1
|
Cordelle MZ, Snelling SJB, Mouthuy PA. Skeletal Muscle Tissue Engineering: From Tissue Regeneration to Biorobotics. CYBORG AND BIONIC SYSTEMS 2025; 6:0279. [PMID: 40376483 PMCID: PMC12079140 DOI: 10.34133/cbsystems.0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 05/18/2025] Open
Abstract
With its remarkable adaptability, energy efficiency, and mechanical compliance, skeletal muscle is a powerful source of inspiration for innovations in engineering and robotics. Originally driven by the clinical need to address large irreparable muscle defects, skeletal muscle tissue engineering (SMTE) has evolved into a versatile strategy reaching beyond medical applications into the field of biorobotics. This review highlights recent advancements in SMTE, including innovations in scaffold design, cell sourcing, usage of external physicochemical cues, and bioreactor technologies. Furthermore, this article explores the emerging synergies between SMTE and robotics, focusing on the use of robotic systems to enhance bioreactor performance and the development of biohybrid devices integrating engineered muscle tissue. These interdisciplinary approaches aim to improve functional recovery outcomes while inspiring novel biohybrid technologies at the intersection of engineering and regenerative medicine.
Collapse
Affiliation(s)
- Maira Z. Cordelle
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences,
University of Oxford, Oxford OX3 7LD, UK
| | - Sarah J. B. Snelling
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences,
University of Oxford, Oxford OX3 7LD, UK
| | - Pierre-Alexis Mouthuy
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences,
University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
2
|
Lu HH, Ege D, Salehi S, Boccaccini AR. Ionic medicine: Exploiting metallic ions to stimulate skeletal muscle tissue regeneration. Acta Biomater 2024; 190:1-23. [PMID: 39454933 DOI: 10.1016/j.actbio.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The regeneration of healthy and functional skeletal muscle at sites of injuries and defects remains a challenge. Mimicking the natural environment surrounding skeletal muscle cells and the application of electrical and mechanical stimuli are approaches being investigated to promote muscle tissue regeneration. Likewise, chemical stimulation with therapeutic (biologically active) ions is an emerging attractive alternative in the tissue engineering and regenerative medicine fields, specifically to trigger myoblast proliferation, myogenic differentiation, myofiber formation, and ultimately to promote new muscle tissue growth. The present review covers the specialized literature focusing on the biochemical stimulation of muscle tissue repair by applying inorganic ions (bioinorganics). Extracting information from the literature, different ions and their potential influence as chemical cues on skeletal muscle regeneration are discussed. It is revealed that different ions and their varied doses have an individual effect at different stages of muscle cellular development. The dose-dependent effects of ions, as well as applications of ions alone and in combination with biomaterials, are also summarized. Some ions, such as boron, silicon, magnesium, selenium and zinc, are reported to exhibit a beneficial effect on skeletal muscle cells in carefully controlled doses, while the effects of other ions such as iron and copper appear to be contradictory. In addition, calcium is an essential regulatory ion for the differentiation of myoblasts. On the other hand, some ions such as phosphate have been shown to inhibit muscle cell behavior. This review thus provides a complete overview of the application of ionic stimulation for skeletal muscle tissue engineering applications, highlighting the importance of inorganic ions as an attractive alternative to the application of small molecules and growth factors to stimulate muscle tissue repair. STATEMENT OF SIGNIFICANCE: Ionic medicine (IM) is emerging as a promising and attractive approach in the field of tissue engineering, including muscle tissue regeneration. IM is based on the delivery of biologically active ions to injury sites, acting as stimulants for the repair process. This method offers a potentially simpler and more affordable alternative to conventional biomolecule-based regulators such as growth factors. Different biologically active ions, depending on their specific doping concentrations, can have varying effects on cellular development, which could be either beneficial or inhibitory. This literature review covers the field of IM in muscle regeneration with focus on the impact of various ions on skeletal muscle regeneration. The paper is thus a critical summary for guiding future research in ionic-related regenerative medicine, highlighting the potential and challenges of this approach for muscle regeneration.
Collapse
Affiliation(s)
- Hsuan-Heng Lu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Duygu Ege
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; Institute of Biomedical Engineering, Bogazici University, Rasathane St., Kandilli 34684, Istanbul, Turkey
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, 95447 Bayreuth, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Gahlawat S, Oruc D, Paul N, Ragheb M, Patel S, Fasasi O, Sharma P, Shreiber DI, Freeman JW. Tissue Engineered 3D Constructs for Volumetric Muscle Loss. Ann Biomed Eng 2024; 52:2325-2347. [PMID: 39085677 PMCID: PMC11329418 DOI: 10.1007/s10439-024-03541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Doga Oruc
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Nikhil Paul
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Mark Ragheb
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Swati Patel
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Oyinkansola Fasasi
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Peeyush Sharma
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA.
| |
Collapse
|
4
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
5
|
Raman R. Biofabrication of Living Actuators. Annu Rev Biomed Eng 2024; 26:223-245. [PMID: 38959387 DOI: 10.1146/annurev-bioeng-110122-013805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The impact of tissue engineering has extended beyond a traditional focus in medicine to the rapidly growing realm of biohybrid robotics. Leveraging living actuators as functional components in machines has been a central focus of this field, generating a range of compelling demonstrations of robots capable of muscle-powered swimming, walking, pumping, gripping, and even computation. In this review, we highlight key advances in fabricating tissue-scale cardiac and skeletal muscle actuators for a range of functional applications. We discuss areas for future growth including scalable manufacturing, integrated feedback control, and predictive modeling and also propose methods for ensuring inclusive and bioethics-focused pedagogy in this emerging discipline. We hope this review motivates the next generation of biomedical engineers to advance rational design and practical use of living machines for applications ranging from telesurgery to manufacturing to on- and off-world exploration.
Collapse
Affiliation(s)
- Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
6
|
Sanaki-Matsumiya M, Villava C, Rappez L, Haase K, Wu J, Ebisuya M. Self-organization of vascularized skeletal muscle from bovine embryonic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586252. [PMID: 38585777 PMCID: PMC10996461 DOI: 10.1101/2024.03.22.586252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cultured beef holds promising potential as an alternative to traditional meat options. While adult stem cells are commonly used as the cell source for cultured beef, their proliferation and differentiation capacities are limited. To produce cultured beef steaks, current manufacturing plans often require the separate preparation of multiple cell types and intricate engineering for assembling them into structured tissues. In this study, we propose and report the co-induction of skeletal muscle, neuronal, and endothelial cells from bovine embryonic stem cells (ESCs) and the self-organization of tissue structures in 2- and 3-dimensional cultures. Bovine myocytes were induced in a stepwise manner through the induction of presomitic mesoderm (PSM) from bovine ESCs. Muscle fibers with sarcomeres appeared within 15 days, displaying calcium oscillations responsive to inputs from co-induced bovine spinal neurons. Bovine endothelial cells were also co-induced via PSM, forming uniform vessel networks inside tissues. Our serum-free, rapid co-induction protocols represent a milestone toward self-organizing beef steaks with integrated vasculature and innervation.
Collapse
Affiliation(s)
- Marina Sanaki-Matsumiya
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Casandra Villava
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Luca Rappez
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Kristina Haase
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miki Ebisuya
- European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
7
|
Rousseau E, Raman R, Tamir T, Bu A, Srinivasan S, Lynch N, Langer R, White FM, Cima MJ. Actuated tissue engineered muscle grafts restore functional mobility after volumetric muscle loss. Biomaterials 2023; 302:122317. [PMID: 37717406 PMCID: PMC11512195 DOI: 10.1016/j.biomaterials.2023.122317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Damage that affects large volumes of skeletal muscle tissue can severely impact health, mobility, and quality-of-life. Efforts to restore muscle function by implanting tissue engineered muscle grafts at the site of damage have demonstrated limited restoration of force production. Various forms of mechanical and biochemical stimulation have been shown to have a potentially beneficial impact on graft maturation, vascularization, and innervation. However, these approaches yield unpredictable and incomplete recovery of functional mobility. Here we show that targeted actuation of implanted grafts, via non-invasive transcutaneous light stimulation of optogenetic engineered muscle, restores motor function to levels similar to healthy mice 2 weeks post-injury. Furthermore, we conduct phosphoproteomic analysis of actuated engineered muscle in vivo and in vitro to show that repeated muscle contraction alters signaling pathways that play key roles in skeletal muscle contractility, adaptation to injury, neurite growth, neuromuscular synapse formation, angiogenesis, and cytoskeletal remodeling. Our study uncovers changes in phosphorylation of several proteins previously unreported in the context of muscle contraction, revealing promising mechanisms for leveraging actuated muscle grafts to restore mobility after volumetric muscle loss.
