1
|
Falkner F, Mayer SA, Thomas B, Zimmermann SO, Walter S, Heimel P, Thiele W, Sleeman JP, Bigdeli AK, Kiss H, Podesser BK, Kneser U, Bergmeister H, Schneider KH. Acellular Human Placenta Small-Diameter Vessels as a Favorable Source of Super-Microsurgical Vascular Replacements: A Proof of Concept. Bioengineering (Basel) 2023; 10:337. [PMID: 36978728 PMCID: PMC10045636 DOI: 10.3390/bioengineering10030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, we aimed to evaluate the human placenta as a source of blood vessels that can be harvested for vascular graft fabrication in the submillimeter range. Our approach included graft modification to prevent thrombotic events. Submillimeter arterial grafts harvested from the human placenta were decellularized and chemically crosslinked to heparin. Graft performance was evaluated using a microsurgical arteriovenous loop (AVL) model in Lewis rats. Specimens were evaluated through hematoxylin-eosin and CD31 staining of histological sections to analyze host cell immigration and vascular remodeling. Graft patency was determined 3 weeks after implantation using a vascular patency test, histology, and micro-computed tomography. A total of 14 human placenta submillimeter vessel grafts were successfully decellularized and implanted into AVLs in rats. An appropriate inner diameter to graft length ratio of 0.81 ± 0.16 mm to 7.72 ± 3.20 mm was achieved in all animals. Grafts were left in situ for a mean of 24 ± 4 days. Decellularized human placental grafts had an overall patency rate of 71% and elicited no apparent immunological responses. Histological staining revealed host cell immigration into the graft and re-endothelialization of the vessel luminal surface. This study demonstrates that decellularized vascular grafts from the human placenta have the potential to serve as super-microsurgical vascular replacements.
Collapse
Affiliation(s)
- Florian Falkner
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Simon Andreas Mayer
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Benjamin Thomas
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Sarah Onon Zimmermann
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Sonja Walter
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Wilko Thiele
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jonathan Paul Sleeman
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute for Biological and Chemical Systems, Karlsruhe Institute of Technology, Campus North, 76131 Karlsruhe, Germany
| | - Amir Khosrow Bigdeli
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Bruno Karl Podesser
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Karl Heinrich Schneider
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
2
|
Lin CH, Hsia K, Su CK, Chen CC, Yeh CC, Ma H, Lu JH. Sonication-Assisted Method for Decellularization of Human Umbilical Artery for Small-Caliber Vascular Tissue Engineering. Polymers (Basel) 2021; 13:1699. [PMID: 34067495 PMCID: PMC8196986 DOI: 10.3390/polym13111699] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/26/2023] Open
Abstract
Decellularized vascular grafts are useful for the construction of biological small-diameter tissue-engineered vascular grafts (≤6 mm). Traditional chemical decellularization requires a long treatment time, which may damage the structure and alter the mechanical properties. Decellularization using sonication is expected to solve this problem. The aim of this study was to develop an effective decellularization method using ultrasound followed by washing. Different power values of sonication at 40 kHz were tested for 2, 4, and 8 h followed by a washing procedure. The efficacy of sonication of decellularized human umbilical artery (sDHUA) was evaluated via DNA content, histological staining, mechanical properties, and biocompatibility. The sDHUAs were further implanted into rats for up to 90 days and magnetic resonance angiography (MRA) was performed for the implanted grafts. The results demonstrated that treatment of human umbilical artery (HUA) by sonication at ultrasonic power of 204 W for 4 h followed by washing for 24 h in 2% SDS buffer could eliminate more than 90% of cells and retain similar mechanical properties of the HUA. Recellularization was assessed by scanning electron microscopy (SEM), which indicated that sDHUA provided niches for human umbilical vein endothelial cells (HUVECs) to reside, indicating in vitro cytocompatibility. Further implantation tests also indicated the fitness of the sonication-treated HUA as a scaffold for small-caliber tissue engineering vascular grafts.
