1
|
Ojha AK, Rajasekaran R, Hansda AK, Singh A, Dutta A, Seesala VS, Das S, Dogra N, Sharma S, Goswami R, Chaudhury K, Dhara S. Biodegradable Multi-layered Silk Fibroin-PCL Stent for the Management of Cervical Atresia: In Vitro Cytocompatibility and Extracellular Matrix Remodeling In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39099-39116. [PMID: 37579196 DOI: 10.1021/acsami.3c06585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Cervical atresia is a rare congenital Müllerian duct anomaly that manifests as the absence or deformed nonfunctional presence of the cervix. Herein, a multi-layered biodegradable stent is fabricated using a homogeneous blend of silk fibroin with polycaprolactone using hexafluoroisopropanol as a common solution. Briefly, a concentric cylinder of 3D honeycomb layer is sandwiched within electrospun sheets for fixing at the cervico-uterine junction to pave the way of cervical reconstruction. An average length of 40 mm with 3 mm diameter is fabricated for the hybrid stent design. SEM evidences an evenly distributed pore architecture of the electrospun layer, and mechanical characterization of stent reveals a tensile strength of 1.7 ± 0.2 MPa, with a Young's modulus of 5.9 ± 0.1 MPa. Physico-chemical characterization confirms the presence of silk fibroin and poly caprolactone within the engineered stent. Following 14 days of pepsin enzymatic degradation, 18% degradation and a contact angle measurement of 97° are observed. In vitro cytocompatibility studies are performed using site-specific primary human cervical squamous, columnar epithelial cells, and human endometrial stromal cells. The study demonstrates non-cytotoxic cells' viability (no significant toxicity), improved cell anchoring, adherence among the stent layers, and proliferation in the 3D microenvironment. Furthermore, in vivo subcutaneous studies in the rodent model indicate that the implanted stent undergoes constructive remodeling, neo-tissue creation, neo-vasculature formation, and re-epithelialization while maintaining patency for 2 months.
Collapse
Affiliation(s)
- Atul Kumar Ojha
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ragavi Rajasekaran
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Armaan Kunwar Hansda
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Apoorva Singh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abir Dutta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Venkata Sundeep Seesala
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Samir Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Nantu Dogra
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunita Sharma
- Institute of Reproductive Medicine, Salt Lake 700106, Kolkata, India
| | - Ritobrata Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
3
|
Jung YM, Park CW, Park JS, Jun JK, Lee SM. Application of Tissue Engineering and Regenerative Medicine in Prelabor Rupture of Membranes: a Review of the Current Evidence. Reprod Sci 2021; 28:1774-1784. [PMID: 33847975 DOI: 10.1007/s43032-021-00525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Preterm prelabor rupture of membranes (PPROM) is the main cause of preterm delivery, resulting in increased perinatal morbidity and mortality. Several techniques have been studied for the healing of ruptured membranes, with some success. Before new techniques using tissue/organ engineering are applied in clinical practice, these techniques must be validated in clinical trials. To address this issue, the objective of this study was to summarize the current literature on interventions to seal or heal the amniotic membranes after PPROM. An electronic search was conducted using the keywords "fetal membranes," "premature rupture," "amnion," "tissue engineering," "fibrin tissue adhesive," "regenerative medicine," "tissue adhesive," "wound healing," and "fetoscopy" through the MEDLINE, Embase, and Cochrane CENTRAL databases, with the limitation of English-language studies. Through a review of the identified studies, it was found that spontaneous healing of the fetal membrane has not been successful. Several efforts have been made to seal membranes before or after rupture using different methods, including amniopatches, collagen, tissue patches, fibrin sealant, mussel-mimetic sealant, engineered cell matrix, and immunological supplements. However, most studies have been conducted in ex vivo or in vivo settings, so the safety and applicability of these techniques to spontaneous rupture of membranes in clinical settings have not been sufficiently tested. Overall, the current evidence is limited regarding the safety and effectiveness of interventions against PPROM.