Collapse
Affiliation(s)
- Erin Rousseau
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Ritu Raman
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| | - Tigist Tamir
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Biological Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Angel Bu
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Shriya Srinivasan
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Naomi Lynch
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Biological Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
English EJ, Samolyk BL, Gaudette GR, Pins GD. Micropatterned fibrin scaffolds increase cardiomyocyte alignment and contractility for the fabrication of engineered myocardial tissue. J Biomed Mater Res A 2023; 111:1309-1321. [PMID: 36932841 PMCID: PMC11128133 DOI: 10.1002/jbm.a.37530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
Cardiovascular disease is the leading cause of death in the United States, which can result in blockage of a coronary artery, triggering a myocardial infarction (MI), scar tissue formation in the myocardium, and ultimately heart failure. Currently, the gold-standard solution for total heart failure is a heart transplantation. An alternative to total-organ transplantation is surgically remodeling the ventricle with the implantation of a cardiac patch. Acellular cardiac patches have previously been investigated using synthetic or decellularized native materials to improve cardiac function. However, a limitation of this strategy is that acellular cardiac patches only reshape the ventricle and do not increase cardiac contractile function. Toward the development of a cardiac patch, our laboratory previously developed a cell-populated composite fibrin scaffold and aligned microthreads to recapitulate the mechanical properties of native myocardium. In this study, we explore micropatterning the surfaces of fibrin gels to mimic anisotropic native tissue architecture and promote cellular alignment of human induced pluripotent stem cell cardiomyocytes (hiPS-CM), which is crucial for increasing scaffold contractile properties. hiPS-CMs seeded on micropatterned surfaces exhibit cellular elongation, distinct sarcomere alignment, and circumferential connexin-43 staining at 14 days of culture, which are necessary for mature contractile properties. Constructs were also subject to electrical stimulation during culture to promote increased contractile properties. After 7 days of stimulation, contractile strains of micropatterned constructs were significantly higher than unpatterned controls. These results suggest that the use of micropatterned topographic cues on fibrin scaffolds may be a promising strategy for creating engineered cardiac tissue.
Collapse
Affiliation(s)
- Elizabeth J. English
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Tessera Therapeutics, Somerville, Massachusetts, USA
| | - Bryanna L. Samolyk
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Glenn R. Gaudette
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Engineering, Boston College, Newton, Massachusetts, USA
| | - George D. Pins
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
9
|
Celikkin N, Presutti D, Maiullari F, Volpi M, Promovych Y, Gizynski K, Dolinska J, Wiśniewska A, Opałło M, Paradiso A, Rinoldi C, Fuoco C, Swieszkowski W, Bearzi C, Rizzi R, Gargioli C, Costantini M. Combining rotary wet-spinning biofabrication and electro-mechanical stimulation for the in vitroproduction of functional myo-substitutes. Biofabrication 2023; 15:045012. [PMID: 37473749 DOI: 10.1088/1758-5090/ace934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
In this work, we present an innovative, high-throughput rotary wet-spinning biofabrication method for manufacturing cellularized constructs composed of highly-aligned hydrogel fibers. The platform is supported by an innovative microfluidic printing head (MPH) bearing a crosslinking bath microtank with a co-axial nozzle placed at the bottom of it for the immediate gelation of extruded core/shell fibers. After a thorough characterization and optimization of the new MPH and the fiber deposition parameters, we demonstrate the suitability of the proposed system for thein vitroengineering of functional myo-substitutes. The samples produced through the described approach were first characterizedin vitroand then used as a substrate to ascertain the effects of electro-mechanical stimulation on myogenic maturation. Of note, we found a characteristic gene expression modulation of fast (MyH1), intermediate (MyH2), and slow (MyH7) twitching myosin heavy chain isoforms, depending on the applied stimulation protocol. This feature should be further investigated in the future to biofabricate engineered myo-substitutes with specific functionalities.
Collapse
Affiliation(s)
- Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Yurii Promovych
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Konrad Gizynski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dolinska
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marcin Opałło
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Chiara Rinoldi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Fuoco
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Rome, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Segrate, Milan, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Rome, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Segrate, Milan, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Nam S, Seo BR, Najibi AJ, McNamara SL, Mooney DJ. Active tissue adhesive activates mechanosensors and prevents muscle atrophy. NATURE MATERIALS 2023; 22:249-259. [PMID: 36357687 PMCID: PMC10411688 DOI: 10.1038/s41563-022-01396-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
While mechanical stimulation is known to regulate a wide range of biological processes at the cellular and tissue levels, its medical use for tissue regeneration and rehabilitation has been limited by the availability of suitable devices. Here we present a mechanically active gel-elastomer-nitinol tissue adhesive (MAGENTA) that generates and delivers muscle-contraction-mimicking stimulation to a target tissue with programmed strength and frequency. MAGENTA consists of a shape memory alloy spring that enables actuation up to 40% strain, and an adhesive that efficiently transmits the actuation to the underlying tissue. MAGENTA activates mechanosensing pathways involving yes-associated protein and myocardin-related transcription factor A, and increases the rate of muscle protein synthesis. Disuse muscles treated with MAGENTA exhibit greater size and weight, and generate higher forces compared to untreated muscles, demonstrating the prevention of atrophy. MAGENTA thus has promising applications in the treatment of muscle atrophy and regenerative medicine.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Stephanie L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
11
|
Azhar M, Wardhani BWK, Renesteen E. The regenerative potential of Pax3/Pax7 on skeletal muscle injury. J Genet Eng Biotechnol 2022; 20:143. [PMID: 36251225 PMCID: PMC9574840 DOI: 10.1186/s43141-022-00429-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/08/2022] [Indexed: 11/30/2022]
Abstract
Background
Skeletal muscle mishaps are the most well-known incidents in society, especially among athletes and the military population. From the various urgency, this accident needs to be cured more quickly. However, the current treatment still has some shortcomings and is less effective. In this case, Paired box 3 and Paired box 7 (Pax3/Pax7) proteins that induce stem cells could potentially be an alternative treatment for skeletal muscle injuries. This paper aimed to analyse the potential treatment of Pax3/Pax7 proteins inducing the stem cell for skeletal muscle injuries. The main body of the abstract We did a narrative review by gathering several scientific journals from several leading platforms like PubMed and Scopus. As common accidents, skeletal muscle disease could be due to workplace and non-workplace causes. The highest risk occurs in the athlete and military environment. The treatment of current skeletal muscle injuries is protection, rest, ice, compression, and elevation (PRICE), non-steroidal anti-inflammatory drugs (NSAIDs), and mechanical stimulation. However, it is considered less effective, especially in NSAIDs, inhibiting myogenic cell proliferation. The current finding indicates that the stem cells have markers known as Pax3/Pax7. The role of both markers in muscle injury, Pax3/Pax7, as transcription factors will induce cell division by H3K4 methylation mechanisms and chromatin modifications that stimulate gene activation. Conclusion Regulation by Pax3/Pax7 factors that affect stem cells and stem cell proliferation is one of the alternative treatments. This regulation can accelerate the healing of injury victims, especially injuries to the skeletal muscles. Finally, after being compared, Pax3/Pax7 induces stem cells to have the potential to be one of the skeletal muscle injury treatments. Keywords Pax3 and Pax7, Pax3/Pax7, Skeletal muscle, Athlete, Stem cells, Cell proliferation, Injuries.
Collapse
Affiliation(s)
- Muhamad Azhar
- Faculty of Military Pharmacy, The Republic of Indonesia Defense University, Bogor, 16810, West Java, Indonesia
| | | | - Editha Renesteen
- Faculty of Military Pharmacy, The Republic of Indonesia Defense University, Bogor, 16810, West Java, Indonesia.
| |
Collapse
|
12
|
Carraro E, Rossi L, Maghin E, Canton M, Piccoli M. 3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect? Front Bioeng Biotechnol 2022; 10:941623. [PMID: 35898644 PMCID: PMC9313593 DOI: 10.3389/fbioe.2022.941623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle is a fundamental tissue of the human body with great plasticity and adaptation to diseases and injuries. Recreating this tissue in vitro helps not only to deepen its functionality, but also to simulate pathophysiological processes. In this review we discuss the generation of human skeletal muscle three-dimensional (3D) models obtained through tissue engineering approaches. First, we present an overview of the most severe myopathies and the two key players involved: the variety of cells composing skeletal muscle tissue and the different components of its extracellular matrix. Then, we discuss the peculiar characteristics among diverse in vitro models with a specific focus on cell sources, scaffold composition and formulations, and fabrication techniques. To conclude, we highlight the efficacy of 3D models in mimicking patient-specific myopathies, deepening muscle disease mechanisms or investigating possible therapeutic effects.
