1
|
Newton MD, Fleischer MM, Matthew HWT, Maerz T. Molecular mapping of articular cartilage CXCR4 expression after ACL injury via a novel small molecule-based probe. Bone 2025; 195:117463. [PMID: 40101879 DOI: 10.1016/j.bone.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Molecular imaging is a powerful modality to spatially resolve molecular changes across tissues, but application to articular cartilage remains limited. CXCR4 is an established marker of chondrocyte hypertrophy and potential therapeutic target for osteoarthritis. The purpose of this study was to develop and apply a CXCR4-targeted, near-infrared fluorescent (NIR) probe to a rat model of post-traumatic osteoarthritis (PTOA). METHODS A CXCR4-targeted, small molecule-based NIR probe ("Cy7-AMD") was synthesized. Sensitivity and specificity of Cy7-AMD to CXCR4 was validated in vitro (HUVECs), and ex vivo (rat osteochondral explants). To induce PTOA, female Lewis rats underwent noninvasive anterior cruciate ligament (ACL) rupture. At 7- and 28-days post-injury, injured/contralateral femora and tibiae were dissected, incubated in Cy7-AMD vs a non-targeting control, and imaged via NIR imaging, as well as conventional and contrast-enhanced micro-computed tomography. Imaging datasets were co-registered, cartilage tissue volumes were segmented, and paired cartilage thickness and NIR signal maps were generated and analyzed for PTOA-relevant changes. RESULTS Compared to a non-targeting control probe, in vitro and ex vivo assays confirm sensitivity and specificity of Cy7-AMD to CXCR4. Flow cytometry confirmed high correspondence between Cy7-AMD- and antibody-based measurement of CXCR4 expression. Cy7-AMD rapidly equilibrated within cartilage, and fluorescent histology confirmed full-thickness penetration. Injured femoral cartilage exhibited heterogeneous CXCR4 expression, with increased signal deviation compared to contralateral femora. Spatial CXCR4 expression patterns correlated to cartilage thickness patterns; high CXCR4 expression at boundaries of low-thickness lesions suggests an association between CXCR4 expression and cartilage loss. CONCLUSIONS Small molecule-based probes are advantageous for mapping spatial patterns of molecular expression in rodent articular cartilage, deepening our understanding of PTOA progression.
Collapse
Affiliation(s)
- Michael D Newton
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place #2278, Ann Arbor, MI 48109, United States of America; Department of Orthopaedic Surgery, Beaumont Hospital, 3811 W 13 Mile Rd, Royal Oak, MI 48073, United States of America; Department of Chemical Engineering, Wayne State University, 5050 Anthony Wayne Dr, Detroit, MI 48202, United States of America
| | - Mackenzie M Fleischer
- Department of Orthopaedic Surgery, Beaumont Hospital, 3811 W 13 Mile Rd, Royal Oak, MI 48073, United States of America
| | - Howard W T Matthew
- Department of Chemical Engineering, Wayne State University, 5050 Anthony Wayne Dr, Detroit, MI 48202, United States of America
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place #2278, Ann Arbor, MI 48109, United States of America; Department of Biomedical Engineering, University of Michigan, Carl A. Gerstacker Building, 2200 Bonisteel Blvd #1107, Ann Arbor, MI 48109, United States of America; Division of Rheumatology, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Dr #5483, Ann Arbor, MI 48109, United States of America.
| |
Collapse
|
2
|
Newton MD, Lammlin L, Gonzalez-Nolde S, Howser S, Smith I, Stasikelis L, Knights AJ, Maerz T. A standardized, open-source, portable model for noninvasive joint injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642661. [PMID: 40161844 PMCID: PMC11952444 DOI: 10.1101/2025.03.11.642661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Preclinical models of osteoarthritis (OA) are crucial for the study of disease mechanisms and for the development of critically-needed disease-modifying therapeutics. While surgical OA models, such as the destabilization of the medial meniscus (DMM), have been the gold standard in the field for decades, noninvasive joint loading-based models have increased in popularity and utility. To facilitate standardization of the noninvasive anterior cruciate ligament rupture (ACLR) model in mice, we present the Mo bile J oint-Injury O perator (MoJO) - an open-source protocol with accompanying fixtures and data, designed for a low-cost, commercially-available, portable uniaxial testing system with a small footprint. We provide 3d-printable fixture designs and a rapid, highly-repeatable ACLR-mediated joint injury protocol that results in the expected post-traumatic osteoarthritis phenotype in male and female C56Bl/6 mice. We then describe the expected mechanical data from the injury procedure and offer various troubleshooting strategies. Finally, we summarize the resultant PTOA phenotype by knee hyperalgesia testing, µCT imaging, flow cytometry, and histological assessment. Increased standardization of this model is a critical aspect of the overall refinement of animal models of OA.
Collapse
|
3
|
Knights AJ, Farrell EC, Ellis OM, Song MJ, Appleton CT, Maerz T. Synovial macrophage diversity and activation of M-CSF signaling in post-traumatic osteoarthritis. eLife 2025; 12:RP93283. [PMID: 39969512 PMCID: PMC11839164 DOI: 10.7554/elife.93283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Synovium is home to immune and stromal cell types that orchestrate inflammation following a joint injury; in particular, macrophages are central protagonists in this process. We sought to define the cellular and temporal dynamics of the synovial immune niche in a mouse model of post-traumatic osteoarthritis (PTOA), and to identify stromal-immune crosstalk mechanisms that coordinate macrophage function and phenotype. We induced PTOA in mice using a non-invasive tibial compression model of anterior cruciate ligament rupture (ACLR). Single-cell RNA-sequencing and flow cytometry were used to assess immune cell populations in healthy (Sham) and injured (7 and 28 days post-ACLR) synovium. Characterization of synovial macrophage polarization states was performed, alongside computational modeling of macrophage differentiation, as well as implicated transcriptional regulators and stromal-immune communication axes. Immune cell types are broadly represented in healthy synovium, but experience drastic expansion and speciation in PTOA, most notably in the macrophage portion. We identified several polarization states of macrophages in synovium following joint injury, underpinned by distinct transcriptomic signatures, and regulated in part by stromal-derived macrophage colony-stimulating factor signaling. The transcription factors Pu.1, Cebpα, Cebpβ, and Jun were predicted to control differentiation of systemically derived monocytes into pro-inflammatory synovial macrophages. In summary, we defined different synovial macrophage subpopulations present in healthy and injured mouse synovium. Nuanced characterization of the distinct functions, origins, and disease kinetics of macrophage subtypes in PTOA will be critical for targeting these highly versatile cells for therapeutic purposes.