Collapse
Affiliation(s)
- Chih-Hsun Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (C.-H.L.); (K.H.); (C.-K.S.); (H.M.)
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Kai Hsia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (C.-H.L.); (K.H.); (C.-K.S.); (H.M.)
| | - Chih-Kuan Su
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (C.-H.L.); (K.H.); (C.-K.S.); (H.M.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
- Department of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | - Chang-Ching Yeh
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Obstetrics and Gynecology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Nurse-Midwifery and Women Health, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (C.-H.L.); (K.H.); (C.-K.S.); (H.M.)
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Surgery, Medicine & Pediatrics, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Jen-Her Lu
- Section of Pediatric Cardiology, Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Capella-Monsonís H, Zeugolis DI. Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation 2021; 28:e12683. [PMID: 33709410 DOI: 10.1111/xen.12683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Decellularized xenografts are an inherent component of regenerative medicine. Their preserved structure, mechanical integrity and biofunctional composition have well established them in reparative medicine for a diverse range of clinical indications. Nonetheless, their performance is highly influenced by their source (ie species, age, tissue) and processing (ie decellularization, crosslinking, sterilization and preservation), which govern their final characteristics and determine their success or failure for a specific clinical target. In this review, we provide an overview of the different sources and processing methods used in decellularized xenografts fabrication and discuss their effect on the clinical performance of commercially available decellularized xenografts.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
4
|
Cheng J, Li J, Cai Z, Xing Y, Wang C, Guo L, Gu Y. Decellularization of porcine carotid arteries using low-concentration sodium dodecyl sulfate. Int J Artif Organs 2020; 44:497-508. [PMID: 33222583 DOI: 10.1177/0391398820975420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The decellularized scaffold is a promising material for producing tissue-engineered vascular grafts (TEVGs) because of its complex, native-like three-dimensional structure and mechanical properties. Sodium dodecyl sulfate (SDS), one of the most commonly used decellularization reagents, appears to be more effective than other detergents for removing cells from dense tissues. The concentrations of SDS used in previous studies and their effects on decellularization are not consistent. METHODS In this study, porcine carotid arteries were decellularized using detergent-based protocols using Triton X-100 followed by SDS at different concentrations and exposing time. Cell removal efficiency and composition were evaluated by histological analysis, and DNA and collagen quantification. Ultrastructure, mechanical properties, pore size distribution, and in vivo biocompatibility of decellularized arteries were also evaluated. RESULTS The DNA content of decellularized scaffolds treated with 0.3% SDS for 72 h or 0.5% SDS for 48 h was significantly less than that treated with 1% SDS for 30 h. There was a significant loss of soluble collagen after treatment with 1% SDS relative to native arteries. The extensive loss of elastin and glycosaminoglycans was observed in decellularized arteries treated with 0.5% SDS or 1% SDS. The basement membrane and biomechanics were also damaged by these two protocols. Moreover, decellularized scaffolds became more porous with many large pores after treatment with 0.3% SDS. CONCLUSION Low-concentration SDS could be a suitable choice for artery decellularization. Decellularized porcine carotid arteries, prepared using Triton X-100 followed by 0.3% SDS, may be a promising biological scaffold for TEVGs.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Ji Li
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhiwen Cai
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Yuehao Xing
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
5
|
Cai Z, Gu Y, Xiao Y, Wang C, Wang Z. Porcine carotid arteries decellularized with a suitable concentration combination of Triton X-100 and sodium dodecyl sulfate for tissue engineering vascular grafts. Cell Tissue Bank 2020; 22:277-286. [PMID: 33123849 DOI: 10.1007/s10561-020-09876-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Tissue engineering vascular grafts (TEVGs) constructed by decellularized arteries have the potential to replace autologous blood vessels in bypass surgery for patients with cardiovascular disease. There are various methods of decellularization without a standard protocol. Detergents approaches are simple, and easy control of experimental conditions. Non-ionic detergent Triton X-100 and ionic detergent sodium dodecyl sulfate (SDS) are the most commonly used detergents. In this study, we used Triton X-100 and SDS with different concentrations to decellularize porcine carotid arteries. After that, we investigated the acellular effect and mechanical properties of decellularized arteries to find a promising concentration combination for decellularization. Results showed that any detergents' combination would damage the inherent structure of extracellular matrix, and the destruction increased with the increase of detergents' concentration. We concluded that the decellularization approach of 0.5% Triton X-100 for 24 h combined with 0.25% SDS for 72 h could help to obtain decellularized arteries with minimum destruction. This protocol may be able to prepare a clinically suitable vascular scaffold for TEVGs.