Collapse
Affiliation(s)
- Young Mi Jung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
4
|
Micheletti T, Eixarch E, Berdun S, Febas G, Mazza E, Borrós S, Gratacos E. Ex-vivo mechanical sealing properties and toxicity of a bioadhesive patch as sealing system for fetal membrane iatrogenic defects. Sci Rep 2020; 10:18608. [PMID: 33122661 PMCID: PMC7596722 DOI: 10.1038/s41598-020-75242-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
Preterm prelabor rupture of membranes (PPROM) is the most frequent complication of fetal surgery. Strategies to seal the membrane defect created by fetoscopy aiming to reduce the occurrence of PPROM have been attempted with little success. The objective of this study was to evaluate the ex-vivo mechanical sealing properties and toxicity of four different bioadhesives integrated in semi-rigid patches for fetal membranes. We performed and ex-vivo study using term human fetal membranes to compare the four integrated patches composed of silicone or silicone-polyurethane combined with dopaminated-hyaluronic acid or hydroxypropyl methylcellulose (HPMC). For mechanical sealing properties, membranes were mounted in a multiaxial inflation device with saline, perforated and sealed with the 4 combinations. We measured bursting pressure and maximum pressure free of leakage (n = 8). For toxicity, an organ culture of membranes sealed with the patches was used to measure pyknotic index (PI) and lactate dehydrogenase (LDH) concentration (n = 5). All bioadhesives achieved appropriate bursting pressures, but only HPMC forms achieved high maximum pressures free of leakage. Concerning toxicity, bioadhesives showed low PI and LDH levels, suggesting no cell toxicity. We conclude that a semi-rigid patch coated with HPMC achieved ex-vivo sealing of iatrogenic defects in fetal membranes with no signs of cell toxicity. These results warrant further research addressing long-term adhesiveness and feasibility as a sealing system for fetoscopy.
Collapse
Affiliation(s)
- Talita Micheletti
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Building Helios 2, Sabino Arana Street, 1, 08028, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisenda Eixarch
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Building Helios 2, Sabino Arana Street, 1, 08028, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain.
| | - Sergio Berdun
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Building Helios 2, Sabino Arana Street, 1, 08028, Barcelona, Spain
| | - Germán Febas
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Edoardo Mazza
- Swiss Federal Institute of Technology, Zurich, Switzerland.,Empa, Materials Science and Technology, Dübendorf, Switzerland
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Eduard Gratacos
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Building Helios 2, Sabino Arana Street, 1, 08028, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
5
|
Abstract
Fetal surgery and fetal therapy involve surgical interventions on the fetus in utero to correct or ameliorate congenital abnormalities and give a developing fetus the best chance at a healthy life. Historical use of biomaterials in fetal surgery has been limited, and most biomaterials used in fetal surgeries today were originally developed for adult or pediatric patients. However, as the field of fetal surgery moves from open surgeries to minimally invasive procedures, many opportunities exist for innovative biomaterials engineers to create materials designed specifically for the unique challenges and opportunities of maternal-fetal surgery. Here, we review biomaterials currently used in clinical fetal surgery as well as promising biomaterials in development for eventual clinical translation. We also highlight unmet challenges in fetal surgery that could particularly benefit from novel biomaterials, including fetal membrane sealing and minimally invasive myelomeningocele defect repair. Finally, we conclude with a discussion of the underdeveloped fetal immune system and opportunities for exploitation with novel immunomodulating biomaterials.