Collapse
Affiliation(s)
- Alexander J Knights
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
| | - Easton C Farrell
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Olivia M Ellis
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Michelle J Song
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - C Thomas Appleton
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
- Bone and Joint Institute, Western UniversityLondonCanada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western UniversityLondonCanada
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Internal Medicine – Division of Rheumatology, University of MichiganAnn ArborUnited States
| |
Collapse
|
4
|
Bergman RF, Lammlin L, Junginger L, Farrell E, Goldman S, Darcy R, Rasner C, Obeidat AM, Malfait AM, Miller RE, Maerz T. Sexual dimorphism of the synovial transcriptome underpins greater PTOA disease severity in male mice following joint injury. Osteoarthritis Cartilage 2024; 32:1060-1073. [PMID: 37716404 DOI: 10.1016/j.joca.2023.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease with sex-dependent prevalence and severity in both human and animal models. We sought to elucidate sex differences in synovitis, mechanical sensitization, structural damage, bone remodeling, and the synovial transcriptome in the anterior cruciate ligament rupture (ACLR) mouse model of post-traumatic OA (PTOA). DESIGN Male and female 12-week-old C57/BL6J mice were randomized to Sham or noninvasive ACLR with harvests at 7d or 28d post-ACLR (n = 9 per sex in each group - Sham, 7d ACLR, 28d ACLR). Knee hyperalgesia, mechanical allodynia, and intra-articular matrix metalloproteinase (MMP) activity (via intravital imaging) were measured longitudinally. Trabecular and subchondral bone (SCB) remodeling and osteophyte formation were assessed by µCT. Histological scoring of PTOA, synovitis, and anti-MMP13 immunostaining were performed. NaV1.8-Cre;tdTomato mice were used to document localization and sprouting of nociceptors. Bulk RNA-seq of synovium in Sham, 7d, and 28d post-ACLR, and contralateral joints (n = 6 per group per sex) assessed injury-induced and sex-dependent gene expression. RESULTS Male mice exhibited more severe joint damage at 7d and 28d and more severe synovitis at 28d, accompanied by 19% greater MMP activity, 8% lower knee hyperalgesia threshold, and 43% lower hindpaw withdrawal threshold in injured limbs compared to female injured limbs. Females had injury-induced catabolic responses in trabecular and SCB, whereas males exhibited 133% greater normalized osteophyte volume relative to females and sclerotic remodeling of trabecular and SCB. NaV1.8+ nociceptor sprouting in SCB and medial synovium was induced by injury and comparable between sexes. RNA-seq of synovium demonstrated similar injury-induced transcriptomic programs between the sexes at 7d, but only female mice exhibited a transcriptomic signature indicative of synovial inflammatory resolution by 28d, whereas males had persistent pro-inflammatory, pro-fibrotic, pro-neurogenic, and pro-angiogenic gene expression. CONCLUSION Male mice exhibited more severe overall joint damage and pain behavior after ACLR, which was associated with persistent activation of synovial inflammatory, fibrotic, and neuroangiogenic processes, implicating persistent synovitis in driving sex differences in murine PTOA.
Collapse
Affiliation(s)
- Rachel F Bergman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Lindsey Lammlin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Lucas Junginger
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Easton Farrell
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Sam Goldman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Rose Darcy
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Cody Rasner
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Alia M Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University, Chicago, IL, United States
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University, Chicago, IL, United States
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University, Chicago, IL, United States
| | - Tristan Maerz
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
5
|
Xu L, Kazezian Z, Pitsillides AA, Bull AMJ. A synoptic literature review of animal models for investigating the biomechanics of knee osteoarthritis. Front Bioeng Biotechnol 2024; 12:1408015. [PMID: 39132255 PMCID: PMC11311206 DOI: 10.3389/fbioe.2024.1408015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic disease largely driven by mechanical factors, causing significant health and economic burdens worldwide. Early detection is challenging, making animal models a key tool for studying its onset and mechanically-relevant pathogenesis. This review evaluate current use of preclinical in vivo models and progressive measurement techniques for analysing biomechanical factors in the specific context of the clinical OA phenotypes. It categorizes preclinical in vivo models into naturally occurring, genetically modified, chemically-induced, surgically-induced, and non-invasive types, linking each to clinical phenotypes like chronic pain, inflammation, and mechanical overload. Specifically, we discriminate between mechanical and biological factors, give a new explanation of the mechanical overload OA phenotype and propose that it should be further subcategorized into two subtypes, post-traumatic and chronic overloading OA. This review then summarises the representative models and tools in biomechanical studies of OA. We highlight and identify how to develop a mechanical model without inflammatory sequelae and how to induce OA without significant experimental trauma and so enable the detection of changes indicative of early-stage OA in the absence of such sequelae. We propose that the most popular post-traumatic OA biomechanical models are not representative of all types of mechanical overloading OA and, in particular, identify a deficiency of current rodent models to represent the chronic overloading OA phenotype without requiring intraarticular surgery. We therefore pinpoint well standardized and reproducible chronic overloading models that are being developed to enable the study of early OA changes in non-trauma related, slowly-progressive OA. In particular, non-invasive models (repetitive small compression loading model and exercise model) and an extra-articular surgical model (osteotomy) are attractive ways to present the chronic natural course of primary OA. Use of these models and quantitative mechanical behaviour tools such as gait analysis and non-invasive imaging techniques show great promise in understanding the mechanical aspects of the onset and progression of OA in the context of chronic knee joint overloading. Further development of these models and the advanced characterisation tools will enable better replication of the human chronic overloading OA phenotype and thus facilitate mechanically-driven clinical questions to be answered.
Collapse
Affiliation(s)
- Luyang Xu
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Zepur Kazezian
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Anthony M. J. Bull
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Gardashli M, Baron M, Huang C, Kaplan LD, Meng Z, Kouroupis D, Best TM. Mechanical loading and orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA): a comprehensive review. Front Bioeng Biotechnol 2024; 12:1401207. [PMID: 38978717 PMCID: PMC11228341 DOI: 10.3389/fbioe.2024.1401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The importance of mechanical loading and its relationship to orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA) is beginning to receive attention. This review explores the current efficacy of orthobiologic interventions, notably platelet-rich plasma (PRP), bone marrow aspirate (BMA), and mesenchymal stem/stromal cells (MSCs), in combating PTOA drawing from a comprehensive review of both preclinical animal models and human clinical studies. This review suggests why mechanical joint loading, such as running, might improve outcomes in PTOA management in conjunction with orthiobiologic administration. Accumulating evidence underscores the influence of mechanical loading on chondrocyte behavior and its pivotal role in PTOA pathogenesis. Dynamic loading has been identified as a key factor for optimal articular cartilage (AC) health and function, offering the potential to slow down or even reverse PTOA progression. We hypothesize that integrating the activation of mechanotransduction pathways with orthobiologic treatment strategies may hold a key to mitigating or even preventing PTOA development. Specific loading patterns incorporating exercise and physical activity for optimal joint health remain to be defined, particularly in the clinical setting following joint trauma.