Collapse
Affiliation(s)
- Eugenia Carraro
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Rossi
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Edoardo Maghin
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marcella Canton
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martina Piccoli
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- *Correspondence: Martina Piccoli,
| |
Collapse
|
13
|
Vesga-Castro C, Aldazabal J, Vallejo-Illarramendi A, Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. eLife 2022; 11:e77204. [PMID: 35604384 PMCID: PMC9126583 DOI: 10.7554/elife.77204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Over the last few years, there has been growing interest in measuring the contractile force (CF) of engineered muscle tissues to evaluate their functionality. However, there are still no standards available for selecting the most suitable experimental platform, measuring system, culture protocol, or stimulation patterns. Consequently, the high variability of published data hinders any comparison between different studies. We have identified that cantilever deflection, post deflection, and force transducers are the most commonly used configurations for CF assessment in 2D and 3D models. Additionally, we have discussed the most relevant emerging technologies that would greatly complement CF evaluation with intracellular and localized analysis. This review provides a comprehensive analysis of the most significant advances in CF evaluation and its critical parameters. In order to compare contractile performance across experimental platforms, we have used the specific force (sF, kN/m2), CF normalized to the calculated cross-sectional area (CSA). However, this parameter presents a high variability throughout the different studies, which indicates the need to identify additional parameters and complementary analysis suitable for proper comparison. We propose that future contractility studies in skeletal muscle constructs report detailed information about construct size, contractile area, maturity level, sarcomere length, and, ideally, the tetanus-to-twitch ratio. These studies will hopefully shed light on the relative impact of these variables on muscle force performance of engineered muscle constructs. Prospective advances in muscle tissue engineering, particularly in muscle disease models, will require a joint effort to develop standardized methodologies for assessing CF of engineered muscle tissues.
Collapse
Affiliation(s)
- Camila Vesga-Castro
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Donostia - IIS BiodonostiaSan SebastianSpain
| | - Javier Aldazabal
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
| | - Ainara Vallejo-Illarramendi
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Donostia - IIS BiodonostiaSan SebastianSpain
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation, and UniversitiesMadridSpain
| | - Jacobo Paredes
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
| |
Collapse
|
14
|
Customized bioreactor enables the production of 3D diaphragmatic constructs influencing matrix remodeling and fibroblast overgrowth. NPJ Regen Med 2022; 7:25. [PMID: 35468920 PMCID: PMC9038738 DOI: 10.1038/s41536-022-00222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The production of skeletal muscle constructs useful for replacing large defects in vivo, such as in congenital diaphragmatic hernia (CDH), is still considered a challenge. The standard application of prosthetic material presents major limitations, such as hernia recurrences in a remarkable number of CDH patients. With this work, we developed a tissue engineering approach based on decellularized diaphragmatic muscle and human cells for the in vitro generation of diaphragmatic-like tissues as a proof-of-concept of a new option for the surgical treatment of large diaphragm defects. A customized bioreactor for diaphragmatic muscle was designed to control mechanical stimulation and promote radial stretching during the construct engineering. In vitro tests demonstrated that both ECM remodeling and fibroblast overgrowth were positively influenced by the bioreactor culture. Mechanically stimulated constructs also increased tissue maturation, with the formation of new oriented and aligned muscle fibers. Moreover, after in vivo orthotopic implantation in a surgical CDH mouse model, mechanically stimulated muscles maintained the presence of human cells within myofibers and hernia recurrence did not occur, suggesting the value of this approach for treating diaphragm defects.
Collapse
|
15
|
Abstract
In vitro meat (IVM) is a recent development in the production of sustainable food. The consumer perception of IVM has a strong impact on the commercial success of IVM. Hence this review examines existing studies related to consumer concerns, acceptance and uncertainty of IVM. This will help create better marketing strategies for IVM-producing companies in the future. In addition, IVM production is described in terms of the types of cells and culture conditions employed. The applications of self-organising, scaffolding, and 3D printing techniques to produce IVM are also discussed. As the conditions for IVM production are controlled and can be manipulated, it will be feasible to produce a chemically safe and disease-free meat with improved consumer acceptance on a sustainable basis.
Collapse
|
16
|
Montorsi M, Genchi GG, De Pasquale D, De Simoni G, Sinibaldi E, Ciofani G. Design, Fabrication, and Characterization of a Multimodal Reconfigurable Bioreactor for Bone Tissue Engineering. Biotechnol Bioeng 2022; 119:1965-1979. [PMID: 35383894 PMCID: PMC9324218 DOI: 10.1002/bit.28100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
In the past decades, bone tissue engineering developed and exploited many typologies of bioreactors, which, besides providing proper culture conditions, aimed at integrating those bio‐physical stimulations that cells experience in vivo, to promote osteogenic differentiation. Nevertheless, the highly challenging combination and deployment of many stimulation systems into a single bioreactor led to the generation of several unimodal bioreactors, investigating one or at mostly two of the required biophysical stimuli. These systems miss the physiological mimicry of bone cells environment, and often produced contrasting results, thus making the knowledge of bone mechanotransduction fragmented and often inconsistent. To overcome this issue, in this study we developed a perfusion and electroactive‐vibrational reconfigurable stimulation bioreactor to investigate the differentiation of SaOS‐2 bone‐derived cells, hosting a piezoelectric nanocomposite membrane as cell culture substrate. This multimodal perfusion bioreactor is designed based on a numerical (finite element) model aimed at assessing the possibility to induce membrane nano‐scaled vibrations (with ~12 nm amplitude at a frequency of 939 kHz) during perfusion (featuring 1.46 dyn cm−2 wall shear stress), large enough for inducing a physiologically‐relevant electric output (in the order of 10 mV on average) on the membrane surface. This study explored the effects of different stimuli individually, enabling to switch on one stimulation at a time, and then to combine them to induce a faster bone matrix deposition rate. Biological results demonstrate that the multimodal configuration is the most effective in inducing SaOS‐2 cell differentiation, leading to 20‐fold higher collagen deposition compared to static cultures, and to 1.6‐ and 1.2‐fold higher deposition than the perfused‐ or vibrated‐only cultures. These promising results can provide tissue engineering scientists with a comprehensive and biomimetic stimulation platform for a better understanding of mechanotransduction phenomena beyond cells differentiation.
Collapse
Affiliation(s)
- Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy.,Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Giorgio De Simoni
- CNR, Nanoscience Institute, NEST Laboratory, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Edoardo Sinibaldi
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163, Genova, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| |
Collapse
|
17
|
Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022; 11:1233. [PMID: 35406795 PMCID: PMC8997482 DOI: 10.3390/cells11071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Matthias Schmidt
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Susann Kummer
- Risk Group 4 Pathogens–Stability and Persistence, Biosafety Level-4 Laboratory, Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| |
Collapse
|
18
|
Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional 2D cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, an overview of multi-sensing for Body-on-Chip platforms is given. Finally, one gives the perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
Collapse
Affiliation(s)
- Hanie Kavand
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Rohollah Nasiri
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| |
Collapse
|
19
|
Seo BR, Mooney DJ. Recent and Future Strategies of Mechanotherapy for Tissue Regenerative Rehabilitation. ACS Biomater Sci Eng 2022; 8:4639-4642. [PMID: 35133789 DOI: 10.1021/acsbiomaterials.1c01477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanotherapy, the application of various mechanical forces on injured or diseased tissue, is a viable option for tissue regenerative rehabilitation. Recent advances in tissue engineering (i.e., engineered materials and 3D printing) and soft-robotic technologies have enabled systematic and controlled studies to demonstrate the therapeutic impacts of mechanical stimulation on severely injured tissue. Along with innovation in actuation systems, improvements in analysis methods uncovering cellular and molecular landscapes during tissue regeneration under mechanical loading expand our understanding of how mechanical cues are translated into specific biological responses (i.e., stem cell self-renewal and differentiation, immune responses, etc.). Moving forward, the development of diversified actuation systems that are mechanically tissue friendly, easily scalable, and capable of delivering various modes of loading and monitoring functional biomarkers will facilitate systematic and controlled preclinical and clinical studies. Combining these future actuation systems with single-cell resolution analysis of cellular and molecular markers will enable detailed knowledge of underlying biological responses, and optimization of mechanotherapy protocols for specific tissues/injuries. These advancements will enable diverse mechanotherapy therapies in the future.
