1
|
Yao R, Zhu M, Guo Z, Shen J. Refining nanoprobes for monitoring of inflammatory bowel disease. Acta Biomater 2024; 177:37-49. [PMID: 38364928 DOI: 10.1016/j.actbio.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal immune disease that requires clear diagnosis, timely treatment, and lifelong monitoring. The diagnosis and monitoring methods of IBD mainly include endoscopy, imaging examination, and laboratory examination, which are constantly developed to achieve early definite diagnosis and accurate monitoring. In recent years, with the development of nanotechnology, the diagnosis and monitoring methods of IBD have been remarkably enriched. Nanomaterials, characterized by their minuscule dimensions that can be tailored, along with their distinctive optical, magnetic, and biodistribution properties, have emerged as valuable contrast agents for imaging and targeted agents for endoscopy. Through both active and passive targeting mechanisms, nanoparticles accumulate at the site of inflammation, thereby enhancing IBD detection. This review comprehensively outlines the existing IBD detection techniques, expounds upon the utilization of nanoparticles in IBD detection and diagnosis, and offers insights into the future potential of in vitro diagnostics. STATEMENT OF SIGNIFICANCE: Due to their small size and unique physical and chemical properties, nanomaterials are widely used in the biological and medical fields. In the area of oncology and inflammatory disease, an increasing number of nanomaterials are being developed for diagnostics and drug delivery. Here, we focus on inflammatory bowel disease, an autoimmune inflammatory disease that requires early diagnosis and lifelong monitoring. Nanomaterials can be used as contrast agents to visualize areas of inflammation by actively or passively targeting them through the intestinal mucosal epithelium where gaps exist due to inflammation stimulation. In this article, we summarize the utilization of nanoparticles in inflammatory bowel disease detection and diagnosis, and offers insights into the future potential of in vitro diagnostics.
Collapse
Affiliation(s)
- Ruchen Yao
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Mingming Zhu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China.
| |
Collapse
|
2
|
Fouquet JP, Sikpa D, Lebel R, Sibgatulin R, Krämer M, Herrmann KH, Deistung A, Tremblay L, Reichenbach JR, Lepage M. Characterization of microparticles of iron oxide for magnetic resonance imaging. Magn Reson Imaging 2022; 92:67-81. [DOI: 10.1016/j.mri.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
|
3
|
Du J, Ji Y, Zhu J, Mai X, Zou J, Chen Y, Gu N. Edge prior guided dictionary learning for quantitative susceptibility mapping reconstruction. Quant Imaging Med Surg 2022; 12:510-525. [PMID: 34993097 DOI: 10.21037/qims-21-243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Compared with conventional magnetic resonance imaging methods, the quantitative magnetic susceptibility mapping (QSM) technique can quantitatively measure the magnetic susceptibility distribution of tissues, which has an important clinical application value in the investigations of brain micro-bleeds, Parkinson's, and liver iron deposition, etc. However, the quantitative susceptibility mapping algorithm is an ill-posed inverse problem due to the near-zero value in the dipole kernel, and high-quality QSM reconstruction with effective streaking artifact suppression remains a challenge. In recent years, the performance of sparse representation has been well validated in improving magnetic resonance image (MRI) reconstruction. METHODS In this study, by incorporating feature learning into sparse representation, we propose an edge prior guided dictionary learning-based reconstruction method for the dipole inversion in quantitative susceptibility mapping reconstruction. The structure feature dictionary relies on magnitude images for susceptibility maps have similar structures with magnitude images, and this structure feature dictionary and edge prior information are used in the dipole inversion step. RESULTS The performance of the proposed algorithm is assessed through in vivo human brain clinical data, leading to high-quality susceptibility maps with improved streaking artifact suppression, structural recovery, and quantitative metrics. CONCLUSIONS The proposed edge prior guided dictionary learning method for dipole inversion in QSM achieves improved performance in streaking artifacts suppression, structural recovery and deep gray matter reconstruction.
Collapse
Affiliation(s)
- Jiacheng Du
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Yuxin Ji
- The Laboratory of Image Science and Technology, Key Laboratory of Ministry of Education, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Jiali Zhu
- The Laboratory of Image Science and Technology, Key Laboratory of Ministry of Education, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Xiaoli Mai
- The Radiology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Junting Zou
- The Radiology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Yang Chen
- The Laboratory of Image Science and Technology, Key Laboratory of Ministry of Education, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Ning Gu
- The State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Deh K, Zaman M, Vedvyas Y, Liu Z, Gillen KM, O' Malley P, Bedretdinova D, Nguyen T, Lee R, Spincemaille P, Kim J, Wang Y, Jin MM. Validation of MRI quantitative susceptibility mapping of superparamagnetic iron oxide nanoparticles for hyperthermia applications in live subjects. Sci Rep 2020; 10:1171. [PMID: 31980695 PMCID: PMC6981186 DOI: 10.1038/s41598-020-58219-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
The use of magnetic fluid hyperthermia (MFH) for cancer therapy has shown promise but lacks suitable methods for quantifying exogenous irons such as superparamagnetic iron oxide (SPIO) nanoparticles as a source of heat generation under an alternating magnetic field (AMF). Application of quantitative susceptibility mapping (QSM) technique to prediction of SPIO in preclinical models has been challenging due to a large variation of susceptibility values, chemical shift from tissue fat, and noisier data arising from the higher resolution required to visualize the anatomy of small animals. In this study, we developed a robust QSM for the SPIO ferumoxytol in live mice to examine its potential application in MFH for cancer therapy. We demonstrated that QSM was able to simultaneously detect high level ferumoxytol accumulation in the liver and low level localization near the periphery of tumors. Detection of ferumoxytol distribution in the body by QSM, however, required imaging prior to and post ferumoxytol injection to discriminate exogenous iron susceptibility from other endogenous sources. Intratumoral injection of ferumoxytol combined with AMF produced a ferumoxytol-dose dependent tumor killing. Histology of tumor sections corroborated QSM visualization of ferumoxytol distribution near the tumor periphery, and confirmed the spatial correlation of cell death with ferumoxytol distribution. Due to the dissipation of SPIOs from the injection site, quantitative mapping of SPIO distribution will aid in estimating a change in temperature in tissues, thereby maximizing MFH effects on tumors and minimizing side-effects by avoiding unwanted tissue heating.