Collapse
Affiliation(s)
- Mahammad Gardashli
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Max Baron
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charles Huang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| |
Collapse
|
7
|
Pratt SJP, Plunkett CM, Kuzu G, Trinh T, Barbara J, Choconta P, Quackenbush D, Huynh T, Smith A, Barnes SW, New J, Pierce J, Walker JR, Mainquist J, King FJ, Elliott J, Hammack S, Decker RS. A high throughput cell stretch device for investigating mechanobiology in vitro. APL Bioeng 2024; 8:026129. [PMID: 38938688 PMCID: PMC11210978 DOI: 10.1063/5.0206852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Mechanobiology is a rapidly advancing field, with growing evidence that mechanical signaling plays key roles in health and disease. To accelerate mechanobiology-based drug discovery, novel in vitro systems are needed that enable mechanical perturbation of cells in a format amenable to high throughput screening. Here, both a mechanical stretch device and 192-well silicone flexible linear stretch plate were designed and fabricated to meet high throughput technology needs for cell stretch-based applications. To demonstrate the utility of the stretch plate in automation and screening, cell dispensing, liquid handling, high content imaging, and high throughput sequencing platforms were employed. Using this system, an assay was developed as a biological validation and proof-of-concept readout for screening. A mechano-transcriptional stretch response was characterized using focused gene expression profiling measured by RNA-mediated oligonucleotide Annealing, Selection, and Ligation with Next-Gen sequencing. Using articular chondrocytes, a gene expression signature containing stretch responsive genes relevant to cartilage homeostasis and disease was identified. The possibility for integration of other stretch sensitive cell types (e.g., cardiovascular, airway, bladder, gut, and musculoskeletal), in combination with alternative phenotypic readouts (e.g., protein expression, proliferation, or spatial alignment), broadens the scope of high throughput stretch and allows for wider adoption by the research community. This high throughput mechanical stress device fills an unmet need in phenotypic screening technology to support drug discovery in mechanobiology-based disease areas.
Collapse
Affiliation(s)
- Stephen J. P. Pratt
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | | | - Guray Kuzu
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Ton Trinh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joshua Barbara
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Paula Choconta
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Doug Quackenbush
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Truc Huynh
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Anders Smith
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - S. Whitney Barnes
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Joel New
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Pierce
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - John R. Walker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - James Mainquist
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Frederick J. King
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Jimmy Elliott
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Scott Hammack
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| | - Rebekah S. Decker
- Novartis, Biomedical Research 10675 John Jay Hopkins Dr, San Diego, California 92121, USA
| |
Collapse
|
8
|
Karjalainen K, Tanska P, Collins KH, Herzog W, Korhonen RK, Moo EK. Independent and combined effects of obesity and traumatic joint injury to the structure and composition of rat knee cartilage. Connect Tissue Res 2024; 65:117-132. [PMID: 38530304 DOI: 10.1080/03008207.2024.2310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by articular cartilage degradation. Risk factors for OA include joint trauma, obesity, and inflammation, each of which can affect joint health independently, but their interaction and the associated consequences of such interaction were largely unexplored. Here, we studied compositional and structural alterations in knee joint cartilages of Sprague-Dawley rats exposed to two OA risk factors: joint injury and diet-induced obesity. Joint injury was imposed by surgical transection of anterior cruciate ligaments (ACLx), and obesity was induced by a high fat/high sucrose diet. Depth-dependent proteoglycan (PG) content and collagen structural network of cartilage were measured from histological sections collected previously in Collins et al.. (2015). We found that ACLx primarily affected the superficial cartilages. Compositionally, ACLx led to reduced PG content in lean animals, but increased PG content in obese rats. Structurally, ACLx caused disorganization of collagenous network in both lean and obese animals through increased collagen orientation in the superficial tissues and a change in the degree of fibrous alignment. However, the cartilage degradation attributed to joint injury and obesity was not necessarily additive when the two risk factors were present simultaneously, particularly for PG content and collagen orientation in the superficial tissues. Interestingly, sham surgeries caused a through-thickness disorganization of collagen network in lean and obese animals. We conclude that the interactions of multiple OA risk factors are complex and their combined effects cannot be understood by superposition principle. Further research is required to elucidate the interactive mechanism between OA subtypes.
Collapse
Affiliation(s)
- Kalle Karjalainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Kelsey H Collins
- Laboratory of Musculoskeletal Crosstalk, Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, USA
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Eng Kuan Moo
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
9
|
Philpott HT, Blackler G, Daniel Klapak J, Pitchers KK, Tomlinson M, Smith N, Viehweger J, Umoh JU, Holdsworth DW, Maerz T, Thomas Appleton C. Effects of risk factors on evoked pain patterns in rat models of experimental knee osteoarthritis. J Orthop Res 2023; 41:2617-2628. [PMID: 37132371 DOI: 10.1002/jor.25593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 01/22/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
Pain experiences in patients with knee osteoarthritis (OA) may be influenced differently by OA risk factors, reducing the translatability of preclinical research into the clinic. Our objective was to contrast evoked pain patterns after exposure to different OA risk factors including acute joint trauma, chronic instability, or obesity/metabolic syndrome using rat models of experimental knee OA. We tested longitudinal patterns of evoked pain behaviors (knee pressure pain threshold and hindpaw withdrawal threshold) in young male rats exposed to different OA-inducing risk factors including (1) nonsurgical joint trauma (impact-induced anterior cruciate ligament (ACL) rupture); (2) surgical joint destabilization (ACL + medial meniscotibial ligament transection); and (3) high fat/sucrose (HFS) diet-induced obesity. Histopathology for synovitis, cartilage damage, and subchondral bone morphology was performed. Pressure pain threshold was reduced (more pain) most, and earlier by joint trauma (Week 4-12) and HFS (Week 8-28) than by joint destabilization (Week 12). Hindpaw withdrawal threshold was reduced transiently after joint trauma (Week 4), with smaller and later reductions after joint destabilization (Week 12), but not with HFS. Synovial inflammation occurred at Week 4 after joint trauma and instability but only coincided with pain behaviors after joint trauma. Cartilage and bone histopathology were most severe after joint destabilization and least severe with HFS. The pattern, intensity, and timing of evoked pain behaviors varied due to OA risk factor exposure and were inconsistently associated with histopathological OA features. These findings may help to explain the challenges with translating preclinical OA pain research to multimorbid clinical OA contexts.