Collapse
Affiliation(s)
- Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
21
|
Guan X, Zhou J, Du G, Chen J. Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends Biotechnol 2021; 40:721-734. [PMID: 34887105 DOI: 10.1016/j.tibtech.2021.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022]
Abstract
Muscle stem cells (MuSCs) are essential for the growth, maintenance, and repair of skeletal muscle. In the emerging area of cultured meat, meat products are manufactured with MuSCs using theory and technology from the fields of cell culture, tissue engineering, and food processing. Recently, considerable progress has been made in bioprocessing technologies for MuSCs, including isolation, expansion, differentiation, and tissue building. Here we summarize cutting-edge operational strategies and recently characterized regulatory mechanisms for MuSCs. Furthermore, we discuss their applicability to refining the production process for cultured meat and accelerating its industrialization.
Collapse
Affiliation(s)
- Xin Guan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
22
|
Konuk Tokak E, Çetin Altındal D, Akdere ÖE, Gümüşderelioğlu M. In-vitro effectiveness of poly-β-alanine reinforced poly(3-hydroxybutyrate) fibrous scaffolds for skeletal muscle regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112528. [PMID: 34857307 DOI: 10.1016/j.msec.2021.112528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
In skeletal muscle tissue engineering, success has not been achieved yet, since the properties of the tissue cannot be fully mimicked. The aim of this study is to investigate the potential use of poly-3-hydroxybutyrate (P3HB)/poly-β-alanine (PBA) fibrous tissue scaffolds with piezoelectric properties for skeletal muscle regeneration. Random and aligned P3HB/PBA (5:1) fibrous matrices were prepared by electrospinning with average diameters of 951 ± 153 nm and 891 ± 247 nm, respectively. X-ray diffraction (XRD) analysis showed that PBA reinforcement and aligned orientation of fibers reduced the crystallinity and brittleness of P3HB matrix. While tensile strength and elastic modulus of random fibrous matrices were determined as 3.9 ± 1.0 MPa and 86.2 ± 10.6 MPa, respectively, in the case of aligned fibers they increased to 8.5 ± 1.8 MPa and 378.2 ± 4.2 MPa, respectively. Aligned matrices exhibited a soft and an elastic behaviour with ~70% elongation in similar to the natural tissue. For the first time, d33 piezoelectric modulus of P3HB/PBA matrices were measured as 5 pC/N and 5.3 pC/N, for random and aligned matrices, respectively. Cell culture studies were performed with C2C12 myoblastic cell line. Both of random and aligned P3HB/PBA fibrous matrices supported attachment and proliferation of myoblasts, but cells cultured on aligned fibers formed regular and thick myofibril structures similar to the native muscle tissue. Reverse transcription polymerase chain reaction (RT-qPCR) analysis indicated that MyoD gene was expressed in the cells cultured on both fiber orientation, however, on the aligned fibers significant increase was determined in Myogenin and Myosin Heavy Chain (MHC) gene expressions, which indicate functional tubular structures. The results of RT-qPCR analysis were also supported with immunohistochemistry for myogenic markers. These in vitro studies have shown that piezoelectric P3HB/PBA aligned fibrous scaffolds can successfully mimic skeletal muscle tissue with its superior chemical, morphological, mechanical, and electroactive properties.
Collapse
Affiliation(s)
- Elvan Konuk Tokak
- Nanotechnology and Nanomedicine Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Damla Çetin Altındal
- Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Özge Ekin Akdere
- Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Nanotechnology and Nanomedicine Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey; Bioengineering Division, Hacettepe University, Graduate School of Science and Engineering, Beytepe, Ankara, Turkey.
| |
Collapse
|
23
|
Kronemberger GS, Beatrici A, Dalmônico GML, Rossi AL, Miranda GASC, Boldrini LC, Mauro Granjeiro J, Baptista LS. The hypertrophic cartilage induction influences the building-block capacity of human adipose stem/stromal cell spheroids for biofabrication. Artif Organs 2021; 45:1208-1218. [PMID: 34036603 DOI: 10.1111/aor.14000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022]
Abstract
As an alternative to the classical tissue engineering approach, bottom-up tissue engineering emerges using building blocks in bioassembly technologies. Spheroids can be used as building blocks to reach a highly complex ordered tissue by their fusion (bioassembly), representing the foundation of biofabrication. In this study, we analyzed the biomechanical properties and the fusion capacity of human adipose stem/stromal cell (ASC) we spheroids during an in vitro model of hypertrophic cartilage established by our research group. Hypertrophic induced-ASC spheroids showed a statistically significant higher Young's modulus at weeks 2 (P < .001) and 3 (P < .0005) compared with non-induced. After fusion, non-induced and induced-ASC spheroids increased the contact area and decreased their pairs' total length. At weeks 3 and 5, induced-ASC spheroids did not fuse completely, and the cells migrate preferentially in the fusion contact region. Alizarin red O staining showed the highest intensity of staining in the fused induced-ASC spheroids at week 5, together with intense staining for collagen type I and osteocalcin. Transmission electron microscopy and element content analysis (X-ray Energy Dispersive Spectroscopy) revealed in the fused quartet at week 3 a crystal-like structure. Hypertrophic induction interferes with the intrinsic capacity of spheroids to fuse. The measurements of contact between spheroids during the fusion process, together with the change in viscoelastic profile to the plastic, will impact the establishment of bioassembly protocols using hypertrophic induced-ASC spheroids as building blocks in biofabrication.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Inmetro and Uezo, Duque de Caxias, Brazil
| | - Anderson Beatrici
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Scientific and Technological Metrology Division (Dimci), National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | | | | | - Guilherme A S C Miranda
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Leonardo C Boldrini
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Inmetro and Uezo, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Inmetro and Uezo, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Inmetro and Uezo, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
24
|
Abstract
Abstract
In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored.
Graphic abstract
Collapse
|
25
|
Ng S, Kurisawa M. Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomater 2021; 124:108-129. [PMID: 33472103 DOI: 10.1016/j.actbio.2021.01.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cultured meat has recently achieved mainstream prominence due to the emergence of societal and industrial interest. In contrast to animal-based production of traditional meat, the cultured meat approach entails laboratory cultivation of engineered muscle tissue. However, bioengineers have hitherto engineered tissues to fulfil biomedical endpoints, and have had limited experience in engineering muscle tissue for its post-mortem traits, which broadly govern consumer definitions of meat quality. Furthermore, existing tissue engineering approaches face fundamental challenges in technical feasibility and industrial scalability for cultured meat production. This review discusses how animal-based meat production variables influence meat properties at both the molecular and functional level, and whether current cultured meat approaches recapitulate these properties. In addition, this review considers how conventional meat producers employ exogenous biopolymer-based meat ingredients and processing techniques to mimic desirable meat properties in meat products. Finally, current biomaterial strategies for engineering muscle and adipose tissue are surveyed in the context of emerging constraints that pertain to cultured meat production, such as edibility, sustainability and scalability, and potential areas for integrating biomaterials and food biopolymer approaches to address these constraints are discussed. STATEMENT OF SIGNIFICANCE: Laboratory-grown or cultured meat has gained increasing interest from industry and the public, but currently faces significant impediment to market feasibility. This is due to fundamental knowledge gaps in producing realistic meat tissues via conventional tissue engineering approaches, as well as translational challenges in scaling up these approaches in an efficient, sustainable and high-volume manner. By defining the molecular basis for desirable meat quality attributes, such as taste and texture, and introducing the fundamental roles of food biopolymers in mimicking these properties in conventional meat products, this review aims to bridge the historically disparate fields of meat science and biomaterials engineering in order to inspire potentially synergistic strategies that address some of these challenges.