Collapse
Affiliation(s)
- Sally M Winkler
- Department of Bioengineering, University of California, Berkeley, CA, USA. and University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michael R Harrison
- Division of Pediatric Surgery, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Phillip B Messersmith
- Department of Bioengineering, University of California, Berkeley, CA, USA. and Department of Materials Science and Engineering, University of California, Berkeley, CA, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
6
|
Lee JY, Kim H, Ha DH, Shin JC, Kim A, Ko HS, Cho DW. Amnion-Analogous Medical Device for Fetal Membrane Healing: A Preclinical Long-Term Study. Adv Healthc Mater 2018; 7:e1800673. [PMID: 30133182 DOI: 10.1002/adhm.201800673] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Indexed: 01/31/2023]
Abstract
Although recent invasive fetal surgeries have improved fetal outcomes, fetal membrane rupture remains a major complication, leading to premature delivery, thus undermining the complete benefits of such procedures. A biocompatible amnion-analogous medical device (AMED) consisting of polycaprolactone framework and decellularized amniotic membrane (dAM)-derived hydrogel for restoration of amniotic membrane defect is developed using 3D printing technology. Its efficacy on healing iatrogenic fetal membrane defects in vitro is evaluated, showing that the dAM gel contains migratory and proliferative properties. The fetoscope feasibility of the developed AMED is assessed using a pregnant swine model. All animals had successfully recovered from anesthesia and the fetoscopic procedure and maintained a healthy condition until the end of the pregnancy. AMED exhibits superior surgical handling characteristics and is easy to manufacture, nonimmunogenic, biocompatible, and suitable for storage and transport for off-the-shelf use; hence, it can be used in successfully sealing defect sites, thus improving the preservation of the amniotic fluid, which in turn improves fetal survival and development.
Collapse
Affiliation(s)
- Jae Yeon Lee
- Department of Mechanical Engineering; POSTECH; 37673 Pohang Kyungbuk South Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering; POSTECH; 37673 Pohang Kyungbuk South Korea
| | - Dong-Heon Ha
- Department of Mechanical Engineering; POSTECH; 37673 Pohang Kyungbuk South Korea
| | - Jong Chul Shin
- Department of Obstetrics and Gynecology; College of Medicine; Catholic University of Korea; 06591 Seoul South Korea
| | - Ahyoung Kim
- Department of Obstetrics and Gynecology; College of Medicine; Catholic University of Korea; 06591 Seoul South Korea
| | - Hyun Sun Ko
- Department of Obstetrics and Gynecology; College of Medicine; Catholic University of Korea; 06591 Seoul South Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering; POSTECH; 37673 Pohang Kyungbuk South Korea
| |
Collapse
|
7
|
Ricotti L, Fujie T. Thin polymeric films for building biohybrid microrobots. BIOINSPIRATION & BIOMIMETICS 2017; 12:021001. [PMID: 28263945 DOI: 10.1088/1748-3190/aa5e5f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper aims to describe the disruptive potential that polymeric thin films have in the field of biohybrid devices and to review the recent efforts in this area. Thin (thickness < 1 mm) and ultra-thin (thickness < 1 µm) matrices possess a series of intriguing features, such as large surface area/volume ratio, high flexibility, chemical and physical surface tailorability, etc. This enables the fabrication of advanced bio/non-bio interfaces able to efficiently drive cell-material interactions, which are the key for optimizing biohybrid device performances. Thin films can thus represent suitable platforms on which living and artificial elements are coupled, with the aim of exploiting the unique features of living cells/tissues. This may allow to carry out certain tasks, not achievable with fully artificial technologies. In the paper, after a description of the desirable chemical/physical cues to be targeted and of the fabrication, functionalization and characterization procedures to be used for thin and ultra-thin films, the state-of-the-art of biohybrid microrobots based on micro/nano-membranes are described and discussed. The research efforts in this field are rather recent and they focus on: (1) self-beating cells (such as cardiomyocytes) able to induce a relatively large deformation of the underlying substrates, but affected by a limited controllability by external users; (2) skeletal muscle cells, more difficult to engineer in mature and functional contractile tissues, but featured by a higher controllability. In this context, the different materials used and the performances achieved are analyzed. Despite recent interesting advancements and signs of maturity of this research field, important scientific and technological steps are still needed. In the paper some possible future perspectives are described, mainly concerning thin film manipulation and assembly in multilayer 3D systems, new advanced materials to be used for the fabrication of thin films, cell engineering opportunities and modelling/computational efforts.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | | |
