1
|
Farahpour A, Ramezanian N, Gholami L, Askarian S, Banisadr A, Kazemi Oskuee R. Synthesis and characterization of polyethyleneimine-terminated poly( β-amino esters) conjugated with pullulan for gene delivery. Pharm Dev Technol 2022; 27:606-614. [PMID: 35766268 DOI: 10.1080/10837450.2022.2096069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cationic polymers endowed with a flexible system for condensing DNA, are regarded as effective materials for gene delivery. The synthesis of poly(β-amino esters) (pBAEs) based on 1,4-butanediol diacrylate-ethanolamine monomer (1.2:1 molar ratio) and 1,4-butanediol diacrylate-ethylene diamine (1:2 molar ratio) were carried out and modification with 1800 Da polyethyleneimine (PEI) at different weight ratios (3 and 1) as well as conjugation with pullulan in various weight ratios of (0.0625, 0.125, 0.25, and 1) performed. Gel-retardation assay demonstrated that the synthesized polymers were able to condense DNA at low carrier/plasmid (C/P) ratios. The polyplexes with ratio 3 of PEI (pβ1/PEI3) were restricted in all C/P ratios and the polyplexes of pβ1/PEI3/pull0.125 were condensed at C/P ratios higher than 0.5. The particle size at C/P were approximately about 200 nm with a positive surface charge. The presence of the pullulan in the structure of the synthesized pBAEs could be effective in reducing toxicity of the base polymer. Highest metabolic activity dedicated to C/P2 of pβ2/PEI3/pull0.125 with 80.6 percent viability. Furthermore, the most efficient gene reporter delivery was seen at C/P ratio of 6 in pβ2/PEI3/pull0.125 nanoparticles. Therefore, pullulan grafting could enhance the cellular response of cells in terms of cytotoxicity and transfection efficiency.
Collapse
Affiliation(s)
- Atena Farahpour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Navid Ramezanian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Askarian
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Arsham Banisadr
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Rao GSNK, Kurakula M, Yadav KS. Application of Electrospun Materials in Gene Delivery. ELECTROSPUN MATERIALS AND THEIR ALLIED APPLICATIONS 2020:265-306. [DOI: 10.1002/9781119655039.ch10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Jiang J, Ceylan M, Zheng Y, Yao L, Asmatulu R, Yang SY. Poly-ε-caprolactone electrospun nanofiber mesh as a gene delivery tool. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Mangraviti A, Tzeng SY, Kozielski KL, Wang Y, Jin Y, Gullotti D, Pedone M, Buaron N, Liu A, Wilson DR, Hansen SK, Rodriguez FJ, Gao GD, DiMeco F, Brem H, Olivi A, Tyler B, Green JJ. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS NANO 2015; 9:1236-49. [PMID: 25643235 PMCID: PMC4342728 DOI: 10.1021/nn504905q] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat glioma cell lines, 9L and F98, to discover nanoparticle formulations more effective than the leading commercial reagent Lipofectamine 2000. The lead polymer structure, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine, is a poly(β-amino ester) (PBAE) and formed nanoparticles with HSVtk DNA that were 138 ± 4 nm in size and 13 ± 1 mV in zeta potential. These nanoparticles containing HSVtk DNA showed 100% cancer cell killing in vitro in the two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding GFP maintained robust cell viability. For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. These treated animals showed a significant benefit in survival (p = 0.0012 vs control). Moreover, following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor. This study highlights a nanomedicine approach that is highly promising for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Stephany Yi Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Kristen Lynn Kozielski
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Yuan Wang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Yike Jin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David Gullotti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Mariangela Pedone
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Nitsa Buaron
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Chemical Engineering, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - David R. Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sarah K. Hansen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Fausto J. Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Francesco DiMeco
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan 20133, Italy
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Address correspondence to ,
| | - Jordan J. Green
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- The Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Material Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Address correspondence to ,
| |
Collapse
|
5
|
Kim J, Sunshine JC, Green JJ. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly(β-amino ester) polyplexes in human breast cancer cells. Bioconjug Chem 2013; 25:43-51. [PMID: 24320687 DOI: 10.1021/bc4002322] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center and §Department of Ophthalmology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21231, United States
| | | | | |
Collapse
|
6
|