Collapse
|
26
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
27
|
Shahin-Shamsabadi A, Selvaganapathy PR. Engineering Murine Adipocytes and Skeletal Muscle Cells in Meat-like Constructs Using Self-Assembled Layer-by-Layer Biofabrication: A Platform for Development of Cultivated Meat. Cells Tissues Organs 2021; 211:304-312. [PMID: 33440375 DOI: 10.1159/000511764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
Global meat consumption has been growing on a per capita basis over the past 20 years resulting in ever-increasing devotion of resources in the form of arable land and potable water to animal husbandry which is unsustainable and inefficient. One approach to meet this insatiable demand is to use biofabrication methods used in tissue engineering in order to make skeletal muscle tissue-like constructs known as cultivated meat to be used as a food source. Here, we demonstrate the use of a scaffold-free biofabrication method that forms cell sheets composed of murine adipocytes and skeletal muscle cells and assembles these sheets in parallel to create a 3D meat-like construct without the use of any exogenous materials. This layer-by-layer self-assembly and stacking process is fast (4 days of culture to form sheets and few hours for assembly) and scalable (stable sheets with diameters >3 cm are formed). Tissues formed with only muscle cells were equivalent to lean meat with comparable protein and fat contents (lean beef had 1.5 and 0.9 times protein and fat, respectively, as our constructs) and incorporating adipocyte cells in different ratios to myoblasts and/or treatment with different media cocktails resulted in a 5% (low fat meat) to 35% (high fat meat) increase in the fat content. Not only such constructs can be used as cultivated meat, they can also be used as skeletal muscle models.
Collapse
Affiliation(s)
| | - P Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada, .,Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada,
| |
Collapse
|
28
|
Wang W, Hou Y, Martinez D, Kurniawan D, Chiang WH, Bartolo P. Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers (Basel) 2020; 12:E2946. [PMID: 33317211 PMCID: PMC7764097 DOI: 10.3390/polym12122946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
The use of electrically conductive materials to impart electrical properties to substrates for cell attachment proliferation and differentiation represents an important strategy in the field of tissue engineering. This paper discusses the concept of electro-active structures and their roles in tissue engineering, accelerating cell proliferation and differentiation, consequently leading to tissue regeneration. The most relevant carbon-based materials used to produce electro-active structures are presented, and their main advantages and limitations are discussed in detail. Particular emphasis is put on the electrically conductive property, material synthesis and their applications on tissue engineering. Different technologies, allowing the fabrication of two-dimensional and three-dimensional structures in a controlled way, are also presented. Finally, challenges for future research are highlighted. This review shows that electrical stimulation plays an important role in modulating the growth of different types of cells. As highlighted, carbon nanomaterials, especially graphene and carbon nanotubes, have great potential for fabricating electro-active structures due to their exceptional electrical and surface properties, opening new routes for more efficient tissue engineering approaches.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Yanhao Hou
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Dean Martinez
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| |
Collapse
|
29
|
Jain A, Behera M, Ravi V, Mishra S, Sundaresan NR, Chatterjee K. Recapitulating pathophysiology of skeletal muscle diseases in vitro using primary mouse myoblasts on a nanofibrous platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102341. [PMID: 33227539 DOI: 10.1016/j.nano.2020.102341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023]
Abstract
Tissue engineering approaches are used to mimic the microenvironment of the skeletal muscle in vitro. However, the validation of a bioengineered muscle as a model to study diseases is inadequate. Here, we present polycaprolactone nanofibers as a robust platform that mimics cellular organization and recapitulates critical functions of the myotubes observed in vivo. We isolated myoblasts from mice following a simplified protocol and cultured them on aligned nanofibers. Myotubes grown on aligned nanofibers maintained alignment for 14 days and exhibited a time-dependent increase in levels of p-AKT upon insulin stimulation. Treatment with matrix-assisted integrin inhibitor led to reduction in p-AKT levels, underscoring the critical role of environment on the biological processes. We demonstrate the suitability of myotubes grown on nanofibrous platform to study corticosteroid-induced muscle degeneration. This study, thus, demonstrates that aligned nanofibers retain myotubes in culture for longer duration and recapitulate the functions of skeletal muscle under pathophysiological conditions.
Collapse
Affiliation(s)
- Aditi Jain
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Manisha Behera
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Venkatraman Ravi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sneha Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nagalingam R Sundaresan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India; Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India; Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
30
|
Kargozar S, Singh RK, Kim HW, Baino F. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity? Acta Biomater 2020; 115:1-28. [PMID: 32818612 DOI: 10.1016/j.actbio.2020.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering provides great possibilities to manage tissue damages and injuries in modern medicine. The involvement of hard biocompatible materials in tissue engineering-based therapies for the healing of soft tissue defects has impressively increased over the last few years: in this regard, different types of bioceramics were developed, examined and applied either alone or in combination with polymers to produce composites. Bioactive glasses, carbon nanostructures, and hydroxyapatite nanoparticles are among the most widely-proposed hard materials for treating a broad range of soft tissue damages, from acute and chronic skin wounds to complex injuries of nervous and cardiopulmonary systems. Although being originally developed for use in contact with bone, these substances were also shown to offer excellent key features for repair and regeneration of wounds and "delicate" structures of the body, including improved cell proliferation and differentiation, enhanced angiogenesis, and antibacterial/anti-inflammatory activities. Furthermore, when embedded in a soft matrix, these hard materials can improve the mechanical properties of the implant. They could be applied in various forms and formulations such as fine powders, granules, and micro- or nanofibers. There are some pre-clinical trials in which bioceramics are being utilized for skin wounds; however, some crucial questions should still be addressed before the extensive and safe use of bioceramics in soft tissue healing. For example, defining optimal formulations, dosages, and administration routes remain to be fixed and summarized as standard guidelines in the clinic. This review paper aims at providing a comprehensive picture of the use and potential of bioceramics in treatment, reconstruction, and preservation of soft tissues (skin, cardiovascular and pulmonary systems, peripheral nervous system, gastrointestinal tract, skeletal muscles, and ophthalmic tissues) and critically discusses their pros and cons (e.g., the risk of calcification and ectopic bone formation as well as the local and systemic toxicity) in this regard. STATEMENT OF SIGNIFICANCE: Soft tissues form a big part of the human body and play vital roles in maintaining both structure and function of various organs; however, optimal repair and regeneration of injured soft tissues (e.g., skin, peripheral nerve) still remain a grand challenge in biomedicine. Although polymers were extensively applied to restore the lost or injured soft tissues, the use of bioceramics has the potential to provides new opportunities which are still partially unexplored or at the very beginning. This reviews summarizes the state of the art of bioceramics in this field, highlighting the latest evolutions and the new horizons that can be opened by their use in the context of soft tissue engineering. Existing results and future challenges are discussed in order to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers of the biomaterials community.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 330-714, Republic of Korea.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|
31
|
Zidarič T, Milojević M, Vajda J, Vihar B, Maver U. Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09253-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
33
|
Abstract
Organs-on-chips are broadly defined as microfabricated surfaces or devices designed to engineer cells into microscale tissues with native-like features and then extract physiologically relevant readouts at scale. Because they are generally compatible with patient-derived cells, these technologies can address many of the human relevance limitations of animal models. As a result, organs-on-chips have emerged as a promising new paradigm for patient-specific disease modeling and drug development. Because neuromuscular diseases span a broad range of rare conditions with diverse etiology and complex pathophysiology, they have been especially challenging to model in animals and thus are well suited for organ-on-chip approaches. In this Review, we first briefly summarize the challenges in neuromuscular disease modeling with animal models. Next, we describe a variety of existing organ-on-chip approaches for neuromuscular tissues, including a survey of cell sources for both muscle and nerve, and two- and three-dimensional neuromuscular tissue-engineering techniques. Although researchers have made tremendous advances in modeling neuromuscular diseases on a chip, the remaining challenges in cell sourcing, cell maturity, tissue assembly and readout capabilities limit their integration into the drug development pipeline today. However, as the field advances, models of healthy and diseased neuromuscular tissues on a chip, coupled with animal models, have vast potential as complementary tools for modeling multiple aspects of neuromuscular diseases and identifying new therapeutic strategies. Summary: Modeling neuromuscular diseases is challenging due to their complex etiology and pathophysiology. Here, we review the cell sources and tissue-engineering procedures that are being integrated as emerging neuromuscular disease models.