Collapse
Affiliation(s)
- Holly T Philpott
- Faculty of Health Sciences, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Garth Blackler
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Joseph Daniel Klapak
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Kyle K Pitchers
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Madison Tomlinson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Niall Smith
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jaclyn Viehweger
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Joseph U Umoh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Preclinical Imaging Research Centre, Robarts Research Institute, Western University, London, Ontario, Canada
| | - David W Holdsworth
- Bone and Joint Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Preclinical Imaging Research Centre, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Thomas Appleton
- Bone and Joint Institute, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Knights AJ, Farrell EC, Ellis OM, Song MJ, Appleton CT, Maerz T. Synovial macrophage diversity and activation of M-CSF signaling in post-traumatic osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.559514. [PMID: 37873464 PMCID: PMC10592932 DOI: 10.1101/2023.10.03.559514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Objective Synovium is home to immune and stromal cell types that orchestrate inflammation following a joint injury; in particular, macrophages are central protagonists in this process. We sought to define the cellular and temporal dynamics of the synovial immune niche in a mouse model of post-traumatic osteoarthritis (PTOA), and to identify stromal-immune crosstalk mechanisms that coordinate macrophage function and phenotype. Design We induced PTOA in mice using a non-invasive tibial compression model of anterior cruciate ligament rupture (ACLR). Single cell RNA-seq and flow cytometry were used to assess immune cell populations in healthy (Sham) and injured (7d and 28d post-ACLR) synovium. Characterization of synovial macrophage polarization states was performed, alongside computational modeling of macrophage differentiation, as well as implicated transcriptional regulators and stromal-immune communication axes. Results Immune cell types are broadly represented in healthy synovium, but experience drastic expansion and speciation in PTOA, most notably in the macrophage portion. We identified several polarization states of macrophages in synovium following joint injury, underpinned by distinct transcriptomic signatures, and regulated in part by stromal-derived macrophage colony-stimulating factor signaling. The transcription factors Pu.1, Cebpα, Cebpβ, and Jun were predicted to control differentiation of systemically derived monocytes into pro-inflammatory synovial macrophages. Conclusions We defined different synovial macrophage subpopulations present in healthy and injured mouse synovium. Nuanced characterization of the distinct functions, origins, and disease kinetics of macrophage subtypes in PTOA will be critical for targeting these highly versatile cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Easton C. Farrell
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Olivia M. Ellis
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michelle J. Song
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - C. Thomas Appleton
- Department of Physiology and Pharmacology, Western University, London ON, Canada
- Bone and Joint Institute, Western University, London, ON, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine – Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Little D, Amadio PC, Awad HA, Cone SG, Dyment NA, Fisher MB, Huang AH, Koch DW, Kuntz AF, Madi R, McGilvray K, Schnabel LV, Shetye SS, Thomopoulos S, Zhao C, Soslowsky LJ. Preclinical tendon and ligament models: Beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J Orthop Res 2023; 41:2133-2162. [PMID: 37573480 PMCID: PMC10561191 DOI: 10.1002/jor.25678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.
Collapse
Affiliation(s)
- Dianne Little
- Department of Basic Medical Sciences, The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peter C Amadio
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hani A Awad
- Department of Orthopaedics, Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Stephanie G Cone
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University-University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rashad Madi
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Chunfeng Zhao
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Fleischer MM, Hartner SE, Newton MD, Baker KC, Maerz T. Early patellofemoral cartilage and bone pathology in a rat model of noninvasive anterior cruciate ligament rupture. Connect Tissue Res 2023; 64:175-185. [PMID: 36318110 DOI: 10.1080/03008207.2022.2136571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Anterior cruciate ligament rupture (ACLR) is a risk factor for the development of post-traumatic osteoarthritis (PTOA). While PTOA in the tibiofemoral joint compartment is well-characterized, very little is known about pathology in the patellofemoral compartment after ACL injury. Here, we evaluated the extent to which ACLR induces early patellofemoral joint damage in a rat model. METHODS Adult female Lewis rats were randomized to noninvasive ACLR or Sham. Two weeks post-injury, contrast-enhanced micro-computed tomography (µCT) of femoral and patellar cartilage was performed using 20% v/v ioxaglate. Morphometric parameters of femoral trochlear and patellar cartilage, subchondral bone, and trabecular bone were derived from µCT. Sagittal Safranin-O/Fast-Green-stained histologic sections were graded using the OARSI score in a blinded fashion. RESULTS Cartilage and bone remodelling consistent with an early PTOA phenotype were observed in both femoral trochleas and patellae. ACLR caused osteophyte formation of the patella and pathology in the superficial zone of articular cartilage, including surface fibrillation, fissures, increased cellularity, and abnormal chondrocyte clustering. There were significant increases in thickness of patellar and trochlear cartilage. Loss of subchondral bone thickness, bone volume fraction, and tissue mineral density, as well as changes to patellar and trochlear trabecular microarchitecture, were indicative of catabolic bone remodelling. Several injury-induced changes, including increased cartilage thickness and trabecular spacing and decreased trabecular number were more severe in the patella compared to the trochlea. CONCLUSION The patellofemoral joint develops mild but evident pathology in the early period following ACL rupture, extending the utility of this model to the study of patellofemoral PTOA.
Collapse
Affiliation(s)
| | | | - Michael D Newton
- Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, MI, USA
| | - Kevin C Baker
- Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, MI, USA
- Bone & Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Christiansen BA, Chan DD, van der Meulen MCH, Maerz T. Small-Animal Compression Models of Osteoarthritis. Methods Mol Biol 2023; 2598:345-356. [PMID: 36355304 PMCID: PMC10521326 DOI: 10.1007/978-1-0716-2839-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The utility of nonsurgical, mechanical compression-based joint injury models to study osteoarthritis pathogenesis and treatments is increasing. Joint injury may be induced via cyclic compression loading or acute overloading to induce anterior cruciate ligament rupture. Models utilizing mechanical testing systems are highly repeatable, require little expertise, and result in a predictable onset of osteoarthritis-like pathology on a rapidly progressing timeline. In this chapter, we describe the procedures and equipment needed to perform mechanical compression-induced initiation of osteoarthritis in mice and rats.
Collapse
Affiliation(s)
- Blaine A Christiansen
- University of California Davis Health, Department of Orthopaedic Surgery, Sacramento, CA, USA.
| | - Deva D Chan
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN, USA
| | - Marjolein C H van der Meulen
- Cornell University, Meinig School of Biomedical Engineering and Sibley School of Mechanical & Aerospace Engineering, Ithaca, NY, USA
| | - Tristan Maerz
- University of Michigan, Departments of Orthopaedic Surgery and Biomedical Engineering, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Comprehensive dynamic and kinematic analysis of the rodent hindlimb during over ground walking. Sci Rep 2022; 12:19725. [PMID: 36385108 PMCID: PMC9668918 DOI: 10.1038/s41598-022-20288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
The rat hindlimb is a frequently utilized pre-clinical model system to evaluate injuries and pathologies impacting the hindlimbs. These studies have demonstrated the translational potential of this model but have typically focused on the force generating capacity of target muscles as the primary evaluative outcome. Historically, human studies investigating extremity injuries and pathologies have utilized biomechanical analysis to better understand the impact of injury and extent of recovery. In this study, we expand that full biomechanical workup to a rat model in order to characterize the spatiotemporal parameters, ground reaction forces, 3-D joint kinematics, 3-D joint kinetics, and energetics of gait in healthy rats. We report data on each of these metrics that meets or exceeds the standards set by the current literature and are the first to report on all these metrics in a single set of animals. The methodology and findings presented in this study have significant implications for the development and clinical application of the improved regenerative therapeutics and rehabilitative therapies required for durable and complete functional recovery from extremity traumas, as well as other musculoskeletal pathologies.