Collapse
Affiliation(s)
- Zhiwen Cai
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Zhonggao Wang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
6
|
Removal of an abluminal lining improves decellularization of human umbilical arteries. Sci Rep 2020; 10:10556. [PMID: 32601366 PMCID: PMC7324607 DOI: 10.1038/s41598-020-67417-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
The decellularization of long segments of tubular tissues such as blood vessels may be improved by perfusing decellularization solution into their lumen. Particularly, transmural flow that may be introduced by the perfusion, if any, is beneficial to removing immunogenic cellular components in the vessel wall. When human umbilical arteries (HUAs) were perfused at a transmural pressure, however, very little transmural flow was observed. We hypothesized that a watertight lining at the abluminal surface of HUAs hampered the transmural flow and tested the hypothesis by subjecting the abluminal surface to enzyme digestion. Specifically, a highly viscous collagenase solution was applied onto the surface, thereby restricting the digestion to the surface. The localized digestion resulted in a water-permeable vessel without damaging the vessel wall. The presence of the abluminal lining and its successful removal were also supported by evidence from SEM, TEM, and mechanical testing. The collagenase-treated HUAs were decellularized with 1% sodium dodecyl sulfate (SDS) solution under either rotary agitation, simple perfusion, or pressurized perfusion. Regardless of decellularization conditions, the decellularization of HUAs was significantly enhanced after the abluminal lining removal. Particularly, complete removal of DNA was accomplished in 24 h by pressurized perfusion of the SDS solution. We conclude that the removal of the abluminal lining can improve the perfusion-assisted decellularization.
Collapse
|
7
|
Mallis P, Katsimpoulas M, Kostakis A, Dipresa D, Korossis S, Papapanagiotou A, Kassi E, Stavropoulos-Giokas C, Michalopoulos E. Vitrified Human Umbilical Arteries as Potential Grafts for Vascular Tissue Engineering. Tissue Eng Regen Med 2020; 17:285-299. [PMID: 32170557 PMCID: PMC7260347 DOI: 10.1007/s13770-020-00243-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The development of a biological based small diameter vascular graft (d < 6 mm), that can be properly stored over a long time period at - 196 °C, in order to directly be used to the patients, still remains a challenge. In this study the decellularized umbilical arteries (UAs) where vitrified, evaluated their composition and implanted to a porcine model, thus serving as vascular graft. METHODS Human UAs were decellularized using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and sodium dodecyl sulfate (SDS) detergents. Then, vitrified with vitrification solution 55 (VS55) solution, remained for 6 months in liquid nitrogen and their extracellular matrix composition was compared to conventionally cryopreserved UAs. Additionally, total hydroxyproline, sulphated glycosaminoglycan and DNA content were quantified in all samples. Finally, the vitrified umbilical arteries implanted as common carotid artery interposition graft to a porcine animal model. RESULTS Decellularized and vitrified UAs characterized by proper preservation of extracellular matrix proteins and tissue architecture, whereas conventionally cryopreserved samples exhibited a disorganized structure. Total hydroxyproline content was preserved, although sulphated glycosaminoglycan and DNA contents presented significantly alterations in all samples. Implanted UAs successfully recellularized and remodeled as indicated by the histological analysis. CONCLUSION Decellularized and vitrified UAs retained their structure function properties and can be possible used as an alternative source for readily accessible small diameter vascular grafts.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece.