Collapse
Affiliation(s)
- Jeffrey W Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
34
|
Khodabukus A, Kaza A, Wang J, Prabhu N, Goldstein R, Vaidya VS, Bursac N. Tissue-Engineered Human Myobundle System as a Platform for Evaluation of Skeletal Muscle Injury Biomarkers. Toxicol Sci 2020; 176:124-136. [PMID: 32294208 PMCID: PMC7643536 DOI: 10.1093/toxsci/kfaa049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traditional serum biomarkers used to assess skeletal muscle damage, such as activity of creatine kinase (CK), lack tissue specificity and sensitivity, hindering early detection of drug-induced myopathies. Recently, a novel four-factor skeletal muscle injury panel (MIP) of biomarkers consisting of skeletal troponin I (sTnI), CK mass (CKm), fatty-acid-binding protein 3 (Fabp3), and myosin light chain 3, has been shown to have increased tissue specificity and sensitivity in rodent models of skeletal muscle injury. Here, we evaluated if a previously established model of tissue-engineered functional human skeletal muscle (myobundle) can allow detection of the MIP biomarkers after injury or drug-induced myotoxicity in vitro. We found that concentrations of three MIP biomarkers (sTnI, CKm, and Fabp3) in myobundle culture media significantly increased in response to injury by a known snake venom (notexin). Cerivastatin, a known myotoxic statin, but not pravastatin, induced significant loss of myobundle contractile function, myotube atrophy, and increased release of both traditional and novel biomarkers. In contrast, dexamethasone induced significant loss of myobundle contractile function and myotube atrophy, but decreased the release of both traditional and novel biomarkers. Dexamethasone also increased levels of matrix metalloproteinase-2 and -3 in the culture media which correlated with increased remodeling of myobundle extracellular matrix. In conclusion, this proof-of-concept study demonstrates that tissue-engineered human myobundles can provide an in vitro platform to probe patient-specific drug-induced myotoxicity and performance assessment of novel injury biomarkers to guide preclinical and clinical drug development studies.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-90281
| | - Amulya Kaza
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-90281
| | - Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-90281
| | - Neel Prabhu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-90281
| | | | - Vishal S Vaidya
- Drug Research and Development, Pfizer, Groton, Connecticut 06340
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-90281
| |
Collapse
|
35
|
Ribeiro S, Ribeiro C, Carvalho EO, Tubio CR, Castro N, Pereira N, Correia V, Gomes AC, Lanceros-Méndez S. Magnetically Activated Electroactive Microenvironments for Skeletal Muscle Tissue Regeneration. ACS APPLIED BIO MATERIALS 2020; 3:4239-4252. [DOI: 10.1021/acsabm.0c00315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sylvie Ribeiro
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Estela O. Carvalho
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Carmen R. Tubio
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Nelson Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Nelson Pereira
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centro Algoritmi, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Vitor Correia
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centro Algoritmi, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Andreia C. Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
36
|
Armstrong JPK, Stevens MM. Using Remote Fields for Complex Tissue Engineering. Trends Biotechnol 2020; 38:254-263. [PMID: 31439372 PMCID: PMC7023978 DOI: 10.1016/j.tibtech.2019.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
Abstract
Great strides have been taken towards the in vitro engineering of clinically relevant tissue constructs using the classic triad of cells, materials, and biochemical factors. In this perspective, we highlight ways in which these elements can be manipulated or stimulated using a fourth component: the application of remote fields. This arena has gained great momentum over the last few years, with a recent surge of interest in using magnetic, optical, and acoustic fields to guide the organization of cells, materials, and biochemical factors. We summarize recent developments and trends in this arena and then lay out a series of challenges that we believe, if met, could enable the widespread adoption of remote fields in mainstream tissue engineering.
Collapse
Affiliation(s)
- James P K Armstrong
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
37
|
Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020; 165-166:60-76. [PMID: 31917972 PMCID: PMC7338250 DOI: 10.1016/j.addr.2019.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Modeling of human organs has long been a task for scientists in order to lower the costs of therapeutic development and understand the pathological onset of human disease. For decades, despite marked differences in genetics and etiology, animal models remained the norm for drug discovery and disease modeling. Innovative biofabrication techniques have facilitated the development of organ-on-a-chip technology that has great potential to complement conventional animal models. However, human organ as a whole, more specifically the human heart, is difficult to regenerate in vitro, in terms of its chamber specific orientation and its electrical functional complexity. Recent progress with the development of induced pluripotent stem cell differentiation protocols, made recapitulating the complexity of the human heart possible through the generation of cells representative of atrial & ventricular tissue, the sinoatrial node, atrioventricular node and Purkinje fibers. Current heart-on-a-chip approaches incorporate biological, electrical, mechanical, and topographical cues to facilitate tissue maturation, therefore improving the predictive power for the chamber-specific therapeutic effects targeting adult human. In this review, we will give a summary of current advances in heart-on-a-chip technology and provide a comprehensive outlook on the challenges involved in the development of human physiologically relevant heart-on-a-chip.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin F L Lai
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick Xingze Lu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
38
|
Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 2019; 235:119708. [PMID: 31999964 DOI: 10.1016/j.biomaterials.2019.119708] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Skeletal muscle tissue can be created in vitro by tissue engineering approaches, based on differentiation of muscle stem cells. Several approaches exist and generally result in three dimensional constructs composed of multinucleated myofibers to which we refer as myooids. Engineering methods date back to 3 decades ago and meanwhile a wide range of cell types and scaffold types have been evaluated. Nevertheless, in most approaches, myooids remain very small to allow for diffusion-mediated nutrient supply and waste product removal, typically less than 1 mm thick. One of the shortcomings of current in vitro skeletal muscle organoid development is the lack of a functional vascular structure, thus limiting the size of myooids. This is a challenge which is nowadays applicable to almost all organoid systems. Several approaches to obtain a vascular structure within myooids have been proposed. The purpose of this review is to give a concise overview of these approaches.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - M Gerard
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - H Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
39
|
Rimington RP, Capel AJ, Chaplin KF, Fleming JW, Bandulasena HCH, Bibb RJ, Christie SDR, Lewis MP. Differentiation of Bioengineered Skeletal Muscle within a 3D Printed Perfusion Bioreactor Reduces Atrophic and Inflammatory Gene Expression. ACS Biomater Sci Eng 2019; 5:5525-5538. [PMID: 33464072 DOI: 10.1021/acsbiomaterials.9b00975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bioengineered skeletal muscle tissues benefit from dynamic culture environments which facilitate the appropriate provision of nutrients and removal of cellular waste products. Biologically compatible perfusion systems hold the potential to enhance the physiological biomimicry of in vitro tissues via dynamic culture, in addition to providing technological advances in analytical testing and live cellular imaging for analysis of cellular development. To meet such diverse requirements, perfusion systems require the capacity and adaptability to incorporate multiple cell laden constructs of both monolayer and bioengineered tissues. This work reports perfusion systems produced using additive manufacturing technology for the in situ phenotypic development of myogenic precursor cells in monolayer and bioengineered tissue. Biocompatibility of systems 3D printed using stereolithography (SL), laser sintering (LS), and PolyJet outlined preferential morphological development within both SL and LS devices. When exposed to intermittent perfusion in the monolayer, delayed yet physiologically representative cellular proliferation, MyoD and myogenin transcription of C2C12 cells was evident. Long-term (8 days) intermittent perfusion of monolayer cultures outlined viable morphological and genetic in situ differentiation for the live cellular imaging of myogenic development. Continuous perfusion cultures (13 days) of bioengineered skeletal muscle tissues outlined in situ myogenic differentiation, forming mature multinucleated myotubes. Here, reductions in IL-1β and TNF-α inflammatory cytokines, myostatin, and MuRF-1 atrophic mRNA expression were observed. Comparable myosin heavy chain (MyHC) isoform transcription profiles were evident between conditions; however, total mRNA expression was reduced in perfusion conditions. Decreased transcription of MuRF1 and subsequent reduced ubiquitination of the MyHC protein allude to a decreased requirement for transcription of MyHC isoform transcripts. Together, these data appear to indicate that 3D printed perfusion systems elicit enhanced stability of the culture environment, resulting in a reduced basal requirement for MyHC gene expression within bioengineered skeletal muscle tissue.
