1
|
Lavigne T, Mazier A, Perney A, Bordas SPA, Hild F, Lengiewicz J. Digital Volume Correlation for large deformations of soft tissues: Pipeline and proof of concept for the application to breast ex vivo deformations. J Mech Behav Biomed Mater 2022; 136:105490. [PMID: 36228403 DOI: 10.1016/j.jmbbm.2022.105490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
Being able to reposition tumors from prone imaging to supine surgery stances is key for bypassing current invasive marking used for conservative breast surgery. This study aims to demonstrate the feasibility of using Digital Volume Correlation (DVC) to measure the deformation of a female quarter thorax between two different body positioning when subjected to gravity. A segmented multipart mesh (bones, cartilage and tissue) was constructed and a three-step FE-based DVC procedure with heterogeneous elastic regularization was implemented. With the proposed framework, the large displacement field of a hard/soft breast sample was recovered with low registration residuals and small error between the measured and manually determined deformations of phase interfaces. The present study showed the capacity of FE-based DVC to faithfully capture large deformations of hard/soft tissues.
Collapse
Affiliation(s)
- T Lavigne
- Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg
| | - A Mazier
- Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg
| | - A Perney
- Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg; Centre des Materiaux, Mines ParisTech, PSL University, 63-65 Rue Henri Auguste Desbrueres, Corbeil-Essonnes, 91100, France
| | - S P A Bordas
- Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg; Visiting professor at Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - F Hild
- University Paris-Saclay, CentraleSupelec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mecanique Paris-Saclay, 4 avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - J Lengiewicz
- Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg; Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT PAN), Pawinskiego 5B, Warsaw, 02-106, Poland
| |
Collapse
|
2
|
Stephens S, Ingels N, Wenk J, Jensen M. Alumina as a Computed Tomography Soft Material and Tissue Fiducial Marker. EXPERIMENTAL MECHANICS 2022; 62:879-884. [PMID: 36034684 PMCID: PMC9400951 DOI: 10.1007/s11340-022-00825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/13/2022] [Indexed: 06/03/2023]
Abstract
Background The use of 3D imaging is becoming increasingly common, so too is the use of fiducial markers to identify/track regions of interest and assess material deformation. While many different materials have been used as fiducials, they are often used in isolation, with little comparison to one another. Objective In the current study, we aim to directly compare different Computed Tomography (CT and μCT) fiducial materials, both metallic and nonmetallic. Methods μCT imaging was performed on a soft-tissue structure, in this case heart valve tissue, with various markers attached. Additionally, we evaluated the same markers with DiceCT stained tissue in a fluid medium. Eight marker materials were tested in all. Results All of the metallic markers generated significant artifacts and were found unsuitable for soft-tissue μCT imaging, whereas alumina markers were found to perform the best, with excellent contrast and consistency. Conclusions These findings support the further use of alumina as fiducial markers for soft material and tissue studies that utilize CT and μCT imaging.
Collapse
Affiliation(s)
- S.E. Stephens
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - N.B. Ingels
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - J.F. Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, United States of America
| | - M.O. Jensen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
3
|
Park MH, Zhu Y, Imbrie-Moore AM, Wang H, Marin-Cuartas M, Paulsen MJ, Woo YJ. Heart Valve Biomechanics: The Frontiers of Modeling Modalities and the Expansive Capabilities of Ex Vivo Heart Simulation. Front Cardiovasc Med 2021; 8:673689. [PMID: 34307492 PMCID: PMC8295480 DOI: 10.3389/fcvm.2021.673689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
