administered with defined gradients over a prolonged period of time. In this study insulin as a growth factor for cartilage tissue engineering and a biodegradable PLGA delivery device were used. The aim was to investigate comparatively three different microencapsulation techniques, solid-in-oil-in-water (s/o/w), water-in-oil-in-water (w/o/w) and oil-in-oil-in-water (o/o/w), for the fabrication of insulin-loaded PLGA microspheres with regard to protein loading efficiency, release and degradation kinetics, biological activity of the released protein and phagocytosis of the microspheres. Insulin-loaded PLGA microspheres prepared by all three emulsification techniques had smooth and spherical surfaces with a negative zeta potential. The preparation technique did not affect particle degradation nor induce phagocytosis by human leukocytes. The delivery of structurally intact and biologically active insulin from the microspheres was shown using circular dichroism spectroscopy and a MCF7 cell-based proliferation assay. However, the insulin loading efficiency (w/o/w about 80%, s/o/w 60%, and o/o/w 25%) and the insulin release kinetics were influenced by the microencapsulation technique. The results demonstrate that the w/o/w microspheres are most appropriate, providing a high encapsulation efficiency and low initial burst release, and thus these were finally used for cartilage tissue engineering. Insulin released from w/o/w PLGA microspheres stimulated the formation of cartilage considerably in chondrocyte high density pellet cultures, as determined by increased secretion of proteoglycans and collagen type II. Our results should encourage further studies applying protein-loaded PLGA microspheres in combination with cell transplants or cell-free in situ tissue engineering implants to regenerate cartilage.
Collapse
Affiliation(s)
- Kristin Andreas
- Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|