Li C, Tzeng SY, Tellier LE, Green JJ. (3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayer films for gene delivery. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5947-5953. [PMID: 23755861 PMCID: PMC3838882 DOI: 10.1021/am402115v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of System Life Sciences, Graduate School of Engineering, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Liane E. Tellier
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
7
|
Bishop CJ, Ketola TM, Tzeng SY, Sunshine JC, Urtti A, Lemmetyinen H, Vuorimaa-Laukkanen E, Yliperttula M, Green JJ. The effect and role of carbon atoms in poly(β-amino ester)s for DNA binding and gene delivery. J Am Chem Soc 2013; 135:6951-7. [PMID: 23570657 PMCID: PMC3838887 DOI: 10.1021/ja4002376] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polymeric vectors for gene delivery are a promising alternative for clinical applications, as they are generally safer than viral counterparts. Our objective was to further our mechanistic understanding of polymer structure-function relationships to allow the rational design of new biomaterials. Utilizing poly(β-amino ester)s (PBAEs), we investigated polymer-DNA binding by systematically varying the polymer molecular weight, adding single carbons to the backbone and side chain of the monomers that constitute the polymers, and varying the type of polymer end group. We then sought to correlate how PBAE binding affects the polyplex diameter and ζ potential, the transfection efficacy, and its associated cytotoxicity in human breast and brain cancer cells in vitro. Among other trends, we observed in both cell lines that the PBAE-DNA binding constant is biphasic with the transfection efficacy and that the optimal values of the binding constant with respect to the transfection efficacy are in the range (1-6) × 10(4) M(-1). A binding constant in this range is necessary but not sufficient for effective transfection.
Collapse
Affiliation(s)
- Corey J. Bishop
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center. Johns Hopkins University School of Medicine 400 North Broadway, Baltimore, MD 21231, USA
| | - Tiia-Maaria Ketola
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI33101, Finland
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center. Johns Hopkins University School of Medicine 400 North Broadway, Baltimore, MD 21231, USA
| | - Joel C. Sunshine
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center. Johns Hopkins University School of Medicine 400 North Broadway, Baltimore, MD 21231, USA
| | - Arto Urtti
- Divison of Biopharmacy and Pharmacokinetics, University of Helsinki Viikinkaari 5E, 00014 Helsinki, Finland
| | - Helge Lemmetyinen
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI33101, Finland
| | - Elina Vuorimaa-Laukkanen
- Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI33101, Finland
| | - Marjo Yliperttula
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki Viikinkaari 5E, 00014 Helsinki, Finland
| | - Jordan J. Green
- Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center. Johns Hopkins University School of Medicine 400 North Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
8
|
Tzeng SY, Higgins LJ, Pomper MG, Green JJ. Student award winner in the Ph.D. category for the 2013 society for biomaterials annual meeting and exposition, april 10-13, 2013, Boston, Massachusetts : biomaterial-mediated cancer-specific DNA delivery to liver cell cultures using synthetic poly(beta-amino ester)s. J Biomed Mater Res A 2013; 101:1837-45. [PMID: 23559534 DOI: 10.1002/jbm.a.34616] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 12/21/2022]
Abstract
Liver cancer is a leading cause of cancer death. Most patients are treated by arterial injection of chemoembolizing agents, providing a convenient avenue for local treatment by novel therapies, including gene therapy. Poly(beta-amino ester)s (PBAEs) were synthesized and used to form nanoparticles for non-viral transfection of buffalo rat hepatoma (MCA-RH7777) and hepatocyte (BRL-3A) lines with eGFP and luciferase DNA. Hepatoma cells were transfected with up to (98 ± 0.4)% efficacy with no measurable cytotoxicity. Hepatocytes were transfected with as high as (73 ± 0.4)% efficacy with (10 ± 4)% non-specific cytotoxicity. In contrast, positive controls (branched polyethylenimine, Lipofectamine™ 2000, and X-tremeGENE(®) DNA HP) caused 30-90% toxicity in BRL-3A cells at doses required for >50% transfection. Of the 21 optimized PBAE-DNA formulations tested, 12 showed significant specificity for hepatoma cells over hepatocytes in monoculture (p < 0.05 for both percentage transfected and eGFP expression intensity). Top polymers from eGFP studies also delivered luciferase DNA with 220 ± 30-fold and 470 ± 30-fold greater specificity for hepatoma cells than hepatocytes. Transfections of co-cultures of hepatoma and hepatocytes with eGFP DNA also showed high specificity (1.9 ± 0.1- to 5.8± 1.4-fold more transfected hepatoma cells than hepatocytes, measured by percentage transfected and flow cytometry). By eGFP intensity, up to 530 ±60-fold higher average expression per cell was measured in hepatoma cells. One top formulation caused (95 ± 0.2)% transfection in hepatoma cells and (27 ± 0.2)% in hepatocytes [(96 ± 9)% relative hepatocyte viability]. PBAE-based nanoparticles are a viable strategy for liver cancer treatment, delivering genes to nearly 100% of cancer cells while maintaining high biomaterial-mediated specificity to prevent toxic side-effects on healthy hepatocytes.