Collapse
|
15
|
Cardona-Ramirez S, Cook JL, Stoker AM, Ma R. Small laboratory animal models of anterior cruciate ligament reconstruction. J Orthop Res 2022; 40:1967-1980. [PMID: 35689508 DOI: 10.1002/jor.25395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/19/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) injuries are common knee ligament injuries. While generally successful, ACL reconstruction that uses a tendon graft to stabilize the knee is still associated with a notable percentage of failures and long-term morbidities. Preclinical research that uses small laboratory species (i.e., mice, rats, and rabbits) to model ACL reconstruction are important to evaluate factors that can impact graft incorporation or posttraumatic osteoarthritis after ACL reconstruction. Small animal ACL reconstruction models are also used for proof-of-concept studies for the development of emerging biological strategies aimed at improving ACL reconstruction healing. The objective of this review is to provide an overview on the use of common small animal laboratory species to model ACL reconstruction. The review includes a discussion on comparative knee anatomy, technical considerations including types of tendon grafts employed amongst the small laboratory species (i.e., mice, rats, and rabbits), and common laboratory evaluative methods used to study healing and outcomes after ACL reconstruction in small laboratory animals. The review will also highlight common research questions addressed with small animal models of ACL reconstruction.
Collapse
Affiliation(s)
- Sebastian Cardona-Ramirez
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| | - Richard Ma
- Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
16
|
Maerz T, Newton MD, Fleischer M, Hartner SE, Gawronski K, Junginger L, Baker KC. Traumatic joint injury induces acute catabolic bone turnover concurrent with articular cartilage damage in a rat model of posttraumatic osteoarthritis. J Orthop Res 2021; 39:1965-1976. [PMID: 33146410 DOI: 10.1002/jor.24903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/18/2020] [Accepted: 10/31/2020] [Indexed: 02/04/2023]
Abstract
Assess acute alterations in bone turnover, microstructure, and histomorphometry following noninvasive anterior cruciate ligament rupture (ACLR). Twelve female Lewis rats were randomized to receive noninvasive ACLR or Sham loading (n = 6/group). In vivo μCT was performed at 3, 7, 10, and 14 days postinjury to quantify compartment-dependent subchondral (SCB) and epiphyseal trabecular bone remodeling. Near-infrared (NIR) molecular imaging was used to measure in vivo bone anabolism (800 CW BoneTag) and catabolism (Cat K 680 FAST). Metaphyseal bone remodeling and articular cartilage morphology was quantified using ex vivo μCT and contrast-enhanced µCT, respectively. Calcein-based dynamic histomorphometry was used to quantify bone formation. OARSI scoring was used to assess joint degeneration, and osteoclast number was quantified on TRAP stained-sections. ACLR induced acute catabolic bone remodeling in subchondral, epiphyseal, and metaphyseal compartments. Thinning of medial femoral condyle (MFC) SCB was observed as early as 7 days postinjury, while lateral femoral condyles (LFCs) exhibited SCB gains. Trabecular thinning was observed in MFC epiphyseal bone, with minimal changes to LFC. NIR imaging demonstrated immediate and sustained reduction of bone anabolism (~15%-20%), and a ~32% increase in bone catabolism at 14 days, compared to contralateral limbs. These findings were corroborated by reduced bone formation rate and increased osteoclast numbers, observed histologically. ACLR-injured femora had significantly elevated OARSI score, cartilage thickness, and cartilage surface deviation. ACL rupture induces immediate and sustained reduction of bone anabolism and overactivation of bone catabolism, with mild-to-moderate articular cartilage damage at 14 days postinjury.
Collapse
Affiliation(s)
- Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael D Newton
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan, USA
| | | | - Samantha E Hartner
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan, USA
| | - Karissa Gawronski
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Lucas Junginger
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin C Baker
- Orthopaedic Research Laboratory, Beaumont Health, Royal Oak, Michigan, USA
- Department of Orthopaedic Surgery, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| |
Collapse
|
17
|
Oláh T, Michaelis JC, Cai X, Cucchiarini M, Madry H. Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part II: Small animals. Ann Anat 2020; 234:151630. [PMID: 33129976 DOI: 10.1016/j.aanat.2020.151630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Small animal models are critical to model the complex disease mechanisms affecting a functional joint leading to articular cartilage disorders. They are advantageous for several reasons and significantly contributed to the understanding of the mechanisms of cartilage diseases among which osteoarthritis. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant anatomical structural and functional characteristics of the knee (stifle) joints of the major small animal species, including mice, rats, guinea pigs, and rabbits compared with humans. Specific characteristics of each species, including kinematical gait parameters are provided and compared with the human situation. When placed in a proper context respecting their challenges and limitations, small animal models are important and appropriate models for articular cartilage disorders.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
18
|
Newton MD, Junginger L, Maerz T. Automated MicroCT-based bone and articular cartilage analysis using iterative shape averaging and atlas-based registration. Bone 2020; 137:115417. [PMID: 32416288 DOI: 10.1016/j.bone.2020.115417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/02/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023]
Abstract
Micro-computed tomography (μCT) and contrast-enhanced μCT are important tools for preclinical analysis of bone and articular cartilage (AC). Quantitative data from these modalities is highly dependent on the accuracy of tissue segmentations, which are often obtained via time-consuming manual contouring and are prone to inter- and intra-observer variability. Automated segmentation strategies could mitigate these issues, but few such approaches have been described in the context of μCT. Here, we validated a fully-automated strategy for bone and AC segmentation based on registration of an average tissue atlas. Femora from healthy and arthritic rats underwent μCT scanning, and epiphyseal trabecular bone and AC volumes were manually contoured by an expert. Average tissue atlases composed of 1, 3, 5, 10 and 20 pre-contoured training images (n = 10 atlases/group) were generated using iterative shape averaging and registered onto unknown images via affine and non-rigid registration. Atlas-based and expert-defined volumes for bone and AC were compared in terms of shape-based similarity metrics, as well as morphometric and densitometric parameters. Our results demonstrate that atlas-based registrations were capable of highly accurate and consistent segmentation. Atlases built from as few as 3 training images had no incidence of mal-registration and exhibited improved incidence of accurate registration, and higher sensitivity and specificity compared to atlases built from only one training image. Atlas-based segmentation of bone and AC from μCT images is a robust and accurate alternative to manual tissue segmentation, enabling faster, more consistent segmentation of pre-clinical datasets.