- Department of Surgery and Surgical Oncology Unit of Red Cross Hospital Athens, 115 17, Athens, Greece.
- Department of Biological Chamistry, School of Medicine, National and Kapodistrian University of Athens, 115 17, Athens, Greece.
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Alkiviadis Kostakis
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Daniele Dipresa
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Sotiris Korossis
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Aggeliki Papapanagiotou
- Department of Surgery and Surgical Oncology Unit of Red Cross Hospital Athens, 115 17, Athens, Greece
- Department of Biological Chamistry, School of Medicine, National and Kapodistrian University of Athens, 115 17, Athens, Greece
| | - Eva Kassi
- Department of Surgery and Surgical Oncology Unit of Red Cross Hospital Athens, 115 17, Athens, Greece
- Department of Biological Chamistry, School of Medicine, National and Kapodistrian University of Athens, 115 17, Athens, Greece
- 1st Department of Internal Medicine, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 115 17, Athens, Greece
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| |
Collapse
|
8
|
Mallis P, Papapanagiotou A, Katsimpoulas M, Kostakis A, Siasos G, Kassi E, Stavropoulos-Giokas C, Michalopoulos E. Efficient differentiation of vascular smooth muscle cells from Wharton's Jelly mesenchymal stromal cells using human platelet lysate: A potential cell source for small blood vessel engineering. World J Stem Cells 2020; 12:203-221. [PMID: 32266052 PMCID: PMC7118289 DOI: 10.4252/wjsc.v12.i3.203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations. Mesenchymal stromal cells (MSCs) derived from the Wharton's Jelly (WJ) tissue can be used as a source for obtaining vascular smooth muscle cells (VSMCs), while the human umbilical arteries (hUAs) can serve as a scaffold for blood vessel engineering. AIM To develop VSMCs from WJ-MSCs utilizing umbilical cord blood platelet lysate. METHODS WJ-MSCs were isolated and expanded until passage (P) 4. WJ-MSCs were properly defined according to the criteria of the International Society for Cell and Gene Therapy. Then, these cells were differentiated into VSMCs with the use of platelet lysate from umbilical cord blood in combination with ascorbic acid, followed by evaluation at the gene and protein levels. Specifically, gene expression profile analysis of VSMCs for ACTA2, MYH11, TGLN, MYOCD, SOX9, NANOG homeobox, OCT4 and GAPDH, was performed. In addition, immunofluorescence against ACTA2 and MYH11 in combination with DAPI staining was also performed in VSMCs. HUAs were decellularized and served as scaffolds for possible repopulation by VSMCs. Histological and biochemical analyses were performed in repopulated hUAs. RESULTS WJ-MSCs exhibited fibroblastic morphology, successfully differentiating into "osteocytes", "adipocytes" and "chondrocytes", and were characterized by positive expression (> 90%) of CD90, CD73 and CD105. In addition, WJ-MSCs were successfully differentiated into VSMCs with the proposed differentiation protocol. VSMCs successfully expressed ACTA2, MYH11, MYOCD, TGLN and SOX9. Immunofluorescence results indicated the expression of ACTA2 and MYH11 in VSMCs. In order to determine the functionality of VSMCs, hUAs were isolated and decellularized. Based on histological analysis, decellularized hUAs were free of any cellular or nuclear materials, while their extracellular matrix retained intact. Then, repopulation of decellularized hUAs with VSMCs was performed for 3 wk. Decellularized hUAs were repopulated efficiently by the VSMCs. Biochemical analysis revealed the increase of total hydroyproline and sGAG contents in repopulated hUAs with VSMCs. Specifically, total hydroxyproline and sGAG content after the 1st, 2nd and 3rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1 μg sGAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups (P < 0.05). CONCLUSION VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, hUAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece.