Collapse
Affiliation(s)
- Kofi Deh
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Marjan Zaman
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yogindra Vedvyas
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Zhe Liu
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Padraic O' Malley
- Department of Urology, University of Florida, Gainesville, FL, 32610, USA
| | | | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Richard Lee
- Urology, Weill Cornell Medicine, New York, NY, 10065, USA
| | | | - Juyoung Kim
- Department of Advanced Materials Engineering, Kangwon National University, Samcheok, 245-711, South Korea
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Moonsoo M Jin
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA. .,Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Ruetten PPR, Gillard JH, Graves MJ. Introduction to Quantitative Susceptibility Mapping and Susceptibility Weighted Imaging. Br J Radiol 2019; 92:20181016. [PMID: 30933548 DOI: 10.1259/bjr.20181016] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Quantitative Susceptibility Mapping (QSM) and Susceptibility Weighted Imaging (SWI) are MRI techniques that measure and display differences in the magnetization that is induced in tissues, i.e. their magnetic susceptibility, when placed in the strong external magnetic field of an MRI system. SWI produces images in which the contrast is heavily weighted by the intrinsic tissue magnetic susceptibility. It has been applied in a wide range of clinical applications. QSM is a further advancement of this technique that requires sophisticated post-processing in order to provide quantitative maps of tissue susceptibility. This review explains the steps involved in both SWI and QSM as well as describing some of their uses in both clinical and research applications.
Collapse
Affiliation(s)
- Pascal P R Ruetten
- 1Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan H Gillard
- 1Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin J Graves
- 2Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
6
|
Manufacturing and preclinical validation of CAR T cells targeting ICAM-1 for advanced thyroid cancer therapy. Sci Rep 2019; 9:10634. [PMID: 31337787 PMCID: PMC6650612 DOI: 10.1038/s41598-019-46938-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
While the majority of thyroid cancer patients are easily treatable, those with anaplastic or poorly differentiated recurrent thyroid carcinomas have a very poor prognosis with a median survival of less than a year. Previously, we have shown a significant correlation between ICAM-1 overexpression and malignancy in thyroid cancer, and have pioneered the use of ICAM-1 targeted CAR T cells as a novel treatment modality. For clinical translation of this novel modality, we designed CAR T cells possessing micromolar rather than nanomolar affinity to ICAM-1 to avoid cytotoxicity in normal cells with basal levels of ICAM-1 expression. Herein, we report the automated process of CAR T cell manufacturing with CliniMACS Prodigy (Miltenyi Biotec) using cryopreserved peripheral blood leukocytes from apheresis collections. Using Prodigy, thawed leukopak cells were enriched for CD4+ and CD8+ T cells, subjected to double transduction using lentiviral vector, and expanded in culture for a total of 10 days with a final yield of 2–4 × 109 cells. The resulting CAR T cells were formulated for cryopreservation to be used directly for infusion into patients after thawing with no further processing. We examined cross-reactivity of CAR T cells toward both human and murine ICAM-1 and ICAM-1 expression in human and mouse tissues to demonstrate that both efficacy and on-target, off-tumor toxicity can be studied in our preclinical model. Selective anti-tumor activity in the absence of toxicity provides proof-of-concept that micromolar affinity tuned CAR T cells can be used to target tumors expressing high levels of antigen while avoiding normal tissues expressing basal levels of the same antigen. These studies support the initiation of a phase I study to evaluate the safety and potential efficacy of micromolar affinity tuned CAR T cells against newly diagnosed anaplastic and refractory or recurrent thyroid cancers.
Collapse
|
7
|
Lin F, Prince MR, Spincemaille P, Wang Y. Patents on Quantitative Susceptibility Mapping (QSM) of Tissue Magnetism. Recent Pat Biotechnol 2019; 13:90-113. [PMID: 30556508 DOI: 10.2174/1872208313666181217112745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) depicts biodistributions of tissue magnetic susceptibility sources, including endogenous iron and calcifications, as well as exogenous paramagnetic contrast agents and probes. When comparing QSM with simple susceptibility weighted MRI, QSM eliminates blooming artifacts and shows reproducible tissue susceptibility maps independent of field strength and scanner manufacturer over a broad range of image acquisition parameters. For patient care, QSM promises to inform diagnosis, guide surgery, gauge medication, and monitor drug delivery. The Bayesian framework using MRI phase data and structural prior knowledge has made QSM sufficiently robust and accurate for routine clinical practice. OBJECTIVE To address the lack of a summary of US patents that is valuable for QSM product development and dissemination into the MRI community. METHOD We searched the USPTO Full-Text and Image Database for patents relevant to QSM technology innovation. We analyzed the claims of each patent to characterize the main invented method and we investigated data on clinical utility. RESULTS We identified 17 QSM patents; 13 were implemented clinically, covering various aspects of QSM technology, including the Bayesian framework, background field removal, numerical optimization solver, zero filling, and zero-TE phase. CONCLUSION Our patent search identified patents that enable QSM technology for imaging the brain and other tissues. QSM can be applied to study a wide range of diseases including neurological diseases, liver iron disorders, tissue ischemia, and osteoporosis. MRI manufacturers can develop QSM products for more seamless integration into existing MRI scanners to improve medical care.