The field of heart valve biomechanics is a rapidly expanding, highly clinically relevant area of research. While most valvular pathologies are rooted in biomechanical changes, the technologies for studying these pathologies and identifying treatments have largely been limited. Nonetheless, significant advancements are underway to better understand the biomechanics of heart valves, pathologies, and interventional therapeutics, and these advancements have largely been driven by crucial in silico, ex vivo, and in vivo modeling technologies. These modalities represent cutting-edge abilities for generating novel insights regarding native, disease, and repair physiologies, and each has unique advantages and limitations for advancing study in this field. In particular, novel ex vivo modeling technologies represent an especially promising class of translatable research that leverages the advantages from both in silico and in vivo modeling to provide deep quantitative and qualitative insights on valvular biomechanics. The frontiers of this work are being discovered by innovative research groups that have used creative, interdisciplinary approaches toward recapitulating in vivo physiology, changing the landscape of clinical understanding and practice for cardiovascular surgery and medicine.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Leyssens L, Pestiaux C, Kerckhofs G. A Review of Ex Vivo X-ray Microfocus Computed Tomography-Based Characterization of the Cardiovascular System. Int J Mol Sci 2021; 22:3263. [PMID: 33806852 PMCID: PMC8004599 DOI: 10.3390/ijms22063263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular malformations and diseases are common but complex and often not yet fully understood. To better understand the effects of structural and microstructural changes of the heart and the vasculature on their proper functioning, a detailed characterization of the microstructure is crucial. In vivo imaging approaches are noninvasive and allow visualizing the heart and the vasculature in 3D. However, their spatial image resolution is often too limited for microstructural analyses, and hence, ex vivo imaging is preferred for this purpose. Ex vivo X-ray microfocus computed tomography (microCT) is a rapidly emerging high-resolution 3D structural imaging technique often used for the assessment of calcified tissues. Contrast-enhanced microCT (CE-CT) or phase-contrast microCT (PC-CT) improve this technique by additionally allowing the distinction of different low X-ray-absorbing soft tissues. In this review, we present the strengths of ex vivo microCT, CE-CT and PC-CT for quantitative 3D imaging of the structure and/or microstructure of the heart, the vasculature and their substructures in healthy and diseased state. We also discuss their current limitations, mainly with regard to the contrasting methods and the tissue preparation.
Collapse
Affiliation(s)
- Lisa Leyssens
- Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (L.L.); (C.P.)
- Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Camille Pestiaux
- Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (L.L.); (C.P.)
- Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Greet Kerckhofs
- Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (L.L.); (C.P.)
- Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
- Department of Materials Engineering, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Rankin K, Steer J, Paton J, Mavrogordato M, Marter A, Worsley P, Browne M, Dickinson A. Developing an Analogue Residual Limb for Comparative DVC Analysis of Transtibial Prosthetic Socket Designs. MATERIALS 2020; 13:ma13183955. [PMID: 32906701 PMCID: PMC7557588 DOI: 10.3390/ma13183955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Personalised prosthetic sockets are fabricated by expert clinicians in a skill- and experience-based process, with research providing tools to support evidence-based practice. We propose that digital volume correlation (DVC) may offer a deeper understanding of load transfer from prosthetic sockets into the residual limb, and tissue injury risk. This study’s aim was to develop a transtibial amputated limb analogue for volumetric strain estimation using DVC, evaluating its ability to distinguish between socket designs. A soft tissue analogue material was developed, comprising silicone elastomer and sand particles as fiducial markers for image correlation. The material was cast to form an analogue residual limb informed by an MRI scan of a person with transtibial amputation, for whom two polymer check sockets were produced by an expert prosthetist. The model was micro-CT scanned according to (i) an unloaded noise study protocol and (ii) a case study comparison between the two socket designs, loaded to represent two-legged stance. The scans were reconstructed to give 108 µm voxels. The DVC noise study indicated a 64 vx subvolume and 50% overlap, giving better than 0.32% strain sensitivity, and ~3.5 mm spatial resolution of strain. Strain fields induced by the loaded sockets indicated tensile, compressive and shear strain magnitudes in the order of 10%, with a high signal:noise ratio enabling distinction between the two socket designs. DVC may not be applicable for socket design in the clinical setting, but does offer critical 3D strain information from which existing in vitro and in silico tools can be compared and validated to support the design and manufacture of prosthetic sockets, and enhance the biomechanical understanding of the load transfer between the limb and the prosthesis.