Collapse
|
40
|
TONELLO SARAH, BORGHETTI MICHELA, LOPOMO NICOLAF, SERPELLONI MAURO, SARDINI EMILIO, MARZIANO MARIAGRAZIA, SERZANTI MARIALAURA, UBERTI DANIELA, DELL’ERA PATRIZIA, INVERARDI NICOLETTA, GUALANDI CHIARA, FOCARETE MARIALETIZIA. INK-JET PRINTED STRETCHABLE SENSORS FOR CELL MONITORING UNDER MECHANICAL STIMULI: A FEASIBILITY STUDY. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Impedance-based sensors represent a promising tool for cell monitoring to improve current invasive biological assays. A novel research field is represented by measurements performed in dynamic conditions, monitoring cells (e.g., myocytes) for which the mechanical stimulus plays an important role for promoting maturation. In this picture, we applied printed and stretchable electronics principles, developing a system able to evaluate cells adhesion during substrate cyclic strain. Cytocompatible and stretchable sensors were ink-jet printed using carbon-based ink on crosslinked poly([Formula: see text]-caprolactone) electrospun mats. Moreover, a customized stretching device was produced, with a complete user interface to control testing condition, validated in order to correlate impedance changes with myoblasts — i.e., myocytes precursors — adhesion. Overall system sensitivity was evaluated using three different cell concentrations and DAPI imaging assay was performed to confirm myoblast adhesion. Preliminary results showed the possibility to correlate an average increase of impedance magnitude of 1[Formula: see text]k[Formula: see text] every 15,000 cells/cm2 seeded, suggesting the possibility to discriminate between different cell concentrations, with a sensitivity of 80[Formula: see text]m[Formula: see text]/(cells/cm2). In conclusion, the present system might be generalized in the development of future applications, including the differentiation process of cardiac myocytes with the aid of mechanical stimuli.
Collapse
Affiliation(s)
- SARAH TONELLO
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - MICHELA BORGHETTI
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - NICOLA F. LOPOMO
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - MAURO SERPELLONI
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - EMILIO SARDINI
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - MARIAGRAZIA MARZIANO
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - MARIALAURA SERZANTI
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - DANIELA UBERTI
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - PATRIZIA DELL’ERA
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - NICOLETTA INVERARDI
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - CHIARA GUALANDI
- Department of Chemistry “G. Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
| | - MARIA LETIZIA FOCARETE
- Department of Chemistry “G. Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Wang J, Khodabukus A, Rao L, Vandusen K, Abutaleb N, Bursac N. Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 2019; 221:119416. [PMID: 31419653 DOI: 10.1016/j.biomaterials.2019.119416] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
Skeletal muscle is the largest organ of human body with several important roles in everyday movement and metabolic homeostasis. The limited ability of small animal models of muscle disease to accurately predict drug efficacy and toxicity in humans has prompted the development in vitro models of human skeletal muscle that fatefully recapitulate cell and tissue level functions and drug responses. We first review methods for development of three-dimensional engineered muscle tissues and organ-on-a-chip microphysiological systems and discuss their potential utility in drug discovery research and development of new regenerative therapies. Furthermore, we describe strategies to increase the functional maturation of engineered muscle, and motivate the importance of incorporating multiple tissue types on the same chip to model organ cross-talk and generate more predictive drug development platforms. Finally, we review the ability of available in vitro systems to model diseases such as type II diabetes, Duchenne muscular dystrophy, Pompe disease, and dysferlinopathy.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Keith Vandusen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nadia Abutaleb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
42
|
Kankala RK, Zhao J, Liu CG, Song XJ, Yang DY, Zhu K, Wang SB, Zhang YS, Chen AZ. Highly Porous Microcarriers for Minimally Invasive In Situ Skeletal Muscle Cell Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901397. [PMID: 31066236 PMCID: PMC6750270 DOI: 10.1002/smll.201901397] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/12/2019] [Indexed: 05/19/2023]
Abstract
Microscale cell carriers have recently garnered enormous interest in repairing tissue defects by avoiding substantial open surgeries using implants for tissue regeneration. In this study, the highly open porous microspheres (HOPMs) are fabricated using a microfluidic technique for harboring proliferating skeletal myoblasts and evaluating their feasibility toward cell delivery application in situ. These biocompatible HOPMs with particle sizes of 280-370 µm possess open pores of 10-80 µm and interconnected paths. Such structure of the HOPMs conveniently provide a favorable microenvironment, where the cells are closely arranged in elongated shapes with the deposited extracellular matrix, facilitating cell adhesion and proliferation, as well as augmented myogenic differentiation. Furthermore, in vivo results in mice confirm improved cell retention and vascularization, as well as partial myoblast differentiation. These modular cell-laden microcarriers potentially allow for in situ tissue construction after minimally invasive delivery providing a convenient means for regeneration medicine.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Jia Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Xiao-Jie Song
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Da-Yun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, P. R. China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| |
Collapse
|
43
|
Davis BN, Yen R, Prasad V, Truskey GA. Oxygen consumption in human, tissue-engineered myobundles during basal and electrical stimulation conditions. APL Bioeng 2019; 3:026103. [PMID: 31149650 DOI: 10.1063/1.5093417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
During three-dimensional culture of skeletal muscle in vitro, electrical stimulation provides an important cue to enhance skeletal muscle mimicry of the in vivo structure and function. However, increased respiration can cause oxygen transport limitations in these avascular three-dimensional constructs, leading to a hypoxic, necrotic core, or nonuniform cell distributions in larger constructs. To enhance oxygen transport with convection, oxygen concentrations were measured using an optical sensor at the inlet and outlet of an 80 μl fluid volume microphysiological system (MPS) flow chamber containing three-dimensional human skeletal muscle myobundles. Finite element model simulations of convection around myobundles and oxygen metabolism by the myobundles in the 80 μl MPS flow chamber agreed well with the oxygen consumption rate (OCR) at different flow rates, suggesting that under basal conditions, mass transfer limitations were negligible for flow rates above 1.5 μl s-1. To accommodate electrodes for electrical stimulation, a modified 450 μl chamber was constructed. Electrical stimulation for 30 min increased the measured rate of oxygen consumption by the myobundles to slightly over 2 times the basal OCR. Model simulations indicate that mass transfer limitations were significant during electrical stimulation and, in the absence of mass transfer limitations, electrical stimulation induced about a 20-fold increase in the maximum rate of oxygen consumption. The results indicate that simulated exercise conditions increase respiration of skeletal muscle and mass transfer limitations reduce the measured levels of oxygen uptake, which may affect previous studies that model exercise with engineered muscle.
Collapse
Affiliation(s)
- Brittany N Davis
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - Ringo Yen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - Varun Prasad
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA
| |
Collapse
|
44
|
Xiong Z, Li H, Kunwar P, Zhu Y, Ramos R, Mcloughlin S, Winston T, Ma Z, Soman P. Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment. Biofabrication 2019; 11:035005. [DOI: 10.1088/1758-5090/ab0f8b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, Bursac N. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 2019; 198:259-269. [PMID: 30180985 PMCID: PMC6395553 DOI: 10.1016/j.biomaterials.2018.08.058] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 02/08/2023]
Abstract
In vitro models of contractile human skeletal muscle hold promise for use in disease modeling and drug development, but exhibit immature properties compared to native adult muscle. To address this limitation, 3D tissue-engineered human muscles (myobundles) were electrically stimulated using intermittent stimulation regimes at 1 Hz and 10 Hz. Dystrophin in myotubes exhibited mature membrane localization suggesting a relatively advanced starting developmental maturation. One-week stimulation significantly increased myobundle size, sarcomeric protein abundance, calcium transient amplitude (∼2-fold), and tetanic force (∼3-fold) resulting in the highest specific force generation (19.3mN/mm2) reported for engineered human muscles to date. Compared to 1 Hz electrical stimulation, the 10 Hz stimulation protocol resulted in greater myotube hypertrophy and upregulated mTORC1 and ERK1/2 activity. Electrically stimulated myobundles also showed a decrease in fatigue resistance compared to control myobundles without changes in glycolytic or mitochondrial protein levels. Greater glucose consumption and decreased abundance of acetylcarnitine in stimulated myobundles indicated increased glycolytic and fatty acid metabolic flux. Moreover, electrical stimulation of myobundles resulted in a metabolic shift towards longer-chain fatty acid oxidation as evident from increased abundances of medium- and long-chain acylcarnitines. Taken together, our study provides an advanced in vitro model of human skeletal muscle with improved structure, function, maturation, and metabolic flux.