Collapse
Affiliation(s)
- Feng Lin
- School of Law, City University of Hong Kong, Hong Kong, China
| | - Martin R Prince
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Kee Y, Liu Z, Zhou L, Dimov A, Cho J, de Rochefort L, Seo JK, Wang Y. Quantitative Susceptibility Mapping (QSM) Algorithms: Mathematical Rationale and Computational Implementations. IEEE Trans Biomed Eng 2018; 64:2531-2545. [PMID: 28885147 DOI: 10.1109/tbme.2017.2749298] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative susceptibility mapping (QSM) solves the magnetic field-to-magnetization (tissue susceptibility) inverse problem under conditions of noisy and incomplete field data acquired using magnetic resonance imaging. Therefore, sophisticated algorithms are necessary to treat the ill-posed nature of the problem and are reviewed here. The forward problem is typically presented as an integral form, where the field is the convolution of the dipole kernel and tissue susceptibility distribution. This integral form can be equivalently written as a partial differential equation (PDE). Algorithmic challenges are to reduce streaking and shadow artifacts characterized by the fundamental solution of the PDE. Bayesian maximum a posteriori estimation can be employed to solve the inverse problem, where morphological and relevant biomedical knowledge (specific to the imaging situation) are used as priors. As the cost functions in Bayesian QSM framework are typically convex, solutions can be robustly computed using a gradient-based optimization algorithm. Moreover, one can not only accelerate Bayesian QSM, but also increase its effectiveness at reducing shadows using prior knowledge based preconditioners. Improving the efficiency of QSM is under active development, and a rigorous analysis of preconditioning needs to be carried out for further investigation.Quantitative susceptibility mapping (QSM) solves the magnetic field-to-magnetization (tissue susceptibility) inverse problem under conditions of noisy and incomplete field data acquired using magnetic resonance imaging. Therefore, sophisticated algorithms are necessary to treat the ill-posed nature of the problem and are reviewed here. The forward problem is typically presented as an integral form, where the field is the convolution of the dipole kernel and tissue susceptibility distribution. This integral form can be equivalently written as a partial differential equation (PDE). Algorithmic challenges are to reduce streaking and shadow artifacts characterized by the fundamental solution of the PDE. Bayesian maximum a posteriori estimation can be employed to solve the inverse problem, where morphological and relevant biomedical knowledge (specific to the imaging situation) are used as priors. As the cost functions in Bayesian QSM framework are typically convex, solutions can be robustly computed using a gradient-based optimization algorithm. Moreover, one can not only accelerate Bayesian QSM, but also increase its effectiveness at reducing shadows using prior knowledge based preconditioners. Improving the efficiency of QSM is under active development, and a rigorous analysis of preconditioning needs to be carried out for further investigation.
Collapse
Affiliation(s)
- Youngwook Kee
- Department of Radiology, Weill Cornell Medical College, New York, USA
| | - Zhe Liu
- Department of Biomedical Engineering, Cornell University, Ithaca, USA
| | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medical College, New York, USA
| | - Alexey Dimov
- Department of Biomedical Engineering, Cornell University, Ithaca, USA
| | - Junghun Cho
- Department of Biomedical Engineering, Cornell University, Ithaca, USA
| | - Ludovic de Rochefort
- Center for Magnetic Resonance in Biology and Medicine, UMR CNRS 7339, Aix-Marseille University, 13284 Marseille, France
| | - Jin Keun Seo
- Department of Computational Science and Engineering, Yonsei University, Seoul, South Korea
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
9
|
Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Sci Rep 2017; 7:14366. [PMID: 29085043 PMCID: PMC5662687 DOI: 10.1038/s41598-017-14749-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/17/2017] [Indexed: 01/04/2023] Open
Abstract
Adoptive transfer of high-affinity chimeric antigen receptor (CAR) T cells targeting hematological cancers has yielded impressive clinical results. However, safety concerns regarding target expression on healthy tissue and poor efficacy have hampered application to solid tumors. Here, a panel of affinity-variant CARs were constructed targeting overexpressed ICAM-1, a broad tumor biomarker, using its physiological ligand, LFA-1. Anti-tumor T cell potency in vitro was directly proportional to CAR affinity and ICAM-1 density. In a solid tumor mouse model allowing simultaneous monitoring of anti-tumor potency and systemic off-tumor toxicity, micromolar affinity CAR T cells demonstrated superior anti-tumor efficacy and safety compared to their nanomolar counterparts. Longitudinal T cell tracking by PET/CT and concurrent cytokine measurement revealed superior expansion and contraction kinetics of micromolar affinity CAR T cells. Therefore, we developed an ICAM-1 specific CAR with broad anti-tumor applicability that utilized a reduced affinity targeting strategy to significantly boost efficacy and safety.