Collapse
Affiliation(s)
- Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
9
|
Tzeng SY, Green JJ. Subtle changes to polymer structure and degradation mechanism enable highly effective nanoparticles for siRNA and DNA delivery to human brain cancer. Adv Healthc Mater 2013; 2:468-80. [PMID: 23184674 PMCID: PMC3838886 DOI: 10.1002/adhm.201200257] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 08/23/2012] [Indexed: 12/19/2022]
Abstract
Polymeric materials can be used to deliver nucleic acids such as DNA plasmids and siRNA, but often have low efficacy in human cells. To improve gene delivery, an array of over 70 hydrolytically degradable and bioreducible poly(beta-amino ester)s are synthesized and the properties of over 200 nanoparticle formulations fabricated from these biomaterials are evaluated. The effect of different polymer structures on the delivery of nucleic acids of different structures and sizes, including siRNA, linear DNA, and circular DNAs (1.8-26 kb), is evaluated. Significantly, leading hydrolytically degradable polymeric nanoparticles deliver DNA to 90 ± 2% of primary human glioblastoma cells with <10% nonspecific cytotoxicity, better than leading commercially available reagents (p < 0.01). Bioreducible polymeric nanoparticles optimized for siRNA delivery cause up to 85 ± 0.6% knockdown in these cells as well while maintaining high viability. From a single dose, knockdown is higher than for Lipofectamine 2000 (p < 0.01) and persisted for one month. Polymer molecular weight is a driving factor of transfection efficacy for some polymer structures (correlation of r(2) = 0.63), but has no influence on transfection for other structures (r(2) = 0.01). Polymers with a reducible cystamine functional group dramatically improve siRNA delivery by facilitating quick release while generally decreasing DNA delivery compared with non-reducible counterparts (p < 0.01). Other material properties facilitate DNA delivery compared with siRNA delivery or increase delivery of both DNA and siRNA.
