1
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
2
|
In Silico Study of the Mechanisms Underlying the Action of the Snake Natriuretic-Like Peptide Lebetin 2 during Cardiac Ischemia. Toxins (Basel) 2022; 14:toxins14110787. [PMID: 36422961 PMCID: PMC9699598 DOI: 10.3390/toxins14110787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Lebetin 2 (L2), a natriuretic-like peptide (NP), exerts potent cardioprotection in myocardial infarction (MI), with stronger effects than B-type natriuretic peptide (BNP). To determine the molecular mechanisms underlying its cardioprotection effect, we used molecular modeling, molecular docking and molecular dynamics (MD) simulation to describe the binding mode, key interaction residues as well as mechanistic insights into L2 interaction with NP receptors (NPRs). L2 binding affinity was determined for human, rat, mouse and chicken NPRs, and the stability of receptor-ligand complexes ascertained during 100 ns-long MD simulations. We found that L2 exhibited higher affinity for all human NPRs compared to BNP, with a rank preference for NPR-A > NPR-C > NPR-B. Moreover, L2 affinity for human NPR-A and NPR-C was higher in other species. Both docking and MD studies revealed that the NPR-C-L2 interaction was stronger in all species compared to BNP. Due to its higher affinity to human receptors, L2 could be used as a therapeutic approach in MI patients. Moreover, the stronger interaction of L2 with NPR-C could highlight a new L2 signaling pathway that would explain its additional effects during cardiac ischemia. Thus, L2 is a promising candidate for drug design toward novel compounds with high potency, affinity and stability.
Collapse
|
3
|
Lin EMJ, Lay CL, Subramanian GS, Tan WS, Leong SSJ, Moh LCH, Lim K. Control Release Coating for Urinary Catheters with Enhanced Released Profile for Sustained Antimicrobial Protection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59263-59274. [PMID: 34846837 DOI: 10.1021/acsami.1c17697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are common and pose significant costs to healthcare systems. To date, this problem is largely unsolved as commercially available antimicrobial catheters are still lacking in functionality and performance. A prior study by Lim et al. ( Biotechnol. Bioeng. 2018, 115 (8), 2000-2012) reported the development of a novel anhydrous polycaprolactone (PCL) polymer formulation with controlled-release functionality for antimicrobial peptides. In this follow-up study, we developed an improved antimicrobial peptide (AMP)-impregnated poly(ethylene glycol) (PEG)-polycaprolactone (PCL) anhydrous polymer coating for enhanced sustained controlled-release functionality to provide catheters with effective antimicrobial properties. Varying the ratio of PEG and PEG-PCL copolymers resulted in polymers with different morphologies, consequently affecting the AMP release profiles. The optimal coating, formulated with 10% (w/w) PEG-PCL in PCL, achieved a controlled AMP release rate of 31.65 ± 6.85 μg/mL daily for up to 19 days, with a moderate initial burst release. Such profile is desired for antimicrobial coating as the initial burst release acts as a sterilizer to kill the bacteria present in the urinary tract upon insertion, and the subsequent linear release functions as a prophylaxis to deter opportunistic microbial infections. As a proof-of-concept application, our optimized coating was then applied to a commercial silicone catheter for further antibacterial tests. Preliminary results revealed that our coated catheters outperformed commercial silver-based antimicrobial catheters in terms of antimicrobial performance and sustainability, lasting for 4 days. Application of the controlled-release coating also aids in retarding biofilm formation, showing a lower extent of biofilm formation at the end of seven inoculation cycles.