Collapse
|
10
|
Liu Z, Spincemaille P, Yao Y, Zhang Y, Wang Y. MEDI+0: Morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping. Magn Reson Med 2017; 79:2795-2803. [PMID: 29023982 DOI: 10.1002/mrm.26946] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 02/01/2023]
Abstract
PURPOSE To develop a quantitative susceptibility mapping (QSM) method with a consistent zero reference using minimal variation in cerebrospinal fluid (CSF) susceptibility. THEORY AND METHODS The ventricular CSF was automatically segmented on the R2* map. An L2 -regularization was used to enforce CSF susceptibility homogeneity within the segmented region, with the averaged CSF susceptibility as the zero reference. This regularization for CSF homogeneity was added to the model used in a prior QSM method (morphology enabled dipole inversion [MEDI]). Therefore, the proposed method was referred to as MEDI+0 and compared with MEDI in a numerical simulation, in multiple sclerosis (MS) lesions, and in a reproducibility study in healthy subjects. RESULTS In both the numerical simulations and in vivo experiments, MEDI+0 not only decreased the susceptibility variation within the ventricular CSF, but also suppressed the artifact near the lateral ventricles. In the simulation, MEDI+0 also provided more accurate quantification compared to MEDI in the globus pallidus, substantia nigra, corpus callosum, and internal capsule. MEDI+0 measurements of MS lesion susceptibility were in good agreement with those obtained by MEDI. Finally, both MEDI+0 and MEDI showed good and similar intrasubject reproducibility. CONCLUSION QSM with a minimal variation in ventricular CSF is viable to provide a consistent zero reference while improving image quality. Magn Reson Med 79:2795-2803, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yihao Yao
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Wang Y, Spincemaille P, Liu Z, Dimov A, Deh K, Li J, Zhang Y, Yao Y, Gillen KM, Wilman AH, Gupta A, Tsiouris AJ, Kovanlikaya I, Chiang GCY, Weinsaft JW, Tanenbaum L, Chen W, Zhu W, Chang S, Lou M, Kopell BH, Kaplitt MG, Devos D, Hirai T, Huang X, Korogi Y, Shtilbans A, Jahng GH, Pelletier D, Gauthier SA, Pitt D, Bush AI, Brittenham GM, Prince MR. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. J Magn Reson Imaging 2017; 46:951-971. [PMID: 28295954 PMCID: PMC5592126 DOI: 10.1002/jmri.25693] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Quantitative susceptibility mapping (QSM) has enabled magnetic resonance imaging (MRI) of tissue magnetic susceptibility to advance from simple qualitative detection of hypointense blooming artifacts to precise quantitative measurement of spatial biodistributions. QSM technology may be regarded to be sufficiently developed and validated to warrant wide dissemination for clinical applications of imaging isotropic susceptibility, which is dominated by metals in tissue, including iron and calcium. These biometals are highly regulated as vital participants in normal cellular biochemistry, and their dysregulations are manifested in a variety of pathologic processes. Therefore, QSM can be used to assess important tissue functions and disease. To facilitate QSM clinical translation, this review aims to organize pertinent information for implementing a robust automated QSM technique in routine MRI practice and to summarize available knowledge on diseases for which QSM can be used to improve patient care. In brief, QSM can be generated with postprocessing whenever gradient echo MRI is performed. QSM can be useful for diseases that involve neurodegeneration, inflammation, hemorrhage, abnormal oxygen consumption, substantial alterations in highly paramagnetic cellular iron, bone mineralization, or pathologic calcification; and for all disorders in which MRI diagnosis or surveillance requires contrast agent injection. Clinicians may consider integrating QSM into their routine imaging practices by including gradient echo sequences in all relevant MRI protocols. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:951-971.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Biomedical Engineering, Ithaca, NY, USA
| | | | - Zhe Liu
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Biomedical Engineering, Ithaca, NY, USA
| | - Alexey Dimov
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Biomedical Engineering, Ithaca, NY, USA
| | - Kofi Deh
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Jianqi Li
- Department of Physics, East China Normal University, Shanghai, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yihao Yao
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kelly M. Gillen
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Alan H. Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Ilhami Kovanlikaya
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Jonathan W. Weinsaft
- Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Weiwei Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese & Western Medicine, Shanghai, China
| | - Min Lou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Brian H. Kopell
- Department of Neurosurgery, Mount Sinai Hospital, New York, NY, USA
| | - Michael G. Kaplitt
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - David Devos
- Department of Medical Pharmacology, University of Lille, Lille, France
- Department of Neurology and Movement Disorders, University of Lille, Lille, France
- Department of Toxicology, Public Health and Environment, University of Lille, Lille, France
- INSERM U1171, University of Lille, Lille, France
| | - Toshinori Hirai
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Xuemei Huang
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neurosurgery, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Radiology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Yukunori Korogi
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Alexander Shtilbans
- Department of Neurology, Hospital for Special Surgery, New York, NY, USA
- Parkinson's Disease and Movement Disorder Institute, Weill Cornell Medical College, New York, NY, USA
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Daniel Pelletier
- Department of Neurology, Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Susan A. Gauthier
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY, USA
| | - David Pitt
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Ashley I. Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, AUS
| | - Gary M. Brittenham
- Department of Pediatrics, Columbia University, Children's Hospital of New York, New York, NY, USA
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
12
|
