1
|
Alasaadi DN, Mayor R. Mechanically guided cell fate determination in early development. Cell Mol Life Sci 2024; 81:242. [PMID: 38811420 PMCID: PMC11136904 DOI: 10.1007/s00018-024-05272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Cell fate determination, a vital process in early development and adulthood, has been the focal point of intensive investigation over the past decades. Its importance lies in its critical role in shaping various and diverse cell types during embryonic development and beyond. Exploration of cell fate determination started with molecular and genetic investigations unveiling central signaling pathways and molecular regulatory networks. The molecular studies into cell fate determination yielded an overwhelming amount of information invoking the notion of the complexity of cell fate determination. However, recent advances in the framework of biomechanics have introduced a paradigm shift in our understanding of this intricate process. The physical forces and biochemical interplay, known as mechanotransduction, have been identified as a pivotal drive influencing cell fate decisions. Certainly, the integration of biomechanics into the process of cell fate pushed our understanding of the developmental process and potentially holds promise for therapeutic applications. This integration was achieved by identifying physical forces like hydrostatic pressure, fluid dynamics, tissue stiffness, and topography, among others, and examining their interplay with biochemical signals. This review focuses on recent advances investigating the relationship between physical cues and biochemical signals that control cell fate determination during early embryonic development.
Collapse
Affiliation(s)
- Delan N Alasaadi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Canales Coutiño B, Mayor R. Neural crest mechanosensors: Seeing old proteins in a new light. Dev Cell 2022; 57:1792-1801. [PMID: 35901790 DOI: 10.1016/j.devcel.2022.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Mechanical forces exerted on neural crest cells control their collective migration and differentiation. This perspective discusses our current understanding of neural crest mechanotransduction during cell migration and differentiation. Additionally, we describe proteins that have mechanosensitive functions in other systems, such as mechanosensitive G-protein-coupled receptors, mechanosensitive ion channels, cell-cell adhesion, and cell-matrix-interacting proteins, and highlight that these same proteins have in the past been studied in neural crest development from a purely signaling point of view. We propose that future studies elucidate the mechanosensitive functions these receptors may play in neural crest development and integrate this with their known molecular role.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Srinivasan A, Chang SY, Zhang S, Toh WS, Toh YC. Substrate stiffness modulates the multipotency of human neural crest derived ectomesenchymal stem cells via CD44 mediated PDGFR signaling. Biomaterials 2018; 167:153-167. [PMID: 29571051 DOI: 10.1016/j.biomaterials.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have been isolated from various mesodermal and ectodermal tissues. While the phenotypic and functional heterogeneity of MSCs stemming from their developmental origins has been acknowledged, the genetic and environmental factors underpinning these differences are not well-understood. Here, we investigated whether substrate stiffness mediated mechanical cues can directly modulate the development of ectodermal MSCs (eMSCs) from a precursor human neural crest stem cell (NCSC) population. We showed that NCSC-derived eMSCs were transcriptionally and functionally distinct from mesodermal bone marrow MSCs. eMSCs derived on lower substrate stiffness specifically increased their expression of the MSC marker, CD44 in a Rho-ROCK signaling dependent manner, which resulted in a concomitant increase in the eMSCs' adipogenic and chondrogenic differentiation potential. This mechanically-induced effect can only be maintained for short-term upon switching back to a stiff substrate but can be sustained for longer-term when the eMSCs were exclusively maintained on soft substrates. We also discovered that CD44 expression modulated eMSC self-renewal and multipotency via the downregulation of downstream platelet-derived growth factor receptor beta (PDGFRβ) signaling. This is the first instance demonstrating that substrate stiffness not only influences the differentiation trajectories of MSCs but also their derivation from upstream progenitors, such as NCSCs.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583
| | - Shu-Yung Chang
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583
| | - Shipin Zhang
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Wei Seong Toh
- NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore 117510; Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Centre for Life Sciences, 28 Medical Drive, #05-COR, Singapore 117456; NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore 117510; Biomedical Institute for Global Health, Research and Technology (BIGHEART), MD6, 14 Medical Drive, #14-01, Singapore 117599.