Collapse
Affiliation(s)
- Esther Marie JieRong Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, 138634 Singapore
| | - Chee Leng Lay
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, 138634 Singapore
| | - Gomathy Sandhya Subramanian
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, 138634 Singapore
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research, 31 Biopolis Way, #01-02 Nanos, 138669 Singapore
| | - Wui Siew Tan
- Dornier Medtech Asia Pte Ltd., 2 Venture Drive, Vision Exchange, 608526 Singapore
| | | | - Lionel Chuan Hui Moh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, 138634 Singapore
| | - Kaiyang Lim
- ES-TA Technology Pte Ltd., 21 Jalan Mesin, 368819 Singapore
| |
Collapse
|
4
|
Tourki B, Dumesnil A, Belaidi E, Ghrir S, Godin-Ribuot D, Marrakchi N, Richard V, Mulder P, Messadi E. Lebetin 2, a Snake Venom-Derived B-Type Natriuretic Peptide, Provides Immediate and Prolonged Protection against Myocardial Ischemia-Reperfusion Injury via Modulation of Post-Ischemic Inflammatory Response. Toxins (Basel) 2019; 11:toxins11090524. [PMID: 31510060 PMCID: PMC6784001 DOI: 10.3390/toxins11090524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Myocardial infarction (MI) followed by left ventricular (LV) remodeling is the most frequent cause of heart failure. Lebetin 2 (L2), a snake venom-derived natriuretic peptide, exerts cardioprotection during acute myocardial ischemia-reperfusion (IR) ex vivo. However, its effects on delayed consequences of IR injury, including post-MI inflammation and fibrosis have not been defined. Here, we determined whether a single L2 injection exerts cardioprotection in IR murine models in vivo, and whether inflammatory response to ischemic injury plays a role in L2-induced effects. We quantified infarct size (IS), fibrosis, inflammation, and both endothelial cell and cardiomyocyte densities in injured myocardium and compared these values with those induced by B-type natriuretic peptide (BNP). Both L2 and BNP reduced IS, fibrosis, and inflammatory response after IR, as evidenced by decreased leukocyte and proinflammatory M1 macrophage infiltrations in the infarcted area compared to untreated animals. However, only L2 increased anti-inflammatory M2-like macrophages. L2 also induced a higher density of endothelial cells and cardiomyocytes. Our data show that L2 has strong, acute, prolonged cardioprotective effects in post-MI that are mediated, at least in part, by the modulation of the post-ischemic inflammatory response and especially, by the enhancement of M2-like macrophages, thus reducing IR-induced necrotic and fibrotic effects.
Collapse
Affiliation(s)
- Bochra Tourki
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisia.
- Université Carthage Tunis, 1054 Bizerte, Tunisia.
| | - Anais Dumesnil
- Normandie Univ, UNIROUEN, Inserm U1096, FHU REMOD-VHF, 76000 Rouen, France.
| | - Elise Belaidi
- Université Grenoble Alpes, Inserm U1042, Laboratoire HP2, 38000 Grenoble, France.
| | - Slim Ghrir
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisia.
| | - Diane Godin-Ribuot
- Université Grenoble Alpes, Inserm U1042, Laboratoire HP2, 38000 Grenoble, France.
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisia.
| | - Vincent Richard
- Normandie Univ, UNIROUEN, Inserm U1096, FHU REMOD-VHF, 76000 Rouen, France.
| | - Paul Mulder
- Normandie Univ, UNIROUEN, Inserm U1096, FHU REMOD-VHF, 76000 Rouen, France.
| | - Erij Messadi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, 1068 Tunis, Tunisia.
| |
Collapse
|
5
|
Lim WS, Chen K, Chong TW, Xiong GM, Birch WR, Pan J, Lee BH, Er PS, Salvekar AV, Venkatraman SS, Huang Y. A bilayer swellable drug-eluting ureteric stent: Localized drug delivery to treat urothelial diseases. Biomaterials 2018; 165:25-38. [PMID: 29501967 DOI: 10.1016/j.biomaterials.2018.02.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 10/18/2022]
Abstract
A bilayer swellable drug-eluting ureteric stent (BSDEUS) is engineered and implemented, as a sustained drug delivery platform technology that enhances localized drug delivery to the highly impermeable urothelium, for the treatment of urothelial diseases such as strictures and carcinomas. On deployment, the device swells to co-apt with the ureteric wall and ensure drug availability to these tissues. BSDEUS consists of a stent spray-coated with a polymeric drug containing polylactic acid-co-caprolactone (PLC) layer which is overlaid by a swellable polyethylene glycol diacrylate (PEGDA) based hydrogel. In-vitro quantification of released drug demonstrated a tunable time-profile, indicating sustained delivery over 1-month. The PEGDA hydrogel overlayer enhanced drug release and transport into explanted porcine ureteric tissues ex-vivo, under a simulated dynamic fluid flow. A preliminary pilot in-vivo feasibility study, in a porcine model, demonstrated that the swollen hydrogel co-apts with the urothelium and thus enables localized drug delivery to the target tissue section. Kidney functions remained unaffected and device did not result in either hydronephrosis or systemic toxicity. This successful engineering of a bilayer coated stent prototype, demonstrates its feasibility, thus offering a unique solution for drug-based urological therapy.