Ring HL, Zhang J, Klein ND, Eberly LE, Haynes CL, Garwood M. Establishing the overlap of IONP quantification with echo and echoless MR relaxation mapping. Magn Reson Med 2017; 79:1420-1428. [PMID: 28653344 DOI: 10.1002/mrm.26800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/08/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Iron-oxide nanoparticles (IONPs) have shown tremendous utility for enhancing image contrast and delivering targeted therapies. Quantification of IONPs has been demonstrated at low concentrations with gradient echo (GRE) and spin echo (SE), and at high concentrations with echoless sequences such as swept imaging with Fourier transform (SWIFT). This work examines the overlap of IONP quantification with GRE, SE, and SWIFT. METHODS The limit of quantification of GRE, SE, inversion-recovery GRE, and SWIFT sequences was assessed using IONPs at a concentration range of 0.02 to 89.29 mM suspended in 1% agarose. Empirically derived limits of quantification were compared with International Union of Pure and Applied Chemistry definitions. Both commercial and experimental IONPs were used. RESULTS All three IONPs assessed demonstrated an overlap of concentration quantification with GRE, SE, and SWIFT sequences. The largest dynamic range observed was 0.004 to 35.7 mM with Feraheme. CONCLUSIONS The metrics established allow upper and lower quantitative limitations to be estimated given the relaxivity characteristics of the IONP and the concentration range of the material to be assessed. The methods outlined in this paper are applicable to any pulse sequence, IONP formulation, and field strength. Magn Reson Med 79:1420-1428, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hattie L Ring
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jinjin Zhang
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nathan D Klein
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR IN BIOMEDICINE 2017; 30:e3569. [PMID: 27434134 DOI: 10.1002/nbm.3569] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and represents an important parameter in the field of MRI. With the recently introduced method of quantitative susceptibility mapping (QSM) and its conceptual extension to susceptibility tensor imaging (STI), the non-invasive assessment of this important physical quantity has become possible with MRI. Both methods solve the ill-posed inverse problem to determine the magnetic susceptibility from local magnetic fields. Whilst QSM allows the extraction of the spatial distribution of the bulk magnetic susceptibility from a single measurement, STI enables the quantification of magnetic susceptibility anisotropy, but requires multiple measurements with different orientations of the object relative to the main static magnetic field. In this review, we briefly recapitulate the fundamental theoretical foundation of QSM and STI, as well as computational strategies for the characterization of magnetic susceptibility with MRI phase data. In the second part, we provide an overview of current methodological and clinical applications of QSM with a focus on brain imaging. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, NY, USA
- MRI Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, NY, USA
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
14
|
Khodabandehlou K, Masehi-Lano JJ, Poon C, Wang J, Chung EJ. Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Exp Biol Med (Maywood) 2017; 242:799-812. [PMID: 28195515 DOI: 10.1177/1535370217693116] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Atherosclerosis is a leading cause of death worldwide; in addition to lipid dysfunction, chronic arterial wall inflammation is a key component of atherosclerosis. Techniques that target cell adhesion molecules, which are overexpressed during inflammation, are effective methods to detect and treat atherosclerosis. Specifically, research groups have identified vascular cell adhesion molecule-1, intercellular adhesion molecule-1, platelet endothelial cell adhesion molecule, and selectins (E-selectin and P-selectin) as correlated to atherogenesis. In this review, we discuss recent strategies both in vivo and in vitro that target cell adhesion molecules. First, we discuss peptide-based and antibody (Ab)-based nanoparticles utilized in vivo for diagnostic, therapeutic, and theranostic applications. Second, we discuss flow-based in vitro models that serve to reduce the traditional disadvantages of in vivo studies such as variability, time to develop the disease, and ethical burden, but preserve physiological relevance. The knowledge gained from these targeting studies can be translated into clinical solutions for improved detection, prevention, and treatment of atherosclerosis. Impact statement As atherosclerosis remains the leading cause of death, there is an urgent need to develop better tools for treatment of the disease. The ability to improve current treatments relies on enhancing the accuracy of in vitro and in vivo atherosclerotic models. While in vivo models provide all the relevant testing parameters, variability between animals and among models used is a barrier to reproducible results and comparability of NP efficacy. In vitro cultures isolate cells into microenvironments that fail to take into account flow separation and shear stress, which are characteristics of atherosclerotic lesions. Flow-based in vitro models provide more physiologically relevant platforms, bridging the gap between in vivo and 2D in vitro models. This is the first review that presents recent advances regarding endothelial cell-targeting using adhesion molecules in light of in vivo and flow-based in vitro models, providing insights for future development of optimal strategies against atherosclerosis.
Collapse
Affiliation(s)
- Khosrow Khodabandehlou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jacqueline J Masehi-Lano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Klohs J, Deistung A, Ielacqua GD, Seuwen A, Kindler D, Schweser F, Vaas M, Kipar A, Reichenbach JR, Rudin M. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI. J Cereb Blood Flow Metab 2016; 36:1614-24. [PMID: 26661253 PMCID: PMC5010097 DOI: 10.1177/0271678x15621500] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/06/2015] [Indexed: 01/04/2023]
Abstract
Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of [Formula: see text] and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAβ mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.4 T after injection of USPIO. Focal areas with increased magnetic susceptibility and [Formula: see text] values were discernible across several brain regions in 12-month-old arcAβ compared to 6-month-old arcAβ mice and to non-transgenic littermates, indicating accumulation of particles after USPIO injection. This was concomitant with higher [Formula: see text] and increased magnetic susceptibility differences relative to cerebrospinal fluid measured in USPIO-injected compared to non-USPIO-injected 12-month-old arcAβ mice. No differences in [Formula: see text] and magnetic susceptibility were detected in USPIO-injected compared to non-injected 12-month-old non-transgenic littermates. Histological analysis confirmed focal uptake of USPIO particles in perivascular macrophages adjacent to small caliber cerebral vessels with radii of 2-8 µm that showed no cerebral amyloid angiopathy. USPIO-enhanced [Formula: see text] and quantitative susceptibility mapping constitute quantitative tools to monitor such functional microvasculopathies.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Giovanna D Ielacqua
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Aline Seuwen
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Diana Kindler