| | - Aggeliki Papapanagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Alkiviadis Kostakis
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Gerasimos Siasos
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian Univesity of Athens, Athens 15772, Greece
| | | | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
9
|
Use of Aligned Microscale Sacrificial Fibers in Creating Biomimetic, Anisotropic Poly(glycerol sebacate) Scaffolds. Polymers (Basel) 2019; 11:polym11091492. [PMID: 31547419 PMCID: PMC6780144 DOI: 10.3390/polym11091492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/25/2022] Open
Abstract
Poly(glycerol sebacate) (PGS) is a biocompatible, biodegradable elastomer that has been shown promise as a scaffolding material for tissue engineering; it is still challenging, however, to produce anisotropic scaffolds by using a thermoset polymer, such as PGS. Previously, we have used aligned sacrificial poly(vinyl alcohol) (PVA) fibers to help produce an anisotropic PGS membrane; a composite membrane, formed by embedding aligned PVA fibers in PGS prepolymer, was subjected to curing and subsequent PVA removal, resulting in aligned grooves and cylindrical pores on the surface of and within the membrane, respectively. PVA, however, appeared to react with PGS during its curing, altering the mechanical characteristics of PGS. In this study, aligned sacrificial fibers made of polylactide (PLA) were used instead. Specifically, PLA was blend-electrospun with polyethylene oxide to increase the sacrificial fiber diameter, which in turn increased the size of the grooves and cylindrical pores. The resultant PGS membrane was shown to be in vitro cyto-compatible and mechanically anisotropic. The membrane’s Young’s modulus was 1–2 MPa, similar to many soft tissues. In particular, the microscale grooves on the membrane surface were found to be capable of directing cell alignment. Finally, based on the same approach, we fabricated a biomimetic, anisotropic, PGS tubular scaffold. The compliance of the tubular scaffold was comparable to native arteries and in the range of 2% to 8% per 100 mmHg, depending on the orientations of the sacrificial fibers. The anisotropic PGS tubular scaffolds can potentially be used in vascular tissue engineering.
Collapse
|
10
|
Rezaei Topraggaleh T, Rezazadeh Valojerdi M, Montazeri L, Baharvand H. A testis-derived macroporous 3D scaffold as a platform for the generation of mouse testicular organoids. Biomater Sci 2019; 7:1422-1436. [DOI: 10.1039/c8bm01001c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Extracellular matrix-derived scaffolds provide an efficient platform for the generation of organ-like structures.
Collapse
Affiliation(s)
| | | | - Leila Montazeri
- Department of Cell Engineering
- Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
- Iran
| |
Collapse
|
11
|
Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int J Mol Sci 2018; 19:ijms19124117. [PMID: 30567407 PMCID: PMC6321114 DOI: 10.3390/ijms19124117] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering and regenerative medicine involve many different artificial and biologic materials, frequently integrated in composite scaffolds, which can be repopulated with various cell types. One of the most promising scaffolds is decellularized allogeneic extracellular matrix (ECM) then recellularized by autologous or stem cells, in order to develop fully personalized clinical approaches. Decellularization protocols have to efficiently remove immunogenic cellular materials, maintaining the nonimmunogenic ECM, which is endowed with specific inductive/differentiating actions due to its architecture and bioactive factors. In the present paper, we review the available literature about the development of grafts from decellularized human tissues/organs. Human tissues may be obtained not only from surgery but also from cadavers, suggesting possible development of Human Tissue BioBanks from body donation programs. Many human tissues/organs have been decellularized for tissue engineering purposes, such as cartilage, bone, skeletal muscle, tendons, adipose tissue, heart, vessels, lung, dental pulp, intestine, liver, pancreas, kidney, gonads, uterus, childbirth products, cornea, and peripheral nerves. In vitro recellularizations have been reported with various cell types and procedures (seeding, injection, and perfusion). Conversely, studies about in vivo behaviour are poorly represented. Actually, the future challenge will be the development of human grafts to be implanted fully restored in all their structural/functional aspects.