Collapse
Affiliation(s)
| | - Lauran Madden
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Neel K Prabhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
46
|
A Review on Biomaterials for 3D Conductive Scaffolds for Stimulating and Monitoring Cellular Activities. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050961] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the last years, scientific research in biotechnology has been reporting a considerable boost forward due to many advances marked in different technological areas. Researchers working in the field of regenerative medicine, mechanobiology and pharmacology have been constantly looking for non-invasive methods able to track tissue development, monitor biological processes and check effectiveness in treatments. The possibility to control cell cultures and quantify their products represents indeed one of the most promising and exciting hurdles. In this perspective, the use of conductive materials able to map cell activity in a three-dimensional environment represents the most interesting approach. The greatest potential of this strategy relies on the possibility to correlate measurable changes in electrical parameters with specific cell cycle events, without affecting their maturation process and considering a physiological-like setting. Up to now, several conductive materials has been identified and validated as possible solutions in scaffold development, but still few works have stressed the possibility to use conductive scaffolds for non-invasive electrical cell monitoring. In this picture, the main objective of this review was to define the state-of-the-art concerning conductive biomaterials to provide researchers with practical guidelines for developing specific applications addressing cell growth and differentiation monitoring. Therefore, a comprehensive review of all the available conductive biomaterials (polymers, carbon-based, and metals) was given in terms of their main electric characteristics and range of applications.
Collapse
|
47
|
Ahmed S, Chauhan VM, Ghaemmaghami AM, Aylott JW. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett 2019; 41:1-25. [PMID: 30368691 PMCID: PMC6313369 DOI: 10.1007/s10529-018-2611-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Bioreactors hold a lot of promise for tissue engineering and regenerative medicine applications. They have multiple uses including cell cultivation for therapeutic production and for in vitro organ modelling to provide a more physiologically relevant environment for cultures compared to conventional static conditions. Bioreactors are often used in combination with scaffolds as the nutrient flow can enhance oxygen and diffusion throughout the 3D constructs to prevent the formation of necrotic cores. A variety of scaffolds have been fabricated to achieve a structural architecture that mimic native extracellular matrix. Future developments of in vitro models will incorporate the ability to non-invasively monitor the cellular microenvironment to enhance the understanding of in vitro conditions. This review details current advancements in bioreactor and scaffold systems and provides insight on how in vitro models can be augmented for future biomedical applications.
Collapse
Affiliation(s)
- Shehnaz Ahmed
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Veeren M. Chauhan
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, Life Sciences Building, University Park, Nottingham, NG7 2RD UK
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| |
Collapse
|
48
|
Prüller J, Mannhardt I, Eschenhagen T, Zammit PS, Figeac N. Satellite cells delivered in their niche efficiently generate functional myotubes in three-dimensional cell culture. PLoS One 2018; 13:e0202574. [PMID: 30222770 PMCID: PMC6141091 DOI: 10.1371/journal.pone.0202574] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/05/2018] [Indexed: 12/22/2022] Open
Abstract
Biophysical/biochemical cues from the environment contribute to regulation of the regenerative capacity of resident skeletal muscle stem cells called satellites cells. This can be observed in vitro, where muscle cell behaviour is influenced by the particular culture substrates and whether culture is performed in a 2D or 3D environment, with changes including morphology, nuclear shape and cytoskeletal organization. To create a 3D skeletal muscle model we compared collagen I, Fibrin or PEG-Fibrinogen with different sources of murine and human myogenic cells. To generate tension in the 3D scaffold, biomaterials were polymerised between two flexible silicone posts to mimic tendons. This 3D culture system has multiple advantages including being simple, fast to set up and inexpensive, so providing an accessible tool to investigate myogenesis in a 3D environment. Immortalised human and murine myoblast lines, and primary murine satellite cells showed varying degrees of myogenic differentiation when cultured in these biomaterials, with C2 myoblasts in particular forming large multinucleated myotubes in collagen I or Fibrin. However, murine satellite cells retained in their niche on a muscle fibre and embedded in 3D collagen I or Fibrin gels generated aligned, multinucleated and contractile myotubes.
Collapse
Affiliation(s)
- Johanna Prüller
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, England
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Hamburg, Germany
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, England
| | - Nicolas Figeac
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London, England
| |
Collapse
|
49
|
Jackman C, Li H, Bursac N. Long-term contractile activity and thyroid hormone supplementation produce engineered rat myocardium with adult-like structure and function. Acta Biomater 2018; 78:98-110. [PMID: 30086384 DOI: 10.1016/j.actbio.2018.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
The field of cardiac tissue engineering has developed rapidly, but structural and functional immaturity of engineered heart tissues hinder their widespread use. Here, we show that a combination of low-rate (0.2 Hz) contractile activity and thyroid hormone (T3) supplementation significantly promote structural and functional maturation of engineered rat cardiac tissues ("cardiobundles"). The progressive maturation of cardiobundles during first 2 weeks of culture resulted in cell cycle exit and loss of spontaneous activity, which in longer culture yielded decreased contractile function. Maintaining a low level of contractile activity by 0.2 Hz pacing between culture weeks 3 and 5, combined with T3 treatment, yielded significant growth of cardiobundle and myocyte cross-sectional areas (by 68% and 32%, respectively), increased nuclei numbers (by 22%), improved twitch force (by 39%), shortened action potential duration (by 32%), polarized N-cadherin distribution, and switch from immature (slow skeletal) to mature (fast) cardiac troponin I isoform expression. Along with advanced functional output (conduction velocity 53.7 ± 0.8 cm/s, specific force 70.1 ± 5.8 mN/mm2), quantitative ultrastructural analyses revealed similar metrics and abundance of sarcomeres, T-tubules, M-bands, and intercalated disks compared to native age-matched (5-week) and adult (3-month) ventricular myocytes. Unlike 0.2 Hz regime, chronic 1 Hz pacing resulted in significant cardiomyocyte loss and formation of necrotic core despite the use of dynamic culture. Overall, our results demonstrate remarkable ultrastructural and functional maturation of neonatal rat cardiomyocytes in 3D culture and reveal importance of combined biophysical and hormonal inputs for in vitro engineering of adult-like myocardium. STATEMENT OF SIGNIFICANCE Compared to human stem cell-derived cardiomyocytes, neonatal rat ventricular myocytes show advanced maturation state which makes them suitable for in vitro studies of postnatal cardiac development. Still, maturation process from a neonatal to an adult cardiomyocyte has not been recapitulated in rodent cell cultures. Here, we show that low-frequency pacing and thyroid hormone supplementation of 3D engineered neonatal rat cardiac tissues synergistically yield significant increase in cell and tissue volume, robust formation of T-tubules and M-lines, improved sarcomere organization, and faster and more forceful contractions. To the best of our knowledge, 5-week old engineered cardiac tissues described in this study are the first that exhibit both ultrastructural and functional characteristics approaching or matching those of adult ventricular myocardium.
Collapse
|
50
|
Gholobova D, Gerard M, Decroix L, Desender L, Callewaert N, Annaert P, Thorrez L. Human tissue-engineered skeletal muscle: a novel 3D in vitro model for drug disposition and toxicity after intramuscular injection. Sci Rep 2018; 8:12206. [PMID: 30111779 PMCID: PMC6093918 DOI: 10.1038/s41598-018-30123-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/18/2018] [Indexed: 02/08/2023] Open
Abstract
The development of laboratory-grown tissues, referred to as organoids, bio-artificial tissue or tissue-engineered constructs, is clearly expanding. We describe for the first time how engineered human muscles can be applied as a pre- or non-clinical model for intramuscular drug injection to further decrease and complement the use of in vivo animal studies. The human bio-artificial muscle (BAM) is formed in a seven day tissue engineering procedure during which human myoblasts fuse and differentiate to aligned myofibers in an extracellular matrix. The dimensions of the BAM constructs allow for injection and follow-up during several days after injection. A stereotactic setup allows controllable injection at multiple sites in the BAM. We injected several compounds; a dye, a hydrolysable compound, a reducible substrate and a wasp venom toxin. Afterwards, direct reflux, release and metabolism were assessed in the BAM constructs in comparison to 2D cell culture and isolated human muscle strips. Spectrophotometry and luminescence allowed to measure the release of the injected compounds and their metabolites over time. A release profile over 40 hours was observed in the BAM model in contrast to 2D cell culture, showing the capacity of the BAM model to function as a drug depot. We also determined compound toxicity on the BAMs by measuring creatine kinase release in the medium, which increased with increasing toxic insult. Taken together, we show that the BAM is an injectable human 3D cell culture model that can be used to measure release and metabolism of injected compounds in vitro.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - M Gerard
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Decroix
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
- Faculty of Physical Education and Physiotherapy, Department of Human Physiology and Sportsmedicine, Building L, Pleinlaan 2, Brussels, Belgium
| | - L Desender
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - N Callewaert
- AZ Groeninge, President Kennedylaan 4, 8500, Kortrijk, Belgium
| | - P Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N II Herestraat 49 - box 921, 3000, Leuven, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|