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA MRI Clinical and Translational Research Center, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Markus Vaas
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany Center of Medical Optics and Photonics, Friedrich Schiller University Jena, Jena, Germany Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Markus Rudin
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Sood S, Urriola J, Reutens D, O'Brien K, Bollmann S, Barth M, Vegh V. Echo time-dependent quantitative susceptibility mapping contains information on tissue properties. Magn Reson Med 2016; 77:1946-1958. [PMID: 27221590 DOI: 10.1002/mrm.26281] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Magnetic susceptibility is a physical property of matter that varies depending on chemical composition and abundance of different molecular species. Interest is growing in mapping of magnetic susceptibility in the human brain using magnetic resonance imaging techniques, but the influences affecting the mapped values are not fully understood. METHODS We performed quantitative susceptibility mapping on 7 Tesla (T) multiple echo time gradient recalled echo data and evaluated the trend in 10 regions of the human brain. Temporal plots of susceptibility were performed in the caudate, pallidum, putamen, thalamus, insula, red nucleus, substantia nigra, internal capsule, corpus callosum, and fornix. We implemented an existing three compartment signal model and used optimization to fit the experimental result to assess the influences that could be responsible for our findings. RESULTS The temporal trend in susceptibility is different for different brain regions, and subsegmentation of specific regions suggests that differences are likely to be attributable to variations in tissue structure and composition. Using a signal model, we verified that a nonlinear temporal behavior in experimentally computed susceptibility within imaging voxels may be the result of the heterogeneous composition of tissue properties. CONCLUSIONS Decomposition of voxel constituents into meaningful parameters may lead to informative measures that reflect changes in tissue microstructure. Magn Reson Med 77:1946-1958, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Surabhi Sood
- Centre for Advanced Imaging, the University of Queensland, Brisbane, Australia
| | - Javier Urriola
- Centre for Advanced Imaging, the University of Queensland, Brisbane, Australia
| | - David Reutens
- Centre for Advanced Imaging, the University of Queensland, Brisbane, Australia
| | | | - Steffen Bollmann
- Centre for Advanced Imaging, the University of Queensland, Brisbane, Australia
| | - Markus Barth
- Centre for Advanced Imaging, the University of Queensland, Brisbane, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, the University of Queensland, Brisbane, Australia
| |
Collapse
|
17
|
Allen S, Liu YG, Scott E. Engineering nanomaterials to address cell-mediated inflammation in atherosclerosis. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2016; 2:37-50. [PMID: 27135051 DOI: 10.1007/s40883-016-0012-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is an inflammatory disorder with a pathophysiology driven by both innate and adaptive immunity and a primary cause of cardiovascular disease (CVD) worldwide. Vascular inflammation and accumulation of foam cells and their products induce maturation of atheromas, or plaques, which can rupture by metalloprotease action, leading to ischemic stroke or myocardial infarction. Diverse immune cell populations participate in all stages of plaque maturation, many of which directly influence plaque stability and rupture via inflammatory mechanisms. Current clinical treatments for atherosclerosis focus on lowering serum levels of low-density lipoprotein (LDL) using therapeutics such as statins, administration of antithrombotic drugs, and surgical intervention. Strategies that address cell-mediated inflammation are lacking, and consequently have recently become an area of considerable research focus. Nanomaterials have emerged as highly advantageous tools for these studies, as they can be engineered to target specific inflammatory cell populations, deliver therapeutics of wide-ranging solubilities and enhance analytical methods that include imaging and proteomics. Furthermore, the highly phagocytic nature of antigen presenting cells (APCs), a diverse cell population central to the initiation of immune responses and inflammation, make them particularly amenable to targeting and modulation by nanoscale particulates. Nanomaterials have therefore become essential components of vaccine formulations and treatments for inflammation-driven pathologies like autoimmunity, and present novel opportunities for immunotherapeutic treatments of CVD. Here, we review recent progress in the design and use of nanomaterials for therapeutic assessment and treatment of atherosclerosis. We will focus on promising new approaches that utilize nanomaterials for cell-specific imaging, gene therapy and immunomodulation.
Collapse
Affiliation(s)
- Sean Allen
- Department of Biomedical Engineering, Northwestern University, Evanston IL, USA
| | - Yu-Gang Liu
- Department of Biomedical Engineering, Northwestern University, Evanston IL, USA
| | - Evan Scott
- Department of Biomedical Engineering, Northwestern University, Evanston IL, USA
| |
Collapse
|
18
|
Eskreis-Winkler S, Deh K, Gupta A, Liu T, Wisnieff C, Jin M, Gauthier SA, Wang Y, Spincemaille P. Multiple sclerosis lesion geometry in quantitative susceptibility mapping (QSM) and phase imaging. J Magn Reson Imaging 2015; 42:224-9. [PMID: 25174493 PMCID: PMC4733654 DOI: 10.1002/jmri.24745] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/14/2014] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To demonstrate the phase and quantitative susceptibility mapping (QSM) patterns created by solid and shell spatial distributions of magnetic susceptibility in multiple sclerosis (MS) lesions. MATERIALS AND METHODS Numerical simulations and experimental phantoms of solid- and shell-shaped magnetic susceptibility sources were used to generate magnitude, phase, and QSM images. Imaging of 20 consecutive MS patients was also reviewed for this Institutional Review Board (IRB)-approved MRI study to identify the appearance of solid and shell lesions on phase and QSM images. RESULTS Solid and shell susceptibility sources were correctly reconstructed in QSM images, while the corresponding phase images depicted both geometries with shell-like patterns, making the underlying susceptibility distribution difficult to determine using phase alone. In MS patients, of the 60 largest lesions identified on T2 , 30 lesions were detected on both QSM and phase, of which 83% were solid and 17% were shells on QSM, and of which 30% were solid and 70% were shell on phase. Of the 21 shell-like lesions on phase, 76% appeared solid on QSM, 24% appeared shell on QSM. Of the five shell-like lesions on QSM, all were shell-like on phase. CONCLUSION QSM accurately depicts both solid and shell patterns of magnetic susceptibility, while phase imaging fails to distinguish them.