Collapse
|
12
|
Abstract
In this review we present current evidence on the possibility of umbilical cord tissue cryopreservation for subsequent clinical use. Protocols for obtaining umbilical cord-derived vessels, Wharton's jelly-based grafts, multipotent stromal cells, and other biomedical products from cryopreserved umbilical cords are highlighted, and their prospective clinical applications are discussed. Examination of recent literature indicates we should expect high demand for cryopreservation of umbilical cord tissues in the near future.
Collapse
Affiliation(s)
- Irina Arutyunyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Peoples’ Friendship University of Russia, Moscow, Russia
| | - Timur Fatkhudinov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Peoples’ Friendship University of Russia, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
13
|
Alfonso-Garcia A, Haudenschild AK, Marcu L. Label-free assessment of carotid artery biochemical composition using fiber-based fluorescence lifetime imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:4064-4076. [PMID: 30615748 PMCID: PMC6157793 DOI: 10.1364/boe.9.004064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 05/08/2023]
Abstract
Novel diagnostic tools with the ability to monitor variations in biochemical composition and provide benchmark indicators of vascular tissue maturation are needed to create functional tissue replacements. We investigated the ability of fiber-based, label-free multispectral fluorescent lifetime imaging (FLIm) to quantify the anatomical variations in biochemical composition of native carotid arteries and validated these results against biochemical assays. FLIm-derived parameters in spectral band 415-455 nm correlated with tissue collagen content (R2 = 0.64) and cell number (R2 = 0.61) and in spectral band 465-553 nm strongly correlated with elastin content (R2 = 0.89). These results suggest that FLIm holds great potential for assessing vascular tissue maturation and functional properties based on tissue autofluorescence.
Collapse
Affiliation(s)
- Alba Alfonso-Garcia
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., Davis, CA 95616,
USA
- Authors contributed equally to this work
| | - Anne K. Haudenschild
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., Davis, CA 95616,
USA
- Authors contributed equally to this work
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, 451 E. Health Sciences Dr., Davis, CA 95616,
USA
| |
Collapse
|
14
|
Schneider KH, Enayati M, Grasl C, Walter I, Budinsky L, Zebic G, Kaun C, Wagner A, Kratochwill K, Redl H, Teuschl AH, Podesser BK, Bergmeister H. Acellular vascular matrix grafts from human placenta chorion: Impact of ECM preservation on graft characteristics, protein composition and in vivo performance. Biomaterials 2018; 177:14-26. [PMID: 29885585 DOI: 10.1016/j.biomaterials.2018.05.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/18/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023]
Abstract
Small diameter vascular grafts from human placenta, decellularized with either Triton X-100 (Triton) or SDS and crosslinked with heparin were constructed and characterized. Graft biochemical properties, residual DNA, and protein composition were evaluated to compare the effect of the two detergents on graft matrix composition and structural alterations. Biocompatibility was tested in vitro by culturing the grafts with primary human macrophages and in vivo by subcutaneous implantation of graft conduits (n = 7 per group) into the flanks of nude rats. Subsequently, graft performance was evaluated using an aortic implantation model in Sprague Dawley rats (one month, n = 14). In situ graft imaging was performed using MRI angiography. Retrieved specimens were analyzed by electromyography, scanning electron microscopy, histology and immunohistochemistry to evaluate cell migration and the degree of functional tissue remodeling. Both decellularization methods resulted in grafts of excellent biocompatibility in vitro and in vivo, with low immunogenic potential. Proteomic data revealed removal of cytoplasmic proteins with relative enrichment of ECM proteins in decelluarized specimens of both groups. Noteworthy, LC-Mass Spectrometry analysis revealed that 16 proteins were exclusively preserved in Triton decellularized specimens in comparison to SDS-treated specimens. Aortic grafts showed high patency rates, no signs of thrombus formation, aneurysms or rupture. Conduits of both groups revealed tissue-specific cell migration indicative of functional remodeling. This study strongly suggests that decellularized allogenic grafts from the human placenta have the potential to be used as vascular replacement materials. Both detergents produced grafts with low residual immunogenicity and appropriate mechanical properties. Observed differences in graft characteristics due to preservation method had no impact on successful in vivo performance in the rodent model.