Collapse
Affiliation(s)
- Kathryn Rankin
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
- µ-VIS X-Ray Imaging Centre, University of Southampton, Southampton SO17 1BJ, UK;
| | - Joshua Steer
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
| | - Joshua Paton
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
| | - Mark Mavrogordato
- µ-VIS X-Ray Imaging Centre, University of Southampton, Southampton SO17 1BJ, UK;
| | - Alexander Marter
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
| | - Peter Worsley
- Skin Health Research Group, School of Health Sciences, University of Southampton, Southampton SO16 6YD, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Martin Browne
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Alexander Dickinson
- Bioengineering Science Research Group, School of Engineering, University of Southampton, Southampton SO17 1BJ, UK; (K.R.); (J.S.); (J.P.); (A.M.); (M.B.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Correspondence: ; Tel.: +44-(238)-059-5394
| |
Collapse
|
6
|
Huang L, Korhonen RK, Turunen MJ, Finnilä MAJ. Experimental mechanical strain measurement of tissues. PeerJ 2019; 7:e6545. [PMID: 30867989 PMCID: PMC6409087 DOI: 10.7717/peerj.6545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Strain, an important biomechanical factor, occurs at different scales from molecules and cells to tissues and organs in physiological conditions. Under mechanical strain, the strength of tissues and their micro- and nanocomponents, the structure, proliferation, differentiation and apoptosis of cells and even the cytokines expressed by cells probably shift. Thus, the measurement of mechanical strain (i.e., relative displacement or deformation) is critical to understand functional changes in tissues, and to elucidate basic relationships between mechanical loading and tissue response. In the last decades, a great number of methods have been developed and applied to measure the deformations and mechanical strains in tissues comprising bone, tendon, ligament, muscle and brain as well as blood vessels. In this article, we have reviewed the mechanical strain measurement from six aspects: electro-based, light-based, ultrasound-based, magnetic resonance-based and computed tomography-based techniques, and the texture correlation-based image processing method. The review may help solving the problems of experimental and mechanical strain measurement of tissues under different measurement environments.
Collapse
Affiliation(s)
- Lingwei Huang
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko A J Finnilä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
7
|
Pierce EL, Kohli K, Ncho B, Sadri V, Bloodworth CH, Mangan FE, Yoganathan AP. Novel In Vitro Test Systems and Insights for Transcatheter Mitral Valve Design, Part II: Radial Expansion Forces. Ann Biomed Eng 2019; 47:392-402. [PMID: 30341736 PMCID: PMC6520998 DOI: 10.1007/s10439-018-02139-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
Abstract
Transcatheter mitral valve (TMV) replacement technology has great clinical potential for surgically inoperable patients suffering from mitral regurgitation. An important goal for robust TMV design is maximizing the likelihood of achieving a geometry post-implant that facilitates optimal performance. To support this goal, improved understanding of the annular forces that oppose TMV radial expansion is necessary. In Part II of this study, novel circular and D-shaped Radial Expansion Force Transducers (C-REFT and D-REFT) were developed and employed in porcine hearts (N = 12), to detect the forces required to radially expand the mitral annulus to discrete oversizing levels. Forces on both the septal-lateral and inter-commissural axes (FSL and FIC) scaled with device size. The D-REFT experienced lower FSL than the C-REFT (19.8 ± 7.4 vs. 17.4 ± 10.8 N, p = 0.002) and greater FIC (31.5 ± 14.0 vs. 36.9 ± 16.2 N; p = 0.002), and was more sensitive to degree of oversizing. Across all tests, FIC/FSL was 2.21 ± 1.33, likely reflecting low resistance to radial expansion at the aorto-mitral curtain. In conclusion, the annular forces opposing TMV radial expansion are non-uniform, and depend on final TMV shape and size. Based on this two-part study, we propose that radial force applied at the commissural aspect of the annulus has the most potent effect on paravalvular sealing.
Collapse
Affiliation(s)
- Eric L Pierce
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Keshav Kohli
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Beatrice Ncho
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Vahid Sadri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Charles H Bloodworth
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Fiona E Mangan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Ajit P Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA.
| |
Collapse
|
8
|
Rego BV, Khalighi AH, Drach A, Lai EK, Pouch AM, Gorman RC, Gorman JH, Sacks MS. A noninvasive method for the determination of in vivo mitral valve leaflet strains. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3142. [PMID: 30133180 DOI: 10.1002/cnm.3142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Assessment of mitral valve (MV) function is important in many diagnostic, prognostic, and surgical planning applications for treatment of MV disease. Yet, to date, there are no accepted noninvasive methods for determination of MV leaflet deformation, which is a critical metric of MV function. In this study, we present a novel, completely noninvasive computational method to estimate MV leaflet in-plane strains from clinical-quality real-time three-dimensional echocardiography (rt-3DE) images. The images were first segmented to produce meshed medial-surface leaflet geometries of the open and closed states. To establish material point correspondence between the two states, an image-based morphing pipeline was implemented within a finite element (FE) modeling framework in which MV closure was simulated by pressurizing the open-state geometry, and local corrective loads were applied to enforce the actual MV closed shape. This resulted in a complete map of local systolic leaflet membrane strains, obtained from the final FE mesh configuration. To validate the method, we utilized an extant in vitro database of fiducially labeled MVs, imaged in conditions mimicking both the healthy and diseased states. Our method estimated local anisotropic in vivo strains with less than 10% error and proved to be robust to changes in boundary conditions similar to those observed in ischemic MV disease. Next, we applied our methodology to ovine MVs imaged in vivo with rt-3DE and compared our results to previously published findings of in vivo MV strains in the same type of animal as measured using surgically sutured fiducial marker arrays. In regions encompassed by fiducial markers, we found no significant differences in circumferential(P = 0.240) or radial (P = 0.808) strain estimates between the marker-based measurements and our novel noninvasive method. This method can thus be used for model validation as well as for studies of MV disease and repair.