| |
Collapse
|
4
|
Sinha R, Verdonschot N, Koopman B, Rouwkema J. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:494-504. [DOI: 10.1089/ten.teb.2016.0500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ravi Sinha
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Nico Verdonschot
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Orthopaedic Research Lab, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart Koopman
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
5
|
Hsieh HY, Chu CW, Chiu MH, Chu SY, Huang TW, Tseng FG. Gradient Strain Chip for Stimulating Cellular Behaviors in Cell-laden Hydrogel. J Vis Exp 2017. [PMID: 28809821 DOI: 10.3791/53715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Artificial guidance for cellular alignment is a hot topic in the field of tissue engineering. Most of the previous research has investigated single strain-induced cellular alignment on a cell-laden hydrogel by using complex experimental processes and mass controlling systems, which are usually associated with contamination issues. Thus, in this article, we propose a simple approach to building a gradient static strain using a fluidic chip with a plastic PDMS cover and a UV transparent glass substrate for the stimulation of cellular behavior in a 3D hydrogel. Overloading photo-patternable cell prepolymer in the fluidic chamber can generate a convex curved PDMS membrane on the cover. After UV crosslinking, through a concentric circular micropattern under the curved PDMS membrane, and buffer washing, a microenvironment for investigating cell behaviors under a variety of gradient strains is self-established in a single fluidic chip, without external instruments. NIH3T3 cells were demonstrated after observing the change in the cellular alignment trend under geometry guidance, in cooperation with strain stimulation, which varied from 15 - 65% on hydrogels. After a 3-day incubation, the hydrogel geometry dominated the cell alignment under low compressive strain, where cells aligned along the hydrogel elongation direction under high compressive strain. Between these, the cells showed random alignment due to the dissipation of the radical guidance of hydrogel elongation and the geometry guidance of the patterned hydrogel.
Collapse
Affiliation(s)
- Hsin-Yi Hsieh
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University
| | - Chiao-Wen Chu
- Department of Engineering and System, National Tsing Hua University
| | - Ming-Hsuan Chiu
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University
| | - Shueh-Yao Chu
- Department of Engineering and System, National Tsing Hua University
| | - Tsu-Wei Huang
- Department of Engineering and System, National Tsing Hua University
| | - Fan-Gang Tseng
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University; Department of Engineering and System, National Tsing Hua University;
| |
Collapse
|
9
|
Hsieh HY, Camci-Unal G, Huang TW, Liao R, Chen TJ, Paul A, Tseng FG, Khademhosseini A. Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. LAB ON A CHIP 2014; 14:482-93. [PMID: 24253194 PMCID: PMC4040516 DOI: 10.1039/c3lc50884f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell alignment is a critical factor to govern cellular behavior and function for various tissue engineering applications ranging from cardiac to neural regeneration. In addition to physical geometry, strain is a crucial parameter to manipulate cellular alignment for functional tissue formation. In this paper, we introduce a simple approach to generate a range of gradient static strains without external mechanical control for the stimulation of cellular behavior within 3D biomimetic hydrogel microenvironments. A glass-supported microfluidic chip with a convex flexible polydimethylsiloxane (PDMS) membrane on the top was employed for loading the cells suspended in a prepolymer solution. Following UV crosslinking through a photomask with a concentric circular pattern, the cell-laden hydrogels were formed in a height gradient from the center (maximum) to the boundary (minimum). When the convex PDMS membrane retracted back to a flat surface, it applied compressive gradient forces on the cell-laden hydrogels. The concentric circular hydrogel patterns confined the direction of hydrogel elongation, and the compressive strain on the hydrogel therefore resulted in elongation stretch in the radial direction to guide cell alignment. NIH3T3 cells were cultured in the chip for 3 days with compressive strains that varied from ~65% (center) to ~15% (boundary) on hydrogels. We found that the hydrogel geometry dominated the cell alignment near the outside boundary, where cells aligned along the circular direction, and the compressive strain dominated the cell alignment near the center, where cells aligned radially. This study developed a new and simple approach to facilitate cellular alignment based on hydrogel geometry and strain stimulation for tissue engineering applications. This platform offers unique advantages and is significantly different from the existing approaches owing to the fact that gradient generation was accomplished in a miniature device without using an external mechanical source.
Collapse
Affiliation(s)
- Hsin-Yi Hsieh
- Institute of NanoEngineering and MicroSystems (NEMS), National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd. Hsinchu 30013, Taiwan R.O.C
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan R.O.C
| | - Gulden Camci-Unal
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Tsu-Wei Huang
- Department of Engineering and System, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan R.O.C
| | - Ronglih Liao
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tsung-Ju Chen
- Institute of NanoEngineering and MicroSystems (NEMS), National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd. Hsinchu 30013, Taiwan R.O.C
| | - Arghya Paul
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Fan-Gang Tseng
- Institute of NanoEngineering and MicroSystems (NEMS), National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd. Hsinchu 30013, Taiwan R.O.C
- Department of Engineering and System, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan R.O.C
- Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan R.O.C
- Corresponding Author Footnote: Dr. Ali Khademhosseini, PhD, Associate Professor, Harvard-MIT Division of Health Sciences and Technology, Wyss Institute for Biologically Inspired Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA, Tel: 617-388-9271, . Dr. Fan-Gang Tseng, PhD, Professor, Department of Engineering and System Science, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan R.O.C., Tel: +886-3-5715131-34270, Fax: +886-3-5720724,
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
- Corresponding Author Footnote: Dr. Ali Khademhosseini, PhD, Associate Professor, Harvard-MIT Division of Health Sciences and Technology, Wyss Institute for Biologically Inspired Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA, Tel: 617-388-9271, . Dr. Fan-Gang Tseng, PhD, Professor, Department of Engineering and System Science, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 30013, Taiwan R.O.C., Tel: +886-3-5715131-34270, Fax: +886-3-5720724,
| |
Collapse
|