Collapse
Affiliation(s)
- Karl H Schneider
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marjan Enayati
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research Medical University of Vienna, Vienna, Austria
| | - Christian Grasl
- Center for Biomedical Research Medical University of Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Ingrid Walter
- Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lubos Budinsky
- Preclinical Imaging Laboratory, Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gabriel Zebic
- Center for Biomedical Research Medical University of Vienna, Vienna, Austria
| | - Christoph Kaun
- Division of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Anja Wagner
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Vienna, Austria
| | - Klaus Kratochwill
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas H Teuschl
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; City of Vienna Competence Team Siganltransduction, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helga Bergmeister
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Center for Biomedical Research Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
15
|
Preservation Strategies that Support the Scale-up and Automation of Tissue Biomanufacturing. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0126-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Rodríguez-Rodríguez VE, Martínez-González B, Quiroga-Garza A, Reyes-Hernández CG, de la Fuente-Villarreal D, de la Garza-Castro O, Guzmán-López S, Elizondo-Omaña RE. Human Umbilical Vessels: Choosing the Optimal Decellularization Method. ASAIO J 2018; 64:575-580. [PMID: 29095734 DOI: 10.1097/mat.0000000000000715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is an increasing demand of small-diameter vascular grafts for treatment of circulatory pathologies. Decellularization offers the possibility of using human blood vessels as scaffolds to create vascular grafts. Umbilical vessels have great potential because of their availability and morphological characteristics. Various decellularization techniques have been used in umbilical vessels, but consensus on which is the most appropriate has not yet been reached. The objective of this review is to analyze the morphological and biomechanical characteristics of decellularized human umbilical arteries and veins with different techniques. Evidence indicates that the umbilical vessels are a viable option to develop small-diameter vascular grafts. Detergents are the agents most often used and with most evidence. However, further studies are needed to accurately analyze the components of the extracellular matrix and biomechanical characteristics, as well as the capacity for recellularization and in vivo functionality.
Collapse
Affiliation(s)
- Victor E Rodríguez-Rodríguez
- From the Human Anatomy Department, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey N.L., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lin CH, Kao YC, Lin YH, Ma H, Tsay RY. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives. Acta Biomater 2016; 46:101-111. [PMID: 27667016 DOI: 10.1016/j.actbio.2016.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 01/15/2023]
Abstract
The theoretical fiber-progressive-engagement model was proposed to describe the pseudoelastic behavior of an artery pre- and post-decellularization treatments. Native porcine arteries were harvested and decellularized with 0.05% trypsin for 12 h. The uniaxial tensile test data were fitted to the fiber-progressive-engagement model proposed herein. The effects of decellularization on the morphology, structural characteristics, and composition of vessel walls were studied. The experimental stress-strain curve was fitted to the model in the longitudinal and circumferential direction, which demonstrated the adequacy of the proposed model (R2>0.99). The initial and turning strains were similar in the longitudinal and circumferential directions in the aorta, suggesting the occurrence of collagen conjugation in both directions. Discrepancies in the initial and turning strain and initial and stiff modulus in both directions in the coronary artery revealed the anisotropic features of this vessel. Decellularization induced a decrease in the initial and turning strains, a slight change in the initial modulus, and a substantial decrease in the stiffness modulus. The decrease in the initial and turning strain can be attributed to the loss of waviness of collagen bundles because of the considerable decrease in elastin and glycosaminoglycan contents. This simple non-linear model can be used to determine the fiber modulus and waviness degree of vascular tissue. Based