Collapse
Affiliation(s)
- Stephany Y. Tzeng
- Johns Hopkins University School of Medicine, Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, 400 N. Broadway, Smith 5017, Baltimore, MD, USA 21231
| | - Jordan J. Green
- Johns Hopkins University School of Medicine, Department of Biomedical Engineering, the Wilmer Eye Institute, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, 400 N. Broadway, Smith 5017, Baltimore, MD, USA 21231
| |
Collapse
|
10
|
Shmueli RB, Bhise NS, Green JJ. Evaluation of polymeric gene delivery nanoparticles by nanoparticle tracking analysis and high-throughput flow cytometry. J Vis Exp 2013:e50176. [PMID: 23486314 DOI: 10.3791/50176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Non-viral gene delivery using polymeric nanoparticles has emerged as an attractive approach for gene therapy to treat genetic diseases(1) and as a technology for regenerative medicine(2). Unlike viruses, which have significant safety issues, polymeric nanoparticles can be designed to be non-toxic, non-immunogenic, non-mutagenic, easier to synthesize, chemically versatile, capable of carrying larger nucleic acid cargo and biodegradable and/or environmentally responsive. Cationic polymers self-assemble with negatively charged DNA via electrostatic interaction to form complexes on the order of 100 nm that are commonly termed polymeric nanoparticles. Examples of biomaterials used to form nanoscale polycationic gene delivery nanoparticles include polylysine, polyphosphoesters, poly(amidoamines)s and polyethylenimine (PEI), which is a non-degradable off-the-shelf cationic polymer commonly used for nucleic acid delivery(1,3) . Poly(beta-amino ester)s (PBAEs) are a newer class of cationic polymers(4) that are hydrolytically degradable(5,6) and have been shown to be effective at gene delivery to hard-to-transfect cell types such as human retinal endothelial cells (HRECs)(7), mouse mammary epithelial cells(8), human brain cancer cells(9) and macrovascular (human umbilical vein, HUVECs) endothelial cells(10). A new protocol to characterize polymeric nanoparticles utilizing nanoparticle tracking analysis (NTA) is described. In this approach, both the particle size distribution and the distribution of the number of plasmids per particle are obtained(11). In addition, a high-throughput 96-well plate transfection assay for rapid screening of the transfection efficacy of polymeric nanoparticles is presented. In this protocol, poly(beta-amino ester)s (PBAEs) are used as model polymers and human retinal endothelial cells (HRECs) are used as model human cells. This protocol can be easily adapted to evaluate any polymeric nanoparticle and any cell type of interest in a multi-well plate format.
Collapse
Affiliation(s)
- Ron B Shmueli
- Biomedical Engineering Department, Johns Hopkins University School of Medicine, USA
| | | | | |
Collapse
|
11
|
Kamat CD, Shmueli RB, Connis N, Rudin CM, Green JJ, Hann CL. Poly(β-amino ester) nanoparticle delivery of TP53 has activity against small cell lung cancer in vitro and in vivo. Mol Cancer Ther 2013; 12:405-15. [PMID: 23364678 DOI: 10.1158/1535-7163.mct-12-0956] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive disease with one of the highest case-fatality rates among cancer. The recommended therapy for SCLCs has not changed significantly over the past 30 years; new therapeutic approaches are a critical need. TP53 is mutated in the majority of SCLC cases and its loss is required in transgenic mouse models of the disease. We synthesized an array of biodegradable poly(β-amino ester) (PBAE) polymers that self-assemble with DNA and assayed for transfection efficiency in the p53-mutant H446 SCLC cell line using high-throughput methodologies. Two of the top candidates were selected for further characterization and TP53 delivery in vitro and in vivo. Nanoparticle delivery of TP53 resulted in expression of exogenous p53, induction of p21, induction of apoptosis, and accumulation of cells in sub-G1 consistent with functional p53 activity. Intratumoral injection of subcutaneous H446 xenografts with polymers carrying TP53 caused marked tumor growth inhibition. This is the first demonstration of TP53 gene therapy in SCLC using nonviral polymeric nanoparticles. This technology may have general applicability as a novel anticancer strategy based on restoration of tumor suppressor gene function.
Collapse
Affiliation(s)
- Chandrashekhar D Kamat
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
12
|
Sunshine JC, Peng DY, Green JJ. Uptake and Transfection with Polymeric Nanoparticles Are Dependent on Polymer End-Group Structure, but Largely Independent of Nanoparticle Physical and Chemical Properties. Mol Pharm 2012; 9:3375-83. [DOI: 10.1021/mp3004176] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Joel C. Sunshine
- Department of Biomedical Engineering, the Wilmer Eye
Institute, the Institute for Nanobiotechnology, and the Translational
Tissue Engineering Center, the Johns Hopkins University School of
Medicine, Baltimore, Maryland 21231, United States
| | - Daniel Y. Peng
- Department of Biomedical Engineering, the Wilmer Eye
Institute, the Institute for Nanobiotechnology, and the Translational
Tissue Engineering Center, the Johns Hopkins University School of
Medicine, Baltimore, Maryland 21231, United States
| | - Jordan J. Green
- Department of Biomedical Engineering, the Wilmer Eye
Institute, the Institute for Nanobiotechnology, and the Translational
Tissue Engineering Center, the Johns Hopkins University School of
Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|