Collapse
Affiliation(s)
| | - Kofi Deh
- Radiology Department, Weill Cornell Medical College, New York, NY, USA
| | - Ajay Gupta
- Radiology Department, Weill Cornell Medical College, New York, NY, USA
| | - Tian Liu
- Medimagemetric, LLC, New York, NY, USA
| | - Cynthia Wisnieff
- Radiology Department, Weill Cornell Medical College, New York, NY, USA
- Bioengineering Department, Cornell University, Ithaca, NY
| | - Moonsoo Jin
- Bioengineering Department, Cornell University, Ithaca, NY
| | - Susan A. Gauthier
- Neurology Department, Weill Cornell Medical College, New York, NY, USA
| | - Yi Wang
- Radiology Department, Weill Cornell Medical College, New York, NY, USA
- Bioengineering Department, Cornell University, Ithaca, NY
| | | |
Collapse
|
19
|
Wang Y, Liu T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 2015; 73:82-101. [PMID: 25044035 PMCID: PMC4297605 DOI: 10.1002/mrm.25358] [Citation(s) in RCA: 630] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 01/03/2023]
Abstract
In MRI, the main magnetic field polarizes the electron cloud of a molecule, generating a chemical shift for observer protons within the molecule and a magnetic susceptibility inhomogeneity field for observer protons outside the molecule. The number of water protons surrounding a molecule for detecting its magnetic susceptibility is vastly greater than the number of protons within the molecule for detecting its chemical shift. However, the study of tissue magnetic susceptibility has been hindered by poor molecular specificities of hitherto used methods based on MRI signal phase and T2* contrast, which depend convolutedly on surrounding susceptibility sources. Deconvolution of the MRI signal phase can determine tissue susceptibility but is challenged by the lack of MRI signal in the background and by the zeroes in the dipole kernel. Recently, physically meaningful regularizations, including the Bayesian approach, have been developed to enable accurate quantitative susceptibility mapping (QSM) for studying iron distribution, metabolic oxygen consumption, blood degradation, calcification, demyelination, and other pathophysiological susceptibility changes, as well as contrast agent biodistribution in MRI. This paper attempts to summarize the basic physical concepts and essential algorithmic steps in QSM, to describe clinical and technical issues under active development, and to provide references, codes, and testing data for readers interested in QSM.
Collapse
Affiliation(s)
- Yi Wang
- Radiology, Weill Medical College of Cornell UniversityNew York, New York, USA
- Biomedical Engineering, Cornell UniversityIthaca, New York, USA
- Biomedical Engineering, Kyung Hee UniversitySeoul, South Korea
| | - Tian Liu
- MedImageMetric, LLCNew York, New York, USA
| |
Collapse
|
20
|
Eggleston H, Panizzi P. Molecular imaging of bacterial infections in vivo: the discrimination of infection from inflammation. INFORMATICS (MDPI) 2014; 1:72-99. [PMID: 26985401 PMCID: PMC4790455 DOI: 10.3390/informatics1010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging by definition is the visualization of molecular and cellular processes within a given system. The modalities and reagents described here represent a diverse array spanning both pre-clinical and clinical applications. Innovations in probe design and technologies would greatly benefit therapeutic outcomes by enhancing diagnostic accuracy and assessment of acute therapy. Opportunistic pathogens continue to pose a worldwide threat, despite advancements in treatment strategies, which highlights the continued need for improved diagnostics. In this review, we present a summary of the current clinical protocol for the imaging of a suspected infection, methods currently in development to optimize this imaging process, and finally, insight into endocarditis as a model of infectious disease in immediate need of improved diagnostic methods.
Collapse
Affiliation(s)
- Heather Eggleston
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849
| |
Collapse
|
21
|
Zhu XW, Gong JP. Expression and role of icam-1 in the occurrence and development of hepatocellular carcinoma. Asian Pac J Cancer Prev 2014; 14:1579-83. [PMID: 23679239 DOI: 10.7314/apjcp.2013.14.3.1579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a member of the immunoglobulin superfamily, its main function being to participate in recognition and adhesion between cells. ICAM-1 is considered closely related to occurrence, development, metastasis and invasion process of hepatocellular carcinoma (HCC). A variety of inflammatory cytokines and stimulus affect its expression through the nuclear factor-kappa B (NF-κB) signal transduction pathway. In the initial stage of inflammation, hepatocirrhosis and tumor development, ICAM-1 is expressed differently, and has varied effects on different cells to promote occurrence of malignancy and metastasis. ICAM-1 has diagnostic significance for AFP-negative or suspected HCC, and may be a prognositic significance. It is thus widely used in studies as a biomarker which reflects cancer cells metastasis as well as curative effect of drugs. Many new treatments of HCC may be based on the effects of ICAM-1 on different levels of function.
Collapse
Affiliation(s)
- Xi-Wen Zhu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
22
|
Hoerr V, Faber C. Magnetic resonance imaging characterization of microbial infections. J Pharm Biomed Anal 2013; 93:136-46. [PMID: 24257444 DOI: 10.1016/j.jpba.2013.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022]
Abstract
The investigation of microbial infections relies to a large part on animal models of infection, if host pathogen interactions or the host response are considered. Especially for the assessment of novel therapeutic agents, animal models are required. Non-invasive imaging methods to study such models have gained increasing importance over the recent years. In particular, magnetic resonance imaging (MRI) affords a variety of diagnostic options, and can be used for longitudinal studies. In this review, we introduce the most important MRI modalities that show how MRI has been used for the investigation of animal models of infection previously and how it may be applied in the future.
Collapse
Affiliation(s)
- Verena Hoerr
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany.