on these results, this mechanical test can be used as a screening tool for the selection of an optimized decellularization protocol for arterial tissues. STATEMENT OF SIGNIFICANCE Decellularized vascular graft has potential in clinical application, such as coronary artery bypass surgery, peripheral artery bypass surgery or microsurgery. An ideal decellularization protocol requires balance in cell removal efficiency and extracellular matrix preserving. Both biochemical and biomechanical properties are crucial to the success of scaffold in cell seeding and animal study. A comprehensive understanding of the composition, microstructure, and mechanical behavior of the arterial wall is the key to the development of decellularized vascular grafts. For this purpose, we proposed this "Fiber-Progressive-Engagement" model to evaluate the microstructure, composition and mechanical properties of porcine coronary artery. The model provides a new perspective regarding the non-linear behavior of arterial tissue and its decellularized derivatives. It can be widely applied to different types of tissues, as demonstrated in the aorta and coronary artery. This model has several advantages; it provides an improved fit of non-linear curves (R2>0.99), can be used to elucidate the pseudoelastic properties of porcine vascular tissues using the concept of fiber engagement, and can estimate an elastic modulus with greater accuracy (compared to the graphical estimation or calculation by simple linear fittings), as well as to plot typical stress-strain curves.
Collapse
|
18
|
Tuan-Mu HY, Lu PC, Lee PY, Lin CC, Chen CJ, Huang LLH, Lin JH, Hu JJ. Rapid Fabrication of a Cell-Seeded Collagen Gel-Based Tubular Construct that Withstands Arterial Pressure : Rapid Fabrication of a Gel-Based Media Equivalent. Ann Biomed Eng 2016; 44:3384-3397. [PMID: 27216824 DOI: 10.1007/s10439-016-1645-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/07/2016] [Indexed: 11/25/2022]
Abstract
Based on plastically compressed cell-seeded collagen gels, we fabricated a small-diameter tubular construct that withstands arterial pressure without prolonged culture in vitro. Specifically, to mimic the microstructure of vascular media, the cell-seeded collagen gel was uniaxially stretched prior to plastic compression to align collagen fibers and hence cells in the gel. The resulting gel sheet was then wrapped around a custom-made multi-layered braided tube to form aligned tubular constructs whereas the gel sheet prepared similarly but without uniaxial stretching formed control constructs. With the braided tube, fluid in the gel construct was further removed by vacuum suction aiming to consolidate the concentric layers of the construct. The construct was finally treated with transglutaminase. Both SEM and histology confirmed the absence of gaps in the wall of the construct. Particularly, cells in the wall of the aligned tubular construct were circumferentially aligned. The enzyme-mediated crosslinking increased burst pressure of both the constructs significantly; the extent of the increase of burst pressure for the aligned tubular construct was greater than that for the control counterpart. Increasing crosslinking left the compliance of the aligned tubular construct unchanged but reduced that of the control construct. Cells remained viable in transglutaminase-treated plastically compressed gels after 6 days in culture. This study demonstrated that by combining stretch-induced fiber alignment, plastic compression, and enzyme-mediated crosslinking, a cell-seeded collagen gel-based tubular construct with potential to be used as vascular media can be made within 3 days.
Collapse
Affiliation(s)
- Ho-Yi Tuan-Mu
- Department of Biomedical Engineering, National Cheng Kung University, #1 University Road, Tainan, 701, Taiwan
| | - Po-Ching Lu
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
| | - Pei-Yuan Lee
- Department of Biomedical Engineering, National Cheng Kung University, #1 University Road, Tainan, 701, Taiwan
- Orthopedic Department, Showchwan Memorial Hospital, Changhua, Taiwan
| | - Chien-Chih Lin
- Scientific Research Division, Life Science Group, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chun-Jung Chen
- Scientific Research Division, Life Science Group, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Lynn L H Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Horng Lin
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
| | - Jin-Jia Hu
- Department of Biomedical Engineering, National Cheng Kung University, #1 University Road, Tainan, 701, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
19
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|