Collapse
Affiliation(s)
- Michael D Newton
- Orthopaedic Research Laboratories, Beaumont Health, Royal Oak, MI, United States of America
| | - Lucas Junginger
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
19
|
Jacobs BY, Allen KD. Factors affecting the reliability of behavioral assessments for rodent osteoarthritis models. Lab Anim 2020; 54:317-329. [PMID: 31431137 PMCID: PMC7830740 DOI: 10.1177/0023677219867715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The translational value of osteoarthritis (OA) models is often debated because numerous studies have shown that animal models frequently fail to predict the efficacy of therapies in humans. In part, this failing may be due to the paucity of preclinical studies that include behavioral assessments in their metrics. Behavioral assessments of animal OA models can provide valuable data on the pain and disability associated with disease-sequelae of significant clinical relevance. Clinical definitions of efficacy for OA therapeutics often center on their palliative effects. Thus, the widespread inclusion of behaviors indicative of pain and disability in preclinical animal studies may contribute to greater success identifying clinically relevant interventions. Unfortunately, studies that include behavioral assays still frequently encounter pitfalls in assay selection, protocol consistency, and data/methods transparency. Targeted selection of behavioral assays, with consideration of the array of clinical OA phenotypes and the limitations of individual behavioral assays, is necessary to identify clinically relevant outcomes in OA animal models appropriately. Furthermore, to facilitate accurate comparisons across research groups and studies, it is necessary to improve the transparency of methods. Finally, establishing agreed-upon and clear definitions of behavioral data will reduce the convolution of data both within and between studies. Improvement in these areas is critical to the continued benefit of preclinical animal studies as translationally relevant data in OA research. As such, this review highlights the current state of behavioral analyses in preclinical OA models.
Collapse
Affiliation(s)
- Brittany Y Jacobs
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Zhang X, Deng XH, Song Z, Croen B, Carballo CB, Album Z, Zhang Y, Bhandari R, Rodeo SA. Matrix Metalloproteinase Inhibition With Doxycycline Affects the Progression of Posttraumatic Osteoarthritis After Anterior Cruciate Ligament Rupture: Evaluation in a New Nonsurgical Murine ACL Rupture Model. Am J Sports Med 2020; 48:143-152. [PMID: 31756130 DOI: 10.1177/0363546519887158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Doxycycline has broad-spectrum activity as a matrix metalloproteinase (MMP) inhibitor and thus could reduce the progression of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament (ACL) rupture. HYPOTHESIS Doxycycline would inhibit progression of PTOA in a murine ACL rupture model. STUDY DESIGN Controlled laboratory study. METHODS For the in vitro study, cadaveric C57BL/6 male mice knees (N = 108) were used for the development of a nonsurgical ACL rupture model. For the in vivo study, 24 C57BL/6 male mice then underwent ACL rupture with our manual procedure and were divided into 4 groups: untreated control; doxycycline, 10 mg/kg/d; doxycycline, 50 mg/kg/d; and doxycycline, 100 mg/kg/d. Doxycycline was administered in drinking water beginning immediately after ACL rupture. Radiographic imaging and paw prints were evaluated at 3, 7, 14, and 28 days. The foot length and toe spread were analyzed as measures of function. Histology and MMP-13 immunohistochemistry were done at 4 weeks. RESULTS Radiographs demonstrated anterior tibial subluxation and meniscal extrusion after ACL rupture, confirming knee joint instability without fractures. Statistically significant differences in gait were found between the intact and experimental groups. Histologic examination demonstrated cartilage damage, meniscal tears, and mild osteoarthritis after ACL rupture, similar to what occurs in human patients. Hypertrophy of the posterior horn of the medial and lateral meniscus was found, and tears of the posterior horn of the menisci were common. All doxycycline groups had a lower score than the untreated control group, indicating less cartilage damage. The posterior tibia of the untreated group had the most cartilage damage as compared with the 3 doxycycline groups, with a significant difference between the untreated and 50-mg/kg/d doxycycline groups, suggesting that the latter dose may protect against proteoglycan loss and decrease the progression of osteoarthritis. The nondoxycycline group had the highest synovial inflammation score among all groups, indicating that doxycycline has an inhibitory effect on synovitis. There was significantly lower MMP-13 expression on the tibia in the doxycycline-treated groups, with a positive correlation between doxycycline concentration and MMP-13 inhibition. CONCLUSION Modulation of MMP-13 activity by doxycycline treatment may offer a novel biological pathway to decrease the progression of PTOA after ACL rupture. CLINICAL RELEVANCE Doxycycline is an approved, readily available drug with infrequent side effects of photosensitivity and gastrointestinal symptoms. Future clinical trials could evaluate doxycycline to reduce or prevent progressive cartilage damage after ACL rupture.
Collapse
Affiliation(s)
- Xueying Zhang
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA.,Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Hua Deng
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Zhe Song
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Brett Croen
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Camila B Carballo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Zoe Album
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Ying Zhang
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Reyna Bhandari
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
21
|
Cope P, Ourradi K, Li Y, Sharif M. Models of osteoarthritis: the good, the bad and the promising. Osteoarthritis Cartilage 2019; 27:230-239. [PMID: 30391394 PMCID: PMC6350005 DOI: 10.1016/j.joca.2018.09.016] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative disease of diarthrodial joints most commonly affecting people over the age of forty. The causes of OA are still unknown and there is much debate in the literature as to the exact sequence of events that trigger the onset of the heterogeneous disease we recognise as OA. There is currently no consensus model for OA that naturally reflects human disease. Existing ex-vivo models do not incorporate the important inter-tissue communication between joint components required for disease progression and differences in size, anatomy, histology and biomechanics between different animal models makes translation to the human model very difficult. This narrative review highlights the advantages and disadvantages of the current models used to study OA. It discusses the challenges of producing a more reliable OA-model and proposes a direction for the development of a consensus model that reflects the natural environment of human OA. We suggest that a human osteochondral plug-based model may overcome many of the fundamental limitations associated with animal and in-vitro models based on isolated cells. Such a model will also provide a platform for the development and testing of targeted treatment and validation of novel OA markers directly on human tissues.
Collapse
Affiliation(s)
| | | | | | - M. Sharif
- Address correspondence and reprint requests to: M. Sharif, Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Learning and Research Building level 2, Southmead Hospital, Bristol, BS10 5NB, UK. Tel: 44-117-414-7926.