Collapse
Affiliation(s)
- Wei Shan Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way Innovis, Singapore, 138634, Singapore; Sino-Singapore International Joint Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Kenneth Chen
- Department of Urology, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore.
| | - Tsung Wen Chong
- Department of Urology, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Gordon Minru Xiong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - William R Birch
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way Innovis, Singapore, 138634, Singapore
| | - Jisheng Pan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way Innovis, Singapore, 138634, Singapore
| | - Bae Hoon Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS, Wenzhou, 325001, China
| | - Pei Shan Er
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Abhijit Vijay Salvekar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Subbu S Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Sino-Singapore International Joint Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Yingying Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Sino-Singapore International Joint Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
6
|
Evolving Role of Natriuretic Peptides from Diagnostic Tool to Therapeutic Modality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:109-131. [PMID: 29411335 DOI: 10.1007/5584_2018_143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natriuretic peptides (NP) are widely recognized as key regulators of blood pressure, water and salt homeostasis. In addition, they play a critical role in physiological cardiac growth and mediate a variety of biological effects including antiproliferative and anti-inflammatory effects in other organs and tissues. The cardiac release of NPs ANP and BNP represents an important compensatory mechanism during acute and chronic cardiac overload and during the pathogenesis of heart failure where their actions counteract the sustained activation of renin-angiotensin-aldosterone and other neurohormonal systems. Elevated circulating plasma NP levels correlate with the severity of heart failure and particularly BNP and the pro-peptide, NT-proBNP have been established as biomarkers for the diagnosis of heart failure as well as prognostic markers for cardiovascular risk. Despite activation of the NP system in heart failure it is inadequate to prevent progressive fluid and sodium retention and cardiac remodeling. Therapeutic approaches included administration of synthetic peptide analogs and the inhibition of NP-degrading enzyme neutral endopeptidase (NEP). Of all strategies only the combined NEP/ARB inhibition with sacubitril/valsartan had shown clinical success in reducing cardiovascular mortality and morbidity in patients with heart failure.
Collapse
|
7
|
Huang Y, Wong YS, Ng HCA, Boey FYC, Venkatraman S. Translation in cardiovascular stents and occluders: From biostable to fully degradable. Bioeng Transl Med 2017; 2:156-169. [PMID: 29313029 PMCID: PMC5675095 DOI: 10.1002/btm2.10066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/16/2017] [Accepted: 06/18/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is a major cause of morbidity and mortality, especially in developed countries. Most academic research efforts in cardiovascular disease management focus on pharmacological interventions, or are concerned with discovering new disease markers for diagnosis and monitoring. Nonpharmacological interventions with therapeutic devices, conversely, are driven largely by novel materials and device design. Examples of such devices include coronary stents, heart valves, ventricular assist devices, and occluders for septal defects. Until recently, development of such devices remained largely with medical device companies. We trace the materials evolution story in two of these devices (stents and occluders), while also highlighting academic contributions, including our own, to the evolution story. Specifically, it addresses not only our successes, but also the challenges facing the translatability of concepts generated via academic research.
Collapse
Affiliation(s)
- Yingying Huang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Yee Shan Wong
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Herr Cheun Anthony Ng
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Freddy Y C Boey
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Subbu Venkatraman
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
8
|
Tourki B, Matéo P, Morand J, Elayeb M, Godin-Ribuot D, Marrakchi N, Belaidi E, Messadi E. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion. PLoS One 2016; 11:e0162632. [PMID: 27618302 PMCID: PMC5019389 DOI: 10.1371/journal.pone.0162632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 12/28/2022] Open
Abstract
Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2) is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP). Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR). We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP) opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP) release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP) channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bochra Tourki
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Université Carthage Tunis, Bizerte, Tunisia
| | - Philippe Matéo
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire, UMR-S 1180, Faculté de Pharmacie, Université Paris Sud, Paris, France
| | - Jessica Morand
- Laboratoire d’Hypoxie et Physiopathologie Cardiaque, Inserm U1042, Faculté de Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Mohamed Elayeb
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Diane Godin-Ribuot
- Laboratoire d’Hypoxie et Physiopathologie Cardiaque, Inserm U1042, Faculté de Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Elise Belaidi
- Laboratoire d’Hypoxie et Physiopathologie Cardiaque, Inserm U1042, Faculté de Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Erij Messadi
- Laboratoire des Venins et Biomolécules Thérapeutiques (LR11IPT08) et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires (P2C), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
9
|
Wojta J. Cenderitide: a multivalent designer-peptide-agonist of particulate guanylyl cyclase receptors with considerable therapeutic potential in cardiorenal disease states. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2015; 2:106-7. [PMID: 27533521 DOI: 10.1093/ehjcvp/pvv043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| |
Collapse
|