Collapse
Affiliation(s)
- Bruno V Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amir H Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Eric K Lai
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison M Pouch
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
9
|
Bloodworth CH, Pierce EL, Easley TF, Drach A, Khalighi AH, Toma M, Jensen MO, Sacks MS, Yoganathan AP. Ex Vivo Methods for Informing Computational Models of the Mitral Valve. Ann Biomed Eng 2017; 45:496-507. [PMID: 27699507 PMCID: PMC5300906 DOI: 10.1007/s10439-016-1734-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/12/2016] [Indexed: 11/28/2022]
Abstract
Computational modeling of the mitral valve (MV) has potential applications for determining optimal MV repair techniques and risk of recurrent mitral regurgitation. Two key concerns for informing these models are (1) sensitivity of model performance to the accuracy of the input geometry, and, (2) acquisition of comprehensive data sets against which the simulation can be validated across clinically relevant geometries. Addressing the first concern, ex vivo micro-computed tomography (microCT) was used to image MVs at high resolution (~40 micron voxel size). Because MVs distorted substantially during static imaging, glutaraldehyde fixation was used prior to microCT. After fixation, MV leaflet distortions were significantly smaller (p < 0.005), and detail of the chordal tree was appreciably greater. Addressing the second concern, a left heart simulator was designed to reproduce MV geometric perturbations seen in vivo in functional mitral regurgitation and after subsequent repair, and maintain compatibility with microCT. By permuting individual excised ovine MVs (n = 5) through each state (healthy, diseased and repaired), and imaging with microCT in each state, a comprehensive data set was produced. Using this data set, work is ongoing to construct and validate high-fidelity MV biomechanical models. These models will seek to link MV function across clinically relevant states.
Collapse
Affiliation(s)
- Charles H Bloodworth
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Eric L Pierce
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Thomas F Easley
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Andrew Drach
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX, 78712, USA
| | - Amir H Khalighi
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX, 78712, USA
| | - Milan Toma
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Morten O Jensen
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX, 78712, USA
| | - Ajit P Yoganathan
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA.
| |
Collapse
|
10
|
High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods. Biomech Model Mechanobiol 2016; 15:1619-1630. [PMID: 27094182 DOI: 10.1007/s10237-016-0786-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/29/2016] [Indexed: 10/21/2022]
Abstract
The diversity of mitral valve (MV) geometries and multitude of surgical options for correction of MV diseases necessitates the use of computational modeling. Numerical simulations of the MV would allow surgeons and engineers to evaluate repairs, devices, procedures, and concepts before performing them and before moving on to more costly testing modalities. Constructing, tuning, and validating these models rely upon extensive in vitro characterization of valve structure, function, and response to change due to diseases. Micro-computed tomography ([Formula: see text]CT) allows for unmatched spatial resolution for soft tissue imaging. However, it is still technically challenging to obtain an accurate geometry of the diastolic MV. We discuss here the development of a novel technique for treating MV specimens with glutaraldehyde fixative in order to minimize geometric distortions in preparation for [Formula: see text]CT scanning. The technique provides a resulting MV geometry which is significantly more detailed in chordal structure, accurate in leaflet shape, and closer to its physiological diastolic geometry. In this paper, computational fluid-structure interaction (FSI) simulations are used to show the importance of more detailed subject-specific MV geometry with 3D chordal structure to simulate a proper closure validated against [Formula: see text]CT images of the closed valve. Two computational models, before and after use of the aforementioned technique, are used to simulate closure of the MV.
Collapse
|