| |
Collapse
|
22
|
Maerz T, Sherman E, Newton M, Yilmaz A, Kumar P, Graham SF, Baker KC. Metabolomic serum profiling after ACL injury in rats: A pilot study implicating inflammation and immune dysregulation in post-traumatic osteoarthritis. J Orthop Res 2018; 36:1969-1979. [PMID: 29315787 DOI: 10.1002/jor.23854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/24/2017] [Indexed: 02/04/2023]
Abstract
ACL rupture is a major risk factor for post-traumatic osteoarthritis (PTOA) development. Little information exists on acute systemic metabolic indicators of disease development. Thirty-six female Lewis rats were randomized to Control or noninvasive anterior cruciate ligament rupture (ACLR) and to three post-injury time points: 72 h, 4 weeks, 10 weeks (n = 6). Serum was collected and analyzed by 1 H nuclear magnetic resonance (NMR) spectroscopy and combined direct injection and liquid chromatography (LC)-mass spectrometry (MS)/MS (DI-MS). Univariate and multivariate statistics were used to analyze metabolomic data, and predictive biomarker models were analyzed by receiver operating characteristic (ROC) analysis. Topological pathway analysis was used to identify perturbed pathways. Two hundred twenty-two metabolites were identified by 1 H NMR and DI-MS. Differences in the serum metabolome between ACLR and Control were dominated by medium- and long-chain acylcarnitine species. Further, decreases in several tryptophan metabolites were either found to be significantly different in univariate analysis or to play important contributory roles to multivariate model separation. In addition to acylcarnitines and tryptophan metabolites, glycine, carnosine, and D-mannose were found to differentiate ACLR from Control. Glycine, 9-hexadecenoylcarnitine, trans-2-Dodecenoylcarnitine, linoelaidyl carnitine, hydroxypropionylcarnitine, and D-Mannose were identified as biomarkers with high area under ROC curve values and high predictive accuracies. Our analysis provides new information regarding the potential contribution of inflammatory processes and immune dysregulation to the onset and progression of PTOA following ACL injury. As these processes have most commonly been associated with inflammatory arthropathies, larger-scale studies elucidating their involvement in PTOA development and progression are necessary. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1969-1979, 2018.
Collapse
Affiliation(s)
- Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan.,Beaumont Research Institute, Orthopaedic Research Laboratories, Royal Oak, Michigan
| | - Eric Sherman
- Beaumont Research Institute, Metabolomics Division, OB/GYN, Royal Oak, Michigan
| | - Michael Newton
- Beaumont Research Institute, Orthopaedic Research Laboratories, Royal Oak, Michigan
| | - Ali Yilmaz
- Beaumont Research Institute, Metabolomics Division, OB/GYN, Royal Oak, Michigan
| | - Praveen Kumar
- Beaumont Research Institute, Metabolomics Division, OB/GYN, Royal Oak, Michigan
| | - Stewart F Graham
- Beaumont Research Institute, Metabolomics Division, OB/GYN, Royal Oak, Michigan
| | - Kevin C Baker
- Beaumont Research Institute, Orthopaedic Research Laboratories, Royal Oak, Michigan
| |
Collapse
|
23
|
Britzman D, Igah I, Eftaxiopoulou T, Macdonald W, Bull AMJ. Tibial Osteotomy as a Mechanical Model of Primary Osteoarthritis in Rats. Sci Rep 2018; 8:5132. [PMID: 29572481 PMCID: PMC5865111 DOI: 10.1038/s41598-018-23405-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
This study has presented the first purely biomechanical surgical model of osteoarthritis (OA) in rats, which could be more representative of the human primary disease than intra-articular techniques published previously. A surgical tibial osteotomy (TO) was used to induce degenerative cartilage changes in the medial knee of Sprague-Dawley rats. The presence of osteoarthritic changes in the medial knee compartment of the operated animals was evaluated histologically and through analysis of serum carboxy-terminal telepeptides of type II collagen (CTX-II). In-vivo biomechanical analyses were carried out using a musculoskeletal model of the rat hindlimb to evaluate the loading conditions in the knee pre and post-surgically. Qualitative and quantitative medial cartilage degeneration consistent with OA was found in the knees of the operated animals alongside elevated CTX-II levels and increased tibial compressive loading. The potential avoidance of joint inflammation post-surgically, the maintenance of internal joint biomechanics and the ability to quantify the alterations in joint loading should make this model of OA a better candidate for modeling primary forms of the disease in humans.
Collapse
Affiliation(s)
- David Britzman
- Department of Bioengineering, Imperial College London, South Kensington, SW7 2AZ, UK.
| | - Ibidumo Igah
- Department of Bioengineering, Imperial College London, South Kensington, SW7 2AZ, UK
| | | | - Warren Macdonald
- Department of Bioengineering, Imperial College London, South Kensington, SW7 2AZ, UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, South Kensington, SW7 2AZ, UK
| |
Collapse
|
24
|
Zhang L, Guan T, Qi J, Zhang S, Zhou X, Liu Y, Fu S. A model of anterior cruciate ligament injury in cynomolgus monkeys developed via arthroscopic surgery. Exp Ther Med 2018; 15:2239-2246. [PMID: 29456631 PMCID: PMC5795381 DOI: 10.3892/etm.2018.5722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022] Open
Abstract
The anterior cruciate ligament (ACL) is an important structure that maintains the stability of knee joints. Animal models of ACL injury are helpful to explore its underlying mechanisms, and strategies for prevention, treatment and rehabilitation. Therefore, the aim of the present study was to develop an efficient model of ACL injury in cynomolgus monkeys via arthroscopic techniques. In the present study, 18 cynomolgus monkeys were randomly divided into a model group (n=6), a sham operation group (n=6) and a blank control group (n=6). One-quarter of the ACL was removed under arthroscopy in the model group. In the sham operation group, only arthroscopic exploration was performed as a control. In the blank control group, monkeys were housed under the same conditions for the same length of time. Magnetic resonance imaging examination was performed pre- and post-operatively, as well as measurements of the circumference of the thigh and calf, and of the maximum flexion degree of the knee. Anterior drawer test, Lachman test and pivot-shift tests were also performed. The results revealed that the injured side of the knees in the model group became unstable, as determined from evaluation of the physical tests. In conclusion, based on these findings, the modeling method of ACL injury was effective, and may contribute to the associated research concerning ACL injury.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopedics, The Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Taiyuan Guan
- Department of Orthopedics, The Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ji Qi
- Department of Orthopedics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shaoqun Zhang
- Department of Orthopedics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xin Zhou
- Department of Orthopedics, The Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yang Liu
- Department of Orthopedics, The Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shijie Fu
- Department of Orthopedics, The Affiliated T.C.M Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
25
|
Zhang L, Qi J, Zeng Y, Zhang S, Fu S, Zhou X, Ping R, Li Y. Proprioceptive Changes in Bilateral Knee Joints Following Unilateral Anterior Cruciate Ligament Injury in Cynomolgus Monkeys. Med Sci Monit 2018; 24:105-113. [PMID: 29305572 PMCID: PMC5767072 DOI: 10.12659/msm.905160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/16/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The anterior cruciate ligament (ACL) is one of the most important structures maintaining stability of knee joints, and the proprioception of the ACL plays a key role in it. If the ACL is injured in the unilateral knee joint, it changes nerve electrophysiology, morphology, and quantity of the proprioceptors in the bilateral ACL. The aim of this study was to explore the proprioceptive changes in the bilateral knee joints following unilateral ACL injury, and to provide a theoretical foundation and ideas for clinical treatment. MATERIAL AND METHODS Nine normal cynomolgus monkeys were chosen and used to developed a model of unilateral ACL injury, and 3 monkeys without modeling were used as blank control. At the 4th, 8th, and 12th weeks, the changes in ACL nerves were inspected using electrophysiology [somatosensory evoked potentials (SEPs) and motor nerve conduction velocity (MCV)], and the changes of morphology and quantity of the proprioceptors in ACL were observed and measured under gold chloride staining. RESULTS On the injured and contralateral knee joints, the incubations were extended and the amplitudes were decreased over time. In addition, with the extension of time, the total number of proprioceptors in the ACL decreased, and the variable number of proprioceptors in the ACL increased. CONCLUSIONS ACL injury leads to attenuation of proprioception on the injured side, and also leads to the attenuation of proprioception on the contralateral side, and there is a tendency could get worse over time.