Collapse
|
8
|
Pensabene V, Costa L, Terekhov A, Gnecco JS, Wikswo J, Hofmeister W. Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22629-36. [PMID: 27513606 PMCID: PMC5131702 DOI: 10.1021/acsami.6b05754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The basal lamina or basement membrane (BM) is a key physiological system that participates in physicochemical signaling between tissue types. Its formation and function are essential in tissue maintenance, growth, angiogenesis, disease progression, and immunology. In vitro models of the BM (e.g., Boyden and transwell chambers) are common in cell biology and lab-on-a-chip devices where cells require apical and basolateral polarization. Extravasation, intravasation, membrane transport of chemokines, cytokines, chemotaxis of cells, and other key functions are routinely studied in these models. The goal of the present study was to integrate a semipermeable ultrathin polymer membrane with precisely positioned pores of 2 μm diameter in a microfluidic device with apical and basolateral chambers. We selected poly(l-lactic acid) (PLLA), a transparent biocompatible polymer, to prepare the semipermeable ultrathin membranes. The pores were generated by pattern transfer using a three-step method coupling femtosecond laser machining, polymer replication, and spin coating. Each step of the fabrication process was characterized by scanning electron microscopy to investigate reliability of the process and fidelity of pattern transfer. In order to evaluate the compatibility of the fabrication method with organs-on-a-chip technology, porous PLLA membranes were embedded in polydimethylsiloxane (PDMS) microfluidic devices and used to grow human umbilical vein endothelial cells (HUVECS) on top of the membrane with perfusion through the basolateral chamber. Viability of cells, optical transparency of membranes and strong adhesion of PLLA to PDMS were observed, thus confirming the suitability of the prepared membranes for use in organs-on-a-chip devices.
Collapse
Affiliation(s)
- Virginia Pensabene
- Department of Biomedical Engineering; Vanderbilt University, Nashville, TN 37235 USA
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
- School of Medicine, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, LS9 7TF, UK
| | - Lino Costa
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388 USA
| | - Alexander Terekhov
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388 USA
| | - Juan S. Gnecco
- Department of Cellular and Molecular Pathology, Vanderbilt University, Nashville, TN 37235 USA
| | - John Wikswo
- Department of Biomedical Engineering; Vanderbilt University, Nashville, TN 37235 USA
- Vanderbilt Institute for Integrative Biosystems Research and Education; Vanderbilt University, Nashville, TN 37235 USA
- Department of Physics and Astronomy; Vanderbilt University, Nashville, TN 37235 USA
- Department of Molecular Physiology and Biophysics; Vanderbilt University, Nashville, TN 37235 USA
| | - William Hofmeister
- Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388 USA
- Vanderbilt Institute for Integrative Biosystems Research and Education; Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
9
|
Ricotti L, Gori G, Cei D, Costa J, Signore G, Ahluwalia A. Polymeric Microporous Nanofilms as Smart Platforms for in Vitro Assessment of Nanoparticle Translocation and Caco-2 Cell Culture. IEEE Trans Nanobioscience 2016; 15:689-696. [PMID: 27576259 DOI: 10.1109/tnb.2016.2603191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The study of nanomaterial translocation across epithelial barriers is often hindered by the low permeability of transwell membranes to nanoparticles. To address this issue ultra-thin poly(L-lactic acid) nanofilms with zero tortuosity micropores were developed for use in nanoparticle passage tests. In this study we demonstrate that microporous polymeric nanofilms allow a significantly higher passage of silver nanoparticles in comparison with commercial membranes normally used in transwell inserts. A reliable procedure for collecting free-standing nanofilms which enables their manipulation and use in lab-on-chip systems is described. We also demonstrate the cytocompatibility of porous nanofilms and their ability to sustain the adhesion and proliferation of Caco-2 cells. Ultra-thin microporous membranes show promise as low-cost nanomaterial screening tools and may be used as matrices for the development of bioengineered systems for mimicking the intestinal epithelium.
Collapse
|