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany
| |
Collapse
|
23
|
Gho SM, Liu C, Li W, Jang U, Kim EY, Hwang D, Kim DH. Susceptibility map-weighted imaging (SMWI) for neuroimaging. Magn Reson Med 2013; 72:337-46. [PMID: 24006248 DOI: 10.1002/mrm.24920] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/14/2013] [Accepted: 07/21/2013] [Indexed: 11/08/2022]
Abstract
PURPOSE To propose a susceptibility map-weighted imaging (SMWI) method by combining a magnitude image with a quantitative susceptibility mapping (QSM) -based weighting factor thereby providing an alternative contrast compared with magnitude image, susceptibility-weighted imaging, and QSM. METHODS A three-dimensional multi-echo gradient echo sequence is used to obtain the data. The QSM was transformed to a susceptibility mask that varies in amplitude between zero and unity. This mask was multiplied several times with the original magnitude image to create alternative contrasts between tissues with different susceptibilities. A temporal domain denoising method to enhance the signal-to-noise ratio was further applied. Optimal reconstruction processes of the SMWI were determined from simulations. RESULTS Temporal domain denoising enhanced the signal-to-noise ratio, especially at late echoes without spatial artifacts. From phantom simulations, the optimal number of multiplication and threshold values was chosen. Reconstructed SMWI created different contrasts based on its weighting factors made from paramagnetic or diamagnetic susceptibility tissue and provided an excellent delineation of microhemorrhage without blooming artifacts typically caused by the nonlocal property of phase. CONCLUSION SMWI presents an alternative contrast for susceptibility-based imaging. The validity of this method was demonstrated using in vivo data. This proposed method together with denoising allows high-quality reconstruction of susceptibility-weighted image of human brain in vivo.
Collapse
Affiliation(s)
- Sung-Min Gho
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Hoerr V, Tuchscherr L, Hüve J, Nippe N, Loser K, Glyvuk N, Tsytsyura Y, Holtkamp M, Sunderkötter C, Karst U, Klingauf J, Peters G, Löffler B, Faber C. Bacteria tracking by in vivo magnetic resonance imaging. BMC Biol 2013; 11:63. [PMID: 23714179 PMCID: PMC3686665 DOI: 10.1186/1741-7007-11-63] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/22/2013] [Indexed: 02/03/2023] Open
Abstract
Background Different non-invasive real-time imaging techniques have been developed over the last decades to study bacterial pathogenic mechanisms in mouse models by following infections over a time course. In vivo investigations of bacterial infections previously relied mostly on bioluminescence imaging (BLI), which is able to localize metabolically active bacteria, but provides no data on the status of the involved organs in the infected host organism. In this study we established an in vivo imaging platform by magnetic resonance imaging (MRI) for tracking bacteria in mouse models of infection to study infection biology of clinically relevant bacteria. Results We have developed a method to label Gram-positive and Gram-negative bacteria with iron oxide nano particles and detected and pursued these with MRI. The key step for successful labeling was to manipulate the bacterial surface charge by producing electro-competent cells enabling charge interactions between the iron particles and the cell wall. Different particle sizes and coatings were tested for their ability to attach to the cell wall and possible labeling mechanisms were elaborated by comparing Gram-positive and -negative bacterial characteristics. With 5-nm citrate-coated particles an iron load of 0.015 ± 0.002 pg Fe/bacterial cell was achieved for Staphylococcus aureus. In both a subcutaneous and a systemic infection model induced by iron-labeled S. aureus bacteria, high resolution MR images allowed for bacterial tracking and provided information on the morphology of organs and the inflammatory response. Conclusion Labeled with iron oxide particles, in vivo detection of small S. aureus colonies in infection models is feasible by MRI and provides a versatile tool to follow bacterial infections in vivo. The established cell labeling strategy can easily be transferred to other bacterial species and thus provides a conceptual advance in the field of molecular MRI.
Collapse
Affiliation(s)
- Verena Hoerr
- Department of Clinical Radiology, University Hospital Münster, Münster 48149, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park S, Kang S, Chen X, Kim EJ, Kim J, Kim N, Kim J, Jin MM. Tumor suppression via paclitaxel-loaded drug carriers that target inflammation marker upregulated in tumor vasculature and macrophages. Biomaterials 2012; 34:598-605. [PMID: 23099063 DOI: 10.1016/j.biomaterials.2012.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/03/2012] [Indexed: 12/18/2022]
Abstract
Clinically approved chemotherapeutic nanoparticles may provide advantages over free drugs by achieving slower clearance and preferential accumulation in tumors. However, the lack of leaky vasculatures can create barriers to the permeation of ~100 nm-sized nanoparticles in solid tumors. We hypothesized that nanoparticles designed to target both tumor and tumor stroma would penetrate deeper into the tumors. To construct such comprehensive drug carriers, we utilized cross-linked amphiphilic polymer nanoparticles and functionalized them to target ICAM-1, a biomarker prevalent in various tumors and inflamed tumor stroma. The targeting moiety was derived from the modular domain present in α(L) integrin, which was engineered for high affinity and cross-reactivity with human and murine ICAM-1. ICAM-1-selective delivery of paclitaxel produced potent tumor suppression of not only ICAM-1-positive cervical cancer cells but also ICAM-1-negative tumors, presumably by causing cytotoxicity in tumor-associated endothelium (CD31(+)) and macrophages (CD68(+)) over-expressing ICAM-1. Contrary to the strategies of targeting only the tumor or specific tumor stromal constituents, we present a strategy in delivering therapeutics to the major cellular components of solid tumors. Drug carriers against inflammation-biomarkers may be effective against many different types of tumors, while being less susceptible to the highly mutable nature of tumor markers.
Collapse
Affiliation(s)
- Spencer Park
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|