Collapse
Affiliation(s)
- Lei Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Ji Qi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yan Zeng
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Shaoqun Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Shijie Fu
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Xin Zhou
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Ruiyue Ping
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China
| | - Yikai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
26
|
Blaker CL, Little CB, Clarke EC. Joint loads resulting in ACL rupture: Effects of age, sex, and body mass on injury load and mode of failure in a mouse model. J Orthop Res 2017; 35:1754-1763. [PMID: 27601010 DOI: 10.1002/jor.23418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/29/2016] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) tears are a common knee injury with a known but poorly understood association with secondary joint injuries and post-traumatic osteoarthritis (OA). Female sex and age are known risk factors for ACL injury but these variables are rarely explored in mouse models of injury. This study aimed to further characterize a non-surgical ACL injury model to determine its clinical relevance across a wider range of mouse specifications. Cadaveric and anesthetized C57BL/6 mice (9-52 weeks of age) underwent joint loading to investigate the effects of age, sex, and body mass on ACL injury mechanisms. The ACL injury load (whole joint load required to rupture the ACL) was measured from force-displacement data, and mode of failure was assessed using micro-dissection and histology. ACL injury load was found to increase with body mass and age (p < 0.001) but age was not significant when controlling for mass. Sex had no effect. In contrast, the mode of ACL failure varied with both age and sex groups. Avulsion fractures (complete or mixed with mid-substance tears) were common in all age groups but the proportion of mixed and mid-substance failures increased with age. Females were more likely than males to have a major avulsion relative to a mid-substance tear (p < 0.01). This data compliments studies in human cadaveric knees, and provides a basis for determining the severity of joint injury relative to a major ACL tear in mice, and for selecting joint loading conditions in future experiments using this model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1754-1763, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Kolling Institute, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
27
|
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2016; 24:1918-1927. [PMID: 27349462 DOI: 10.1016/j.joca.2016.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Post-traumatic osteoarthritis (PTOA) is commonly studied using animal models. Surgical ACL transection is an established model, but noninvasive models may mimic human injury more closely. The purpose of this study was to quantify and compare changes in 3D articular cartilage (AC) morphology following noninvasive ACL rupture and surgical ACL transection. METHODS Thirty-six rats were randomized to uninjured control, noninvasive ACL rupture (Rupture), and surgical ACL transection (Transection), and 4 and 10 week time points (n = 6 per group). Contrast-enhanced micro-computed tomography (CE-μCT) was employed for AC imaging. Femoral and tibial AC were segmented and converted into thickness maps. Compartmental and sub-compartmental AC thickness and surface roughness (Sa) were computed. OARSI histologic scoring was performed. RESULTS In both injury groups, zones of adjacent thickening and thinning were evident on the medial femoral condyle, along with general thickening and roughening of femoral and tibial AC. The posterior tibia exhibited drastic thickening and surface degeneration, and this was worse in Transection. Both injury groups had increased AC thickness and Sa compared to Control at both time points, and Transection exhibited significantly higher Sa in every tibial compartment compared to Rupture. Histologic score was elevated in both groups, and the medial femur exhibited the most severe histologic degeneration. CONCLUSIONS This is the first 3D quantification of preclinical AC remodeling after ACL injury. Both injury models induced similar changes in AC morphology, but Transection exhibited higher tibial Sa and a greater degree of posterior tibial degeneration. We conclude that AC degeneration is a time-, compartment-, and injury-dependent cascade.
Collapse
|
28
|
Ramme AJ, Lendhey M, Raya JG, Kirsch T, Kennedy OD. A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis. Osteoarthritis Cartilage 2016; 24:1776-1785. [PMID: 27235904 DOI: 10.1016/j.joca.2016.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Subchondral microdamage may play an important role in post-traumatic osteoarthritis (PTOA) development following anterior cruciate ligament (ACL) rupture. It remains unknown whether this injury mechanism causes subchondral microdamage, or whether its repair occurs by targeted osteoclast-mediated remodeling. If so these events may represent a mechanism by which subchondral bone is involved in PTOA. Our objective was to test the hypothesis that subchondral microdamage occurs, and is co-localized with remodeling, in a novel rat model of ACL rupture. DESIGN We developed a novel non-invasive rat animal model for ACL rupture and subchondral microdamage generation. By inducing ACL rupture noninvasively rather than surgically, this more closely mimics the clinical injury. MicroCT, MRI and histological methods were used to measure microstructural changes, ligament damage, and cellular/matrix degeneration, respectively. RESULTS We reproducibly generated ACL rupture without damage to other soft joint tissues. Immediately after injury, increased microdamage was found in the postero-medial aspect of the tibia. Microstructural parameters showed increased resorption at 2 weeks, which returned to baseline. Dynamic histomorphometry showed increased calcein label uptake in the same region at 4 and 8 weeks. Chondrocyte death and protease activity in cartilage was also noted, however whether this was directly linked to subchondral changes is not yet known. Similarly, cartilage scoring showed degradation at 4 and 8 weeks post-injury. CONCLUSIONS This study shows that our novel model can be used to study subchondral microdamage after ACL-rupture, and its association with localized remodeling. Cartilage degeneration, on a similar time-scale to other models, is also a feature of this system.
Collapse
Affiliation(s)
- A J Ramme
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA.
| | - M Lendhey
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA.
| | - J G Raya
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | - T Kirsch
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA.
| | - O D Kennedy
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA; Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, New York, NY, USA.
| |
Collapse
|
29
|
Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 2016; 11:19. [PMID: 26837951 PMCID: PMC4738796 DOI: 10.1186/s13018-016-0346-5] [Citation(s) in RCA: 372] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is one of the most commonly occurring forms of arthritis in the world today. It is a debilitating chronic illness causing pain and immense discomfort to the affected individual. Significant research is currently ongoing to understand its pathophysiology and develop successful treatment regimens based on this knowledge. Animal models have played a key role in achieving this goal. Animal models currently used to study osteoarthritis can be classified based on the etiology under investigation, primary osteoarthritis, and post-traumatic osteoarthritis, to better clarify the relationship between these models and the pathogenesis of the disease. Non-invasive animal models have shown significant promise in understanding early osteoarthritic changes. Imaging modalities play a pivotal role in understanding the pathogenesis of OA and the correlation with pain. These imaging studies would also allow in vivo surveillance of the disease as a function of time in the animal model. This review summarizes the current understanding of the disease pathogenesis, invasive and non-invasive animal models, imaging modalities, and pain assessment techniques in the animals.
Collapse
Affiliation(s)
- Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA. .,Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA. .,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|